方差分析(包括三因素)
方差分析(包括三因素)讲解

2、CLASS 变量表;
CLASS必须的MODEL之前。
3、MODEL 因变量表=效应;
输出因变量均数,对主效应均数间的检
4、MEANS 效应[/选择项];
验。
5、ALPHA=p 显著性水平(缺省值为0.05)
是指因变量与自变量效应,模型如下:
1、主效应模型 MODEL y=a b c; (a b c是主效应,y是因变量)
计判断,得出结论。
5
方差分析的基本思想:把全部数据关于总均值的离差平方和 分解成几部分,每一部分表示某因素诸水平交互作用所产生 的效应,将各部分均方与误差均方相比较,从而确认或否认 某些因素或交互作用的重要性。
用公式概括为:
各因素引起
由个体差异 引起(误差)
总变异=组间变异+组内变异
种类:常用方差分析法有以下4种 1、完全随机设计资料的方差分析(单因素方差分析) 2、随机区组设计资料的方差分析(二因素方差分析) 3、拉丁方设计资料的方差分析(三因素方差分析) 4、R*C析因设计资料的方差分析(有交互因素方差分析)
3
第一节 概述
因素(因子)—— 可以控制的试验条件 因素的水平 —— 因素所处的状态或等级 单(双)因素方差分析——讨论一个(两个) 因素对试验结果有没有显著影响。
4
例如:某厂对某种晴棉漂白工艺中酸液浓度(g/k)进 行试验,以观察酸液浓度对汗布冲击强力有无显著影 响。
冲击强力 序号
1
浓度
2 3 4 56
计算出F值:
QA
4217.3
(3 1) 2 28.38
QE
1114.7
(3(6 1))
5
15
列表:
方差来源 因素A 试验误差 总误差
三因素方差分析.

7
三因素方差分析举例
残差的正态性检验结果:P=0.9422>0.05
Skewness/Kurtosis tests for Normality ------- joint -----Variable | Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2 -------------+------------------------------------------------------e | 0.915 0.743 0.12 0.9422
8
三因素方差分析举例
Full model结果:二级交互作用项P=0.0214<0.05
Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------Model | .347361264 7 .049623038 1.55 0.2202 a | .00201666 1 .00201666 0.06 0.8049 b | .044490835 1 .044490835 1.39 0.2554 c | .048001913 1 .048001913 1.50 0.2382 a*b | .0244907 1 .0244907 0.77 0.3944 a*c | .003112983 1 .003112983 0.10 0.7591 b*c | .017424103 1 .017424103 0.54 0.4711 a*b*c | .207824069 1 .207824069 6.50 0.0214 Residual | .511622125 16 .031976383 -----------+---------------------------------------------------Total | .858983389 23 .037347104
SAS-方差分析

kn
SST
xi2j C
i 1 j 1
SSt
1 n
k
Ti 2
i 1
C
SSe SST SSt
其中,C=T 2/kn称为矫正数。
(二)总自由度的剖分 kn
在计算总平方和时,资料中的各个观测值要受 (xij 这 x.一.) 0 i1 j1
条件的约束,故总自由度等于资料中观测值的总个数减1,
LSR SSR SE
SE
se 2 n
用各个p的LSRa即可测验各平均数两极差的显著性:两极 差<LSRa,接受H0,反之,否定H0.
由Duncan 1955年提出
3. 各处理平均数间的比较
采用的是标记字母法(或“*”)。若显著水平a=0.05,差
异显著性用小写英文字母表示,可先在最大的平均数上标上 字母a(或“*”),并将该平均数与以下各个平均数相比,
生态学统计分析方法与实践 郝彦宾
中国科学院研究生院
第六章 方差分析
方差分析(analysis of variance, ANOVA)
作用
当试验结果受到多个因素的影响,而且也受到每个 因素的各水平的影响,为从数量上反映各因素以 至各因素诸水平对试验结果的影响时使用方差分 析的方法。
基本思想
把全部数据关于总均值的离差平方和分解成几个 部分,每一部分表示某因素交互作用所产生的效 应,将各部分均方与误差均方相比较,从而确认 或否认某些因素或交互作用的重要性。
总变异=处理效应+试验误差
几个术语
1. 试验指标(experimental index) 2.试验因素(experimental factor) 3.因素水平(level of factor) 4.试验处理(treatment) 5.试验单位(experimental unit) 6.重复(repetition)
完全随机设计的方差分析(1)

.
21
.
22
方差分析(Analysis of variance,ANOVA)
方差分析的定义
又叫变量分析,是英国著名统计学家R . A . Fisher于20世纪提出的。它是用以检验两个或多个 均数间差异的假设检验方法。它是一类特定情况下 的统计假设检验,或者说是平均数差异显著性检验 的一种引伸。为纪念Fisher,以F命名,故方差分析 又称F检验 。
1.特点 单因素方差分析是按照完全随机设计的原则将处理 因素分为若干个不同的水平,每个水平代表一个样本,只 能分析一个因素对试验结果的影响及作用。其设计简单, 计算方便,应用广泛,是一种常用的分析方法,但其效率 相对较低。该设计中的总变异可以分出两个部分,
•
即SS总=SS组间+SS组内。
2.常用符号及其意义
.
29
end
第一节 完全随机设计资料的方差分析
完全随机设计:(completely random design)是采
用完全随机化的分组方法,将全部试验对象分配到g个
处理组(水平组),各组分别接受不同的处理,试验 结束后比较各组均数之间的差别有无统计学意义,推 论处理因素的效应。
.
30
end
第一节 完全随机设计资料的方差分析
离均差平方和 X2
总体方差 样本方差
2 X 2
N
S2XX2X2X2/n
n1
n1
方差—随机变量离散的重要衡量方法
.
13
试验指标(experimental index): 为衡量试验
结果的好坏和处理效应的高低,在实验中具体 测定的性状或观测的项目称为试验指标。常用 的试验指标有:身高、体重、日增重、酶活性、 DNA含量等等。
方差分析

第六章方差分析方差分析是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。
由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
方差分析主要用于:1、均数差别的显著性检验,2、分离各有关因素并估计其对总变异的作用,3、分析因素间的交互作用,4、方差齐性检验。
第一节Simple Factorial过程6.1.1 主要功能调用此过程可对资料进行方差分析或协方差分析。
在方差分析中可按用户需要作单因素方差分析(其结果将与第五章第四节相同)或多因素方差分析(包括医学中常用的配伍组方差分析);当观察因素中存在有很难或无法人为控制的因素时,则可对之加以指定以便进行协方差分析。
6.1.2 实例操作[例6-1]下表为运动员与大学生的身高(cm)与肺活量(cm3)的数据,考虑到身高与肺活量有关,而一般运动员的身高高于大学生,为进一步分析肺活量的差异是否由于体育锻6.1.2.1 数据准备激活数据管理窗口,定义变量名:组变量为group (运动员=1,大学生=2),身高为x ,肺活量为y ,按顺序输入相应数值,建立数据库,结果见图6.1。
图6.1 原始数据的输入6.1.2.2 统计分析激活 Statistics 菜单选ANOV A Models 中的Simple Factorial...项,弹出Simple Factorial ANOV A 对话框(图6.2)。
在变量列表中选变量y ,点击 钮使之进入Dependent 框;选分组变量group ,点击 钮使之进入Factor(s)框中, 并点击Define Range...钮在弹出的Simple Factorial ANOV A:Define Range 框中确定分组变量group 的起止值(1,2);选协变量x ,点击 钮使之进入Covariate(s)框中。
方差分析

k
nkΒιβλιοθήκη 2总平方和:SST
实验中产生的总变异
组内平方和:SSW
实验误差(包括个体差异)由于不同的实验处理而造 造成的变异 成的变异
组间平方和:SSB
三者之间的关系如下:
SS 总 SS 组间 SS 组内
组间自由度: 组内自由度: 总体自由度: 书266:这样
df B = k-1
df W = k(n-1)
df T = nk-1
在方差分析中,比较组间变异与组内变异时,不 能直接比较各自的平方和。因为平方和的大小与 项数有关,应该将项数的影响去掉。因此用平方 和除以各自自由度得到均方,再进行比较。
SS B MS B df B
书266
MSW
SSW df W
方差分析就是通过比较组内均方MS组内 和组间均方 MS组间 的大小关系来判断处 理因素有无效应。
变异分解
SS 总(T) SS 组间(B) SS 区组(R) SS 误差(E)
SS R
1 n
( R ) 2 k
( R ) 2 nk
总自由度也被分为三部分: dfT = nk-1
df B k 1
dfE=(k-1)(n-1)
dfR=n-1
例4:5名被试在四种不同的环境条件下参加某一心理测验, 结果如下。问不同的测验环境是否对这一测验成绩有显著影 响。
SSB n ( X j X t ) 2
j 1 k
SSw ( X ij X j ) n s j
2 j 1
k
2
1、求平方和
Xt
X1 X 2 X 3 X 4 6.4 4
k
SSB n ( X j X t ) 2 30.08
三因素混合方差分析事后简单效应多重比较语法

概念笔记Main effect 一个因素的独立效应,即其不同水平引起的方差变异。
三因素的实验有三个主效应。
把某一因素的一个水平同该因素的其他水平比较,不考虑其他因素。
Interaction 多个因素的联合效应,A因素的作用受到B因素的影响,即有交互——two-way interaction. 当一因素作用受到另外两个因素影响,即三因素交互three-way interaction.重复测量一个因素的三因素混合设计3*2*2的混合设计A3*B2*R2 【A, B为被试间因素】需要分析的有——A, B, R 各自主效应二重交互作用,A*B, A*R, B*R三重交互作用,A*B*C结果发现,A, B为被试间因素,交互作用SIG当二重交互作用SIG,需要进行simple effect检验。
A因素水平在B因素某一水平上的变异。
A在B1水平上的简单效应A在B2水平上的简单效应B在A1水平上的简单效应B在A2水平上的简单效应B在A3水平上的简单效应如果三重交互作用SIG,需要进行三因素的简单简单效应分析simple simple effect. 某一因素的水平在另外两个因素的水平结合上的效应在A1B1水平结合上,R1 与R2 差异在A1B2水平结合上,R1 与R2 差异在A2B1水平结合上,R1 与R2 差异在A2B2水平结合上,R1 与R2 差异在A3B1水平结合上,R1 与R2 差异在A3B2水平结合上,R1 与R2 差异重复测量方差分析之后,如果三重交互作用显著,需要编辑语法,得出三个因素各自的简单效应某一因素在其他两个因素的某一实验条件内的简单效应检验三因素重复测量方差分析对应的会有3种简单效应检验结果SPSS在输出简单效应检验结果的同时,也会报告多重比较结果,会有更直观的对比结果。
如果三重交互作用SIG,需要进行简单简单效应检验。
固定某两个因素水平组合,考察研究者最感兴趣的那个变量的效应。
MANOV A R1 R2 BY A(1,3) B(1,2)/WSFACTORS=R(2)/PRINT=CELLINFO(MEANS)/WSDESIGN/DESIGN/WSDESIGN=R/DESIGN=MWITHIN B(1) WITHIN A(1)MWITHIN B(2) WITHIN A(1)MWITHIN B(1) WITHIN A(2)MWITHIN B(2) WITHIN A(2)MWITHIN B(1) WITHIN A(3)MWITHIN B(2) WITHIN A(3)上述语法内容是检验被试内变量R在被试间变量A, B 上的简单简单效应。
1第6章方差分析

1第6章⽅差分析1第6章⽅差分析⽅差分析是R. A. Fister 发明的,⽤于两个及两个以上样本均数差别的显著性检验. 由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,⼀是不可控的随机因素,另⼀是研究中施加的对结果形成影响的可控因素. ⽅差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献⼤⼩,从⽽确定可控因素对研究结果影响⼒的⼤⼩.6.1 单因素⽅差分析我们把在实验中或在抽样时发⽣变化的“量”称为因素或因⼦. ⽅差分析的⽬的就是分析因⼦对实验或抽样的结果有⽆显著影响. 如果在实验中变化的因素只有⼀个,这时的⽅差分析称为单因素⽅差分析;在实验中变化的因素不只⼀个时,就称多因素⽅差分析. 双因素⽅差分析是多因素⽅差分析的最简单情形.因⼦在实验中的不同状态称作⽔平. 如果因⼦A 有r 个不同状态,就称它有r 个⽔平. 我们针对因素的不同⽔平或⽔平的组合,进⾏实验或抽取样本,以便了解因⼦的影响. 当⽅差分析的影响因⼦不唯⼀时,必要注意这些因⼦间的相互影响. 如果因⼦间存在相互影响,我们称之为“交互影响”;如果因⼦间是相互独⽴的,则称为⽆交互影响. 互影响有时也称为交互作⽤,是对实验结果产⽣作⽤的⼀个新因素,分析过程中有必要将它的影响作⽤也单独分离开来.6.1.1 单因素⽅差分析的模型假设设某单因素A 有r 种⽔平:1A ,2A ,…,r A ,在每种⽔平下的试验结果服从正态分布2(,)i N µσ(1,2,,i r = ). 在各⽔平下分别独⽴做了i n (1,2,,i r = )次试验,所得数据见表,其中ij x 表⽰表⽰第i 种⽔平下第j 个试验数据. 判断因素A 对试验结果是否有显著影响. 这⾥我们假定各种⽔平下的试验结果有相同的标准差σ. 单因素⽅差分析问题可以归结为以下的假设检验: 012:r H µµµ=== 1:H 12,,,r µµµ 不全相等表6-1 单因⼦试验表6.1.2 单因素⽅差分析的原理如何检验统计假设0H ?⼀般情况下,1µ,2µ,,r µ不全相同将反映在ij x (1,2,,;i r = 1,2,,)i j n = 取值的⼤⼩不同上,这时离差211()in r ij i j S x x ===?∑∑也⽐较⼤. 其中111in r ij i j x x n ===∑∑,1ri i n n ==∑. 但是我们还不能只从S ⽐较⼤就断定1µ,2µ,,r µ不全相同,因为在1µ,2µ,,r µ全相同时,由于试验中的随机误差影响,S 也可能取⽐较⼤的值. 为了区别这两种情况,先把离差S 作⼀个分解. 令 11in i ijj ix xn ==∑2112112211111122111()()()()2()()()()ii ii iin rT ij i j n rij i i i j n n n rr r ij i i ij i i i j i j i j n rrij i i i i j i S x x x x x x x x x x x x x x x x n x x ==============?=?+?=?+?+??=?+?∑∑∑∑∑∑∑∑∑∑∑∑∑ (5. 1)记上式分解的第⼀项为e S ,第⼆项为A S . 211()i n r e ij i i j S x x ===?∑∑ , 1(rA i i i S n x x ==?∑有T A e S S S =+即总离差T S 等于组内误差e S 与组间离差A S 之和.下⾯分析e S : 对任⼀指定的1i r ≤≤,21()in ij i j x x =?∑是⽔平i A 下试验数据的离差,是由随机因素造成的. e S 是所有⽔平下离差的和,因⽽也是由随机因素造成的.形成A S 除了随机因素外,如果1µ,2µ,,r µ不全相同,这个差异也要从A S 反映出来,⼀般A S 取⽐较⼤的值. 因此,将A S 和e S ⽐较,如果A S 不太⼤,我们只能认为A S 是由试验的随机误差形成的,从⽽接受0H ;如果A S 太⼤,我们便有理由怀疑A S 完全是由试验的随机误差形成的,认为1µ,2µ,,r µ不全相同,从⽽拒绝0H . 我们将⽤形如A e S c S ??>的判别区域,c 由预先给定的信度α确定. 给定α后,需要计算统计量AeS S 在0H 为真时的分布. 可以证明,在0H 为真时,(1,)1A e S n p F p n p p S ~. 即1AeS n p p S ??服从参数为1p ?和n p ?的F 分布. 只需从F 分布表,查(1,)F p n p α??,使((1,))P F p n p αηα>??=. 其中(1,)F p n p η??~.最后得到的检验⽅法是: 若(1,)1AeS n p F p n p p S α??>,就拒绝0H ,否则接受0H图6-1. (4,10)F 时的F 曲线和0.05α=时的临界值6.1.3 单因素⽅差分析表对上⼀⼩节的分析进⾏总结,得到单因素⽅差分析表6-2. 表6-2 单因素⽅差分析表3若0.01(1,)F F r n r α>??,称因素A 对试验结果有⾮常显著的影响,⽤“* *”号表⽰;若0.050.01(1,)(1,)F r n r F F r n r α??<6.2 利⽤SPSS 进⾏单因素⽅差分析6.2.1 SPSS ⽅差分析对数据的要求应⽤⽅差分析对数据进⾏统计推断之前应注意样本分布的正态性,即偏态分布样本不宜⽤⽅差分析. 对偏态分布的样本应考虑⽤对数变换、平⽅根变换、倒数变换、平⽅根反正弦变换等变量变换⽅法变为正态或接近正态分布的数据后再进⾏⽅差分析.在⽅差分析的F 检验中,是以各个实验组内总体⽅差齐性(⽅差相等)为前提的,因此,按理应该在⽅差分析之前,要对各个实验组内的总体⽅差先进⾏齐性检验. 如果各个实验组内总体⽅差为齐性,⽽且经过F 检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体⽅差不齐,那么经过F 检验所得多个样本所属总体平均数差异显著的结果,可能有⼀部分归因于各个实验组内总体⽅差不同所致.但是,⽅差齐性检验也可以在F 检验结果为多个样本所属总体平均数差异显著的情况下进⾏,因为F 检验之后,如果多个样本所属总体平均数差异不显著,就不必再进⾏⽅差齐性检验.在使⽤SPSS 进⾏⽅差分析时,要求因⼦变量值为整数,⽽因变量应为定量变量(区间测量级别). SPSS 对于偏离正态的样本数据也是稳健的. 各组数据应来⾃⽅差相等的总体.6.2.2 SPSS ⽅差分析过程⽤SPSS 进⾏⽅差分析时,选项如图 .图 6-2 SPSS ⽅差分析的选项这些选项的含义如下:描述性:计算每组中每个因变量的个案数、均值、标准差、均值的标准误、最⼩值、最⼤值和95%的置信区间.固定和随机效果:显⽰固定效应模型的标准差、标准误和95%置信区间,以及随机效应模型的标准误差、95%置信区间和成分间⽅差估计.⽅差同质性检验:计算Levene 统计量以检验组间⽅差是否相等. 该检验独⽴于正态分布的假设.Brown-Forsythe :指采⽤Brown-Forsythe 分布的统计量进⾏的各组均值是否相等的检验.Brown-Forsythe分布也近似于F分布,但采⽤Brown-Forsythe检验对⽅差齐性没有要求,所以当因变量的分布不满⾜⽅差齐性的要求时,采⽤Brown-Forsythe检验⽐F检验更稳妥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、交互模型 MODEL y=a b c a*b a*c b*c a*b*c;
3、嵌套效应 MODEL y=a b c(a b);
4、混合效应模型号 MODEL y=a b(a) c(a) b*c(a);
22
例:1、单因素方差分析
某劳动卫生组织研究棉布、府绸、的确凉、尼龙四种衣料内棉花吸附十 硼氢量。每种衣料做五次测量,所得数据如下。试检验各种衣料见棉花吸 附十硼氢量有没有显著差别?
(3 1) 2 28.38
QE
1114.7
(3(6 1))
5
15
列表:
方差来源 因素A 试验误差 总误差
离差平方和 4217.3 1114.7 5332
自由度 2 15 17
F值 28.38
F0.05 F0.01 显著性 3.68 6.38 **(十分显著)
说明: F F (2,15) ,说明酸液浓度对汗布冲击强力有十分显著的影响。
计判断,得出结论。
5
方差分析的基本思想:把全部数据关于总均值的离差平方和 分解成几部分,每一部分表示某因素诸水平交互作用所产生 的效应,将各部分均方与误差均方相比较,从而确认或否认 某些因素或交互作用的重要性。
用公式概括为:
各因素引起
由个体差异 引起(误差)
总变异=组间变异+组内变异
种类:常用方差分析法有以下4种 1、完全随机设计资料的方差分析(单因素方差分析) 2、随机区组设计资料的方差分析(二因素方差分析) 3、拉丁方设计资料的方差分析(三因素方差分析) 4、R*C析因设计资料的方差分析(有交互因素方差分析)
QA
1 l
m i 1
Ti.2
T2 ml
QB
FB
(l 1) QE
F (l 1, (m 1)(l 1))
(m 1)(l 1)
QB
1 m
l j 1
T.
2 j
T2 ml
3)给定显著水平 ,查表得临界值 F (m 1, (m 1)(l 1)) QE Q QA QB
4)由样本观察值计算FA、FB
5)若 FA F (m 1, (,1)(l 1)) 时,接受H0,因素的影响不显著。 若 FA F (m 1, (,1)(l 1)) 时,拒绝H0。 对因素B同理说明。
17)
-22
-2 5 1 -11
5 6 Ti
1 -20 -80 14 7 14
6
X
'2 i
j 1
1454 396
A3
20 31 19 12 35 27 144 3820
由表中数据可算出
36
X '2 ij
5670
i1 j 1
36
3
T
X
' ij
Ti 78
i1 j 1
i 1
3
Ti2 27332
QE
2
2 (m(n 1))
QA
2
2 (m 1)
相互独立
10
方法:(检验方法)
(1)当H0:1=2=…=m 成立时。
(2)统计量: QA
2
F (m 1) F (m 1, m(n 1)) QE
2
m(n 1)
QA
即:
F
(m 1) QE
F (m 1, m(n 1))
[m(n 1)]
11
(3)给定显著性水平 ,查表得临界值 F (m 1, m(n 1))
(4)由样本观察值计算出F (5)若F > F (m 1, m(n 1)) ,则拒绝H0。 (说明因素A各水平间有显著性差异)
(6)若F F (m 1, m(n 1)) ,则接受H0。(说明因素A各水平间无显著性差异)
三、计算的简化
1、 对Q、QE、QA计算简化。(给出一个简化的计算公式和数据简化的方法)
例如:某厂对生产的高速钢铣刀进行淬火工艺试验,考察回火温度A和淬火温度B两 个因素对强度的影响。今对两个因素各3个水平进行试验,得平均硬度见表:
试验结果 Bj
Ai A1(280’C)
B1(1210‘C)B2(1235’C)B3(1250‘C)
64
66
68
A2(300‘C)
66
68
67
A3(320’C) 65
19
方差分析表:
方差来源 因素A 因素B 试验误差 总误差
离差平方和 自由度
1.56
2
11.56
2
3.1
4
16.22
8
F值 FA=1.01 FB=7.46
F0.05(2,4) F0.01(2,4) 显著性
6.94
18.0
6.94
18.0
*
3
Q
i 1
3 j 1
X
2 ij
T2 33
16.22
QA
A1
16.2 15.1 15.8 14.8 17.1 15.0
A2
16.8 17.5 17.1 15.9 18.4 17.7
A3
19.0 20.1 18.9 18.2 20.5 19.7
方差分析就是把总的 试验数据的波动分成
1、反映因素水平改变引起的波动。 然后加以比较进行统
2、反映随机因素所引起的波动。
i1
j 1
i1
9
故:
mn
mn
Q
( X ij X i )2
(Xi X )2
i 1 j 1
i 1 j 1
mn
m
( X ij X i )2 n ( X i X )2
i1 j 1
i 1
下面通过比较QE和QA来检验假设H0。 在假设H0成立的条件下,可以证明:
Q
2
2 (mn 1)
1 3
3
Ti.2
i 1
T2 33
1.56
QB
1 3
3
T.
2 j
j 1
T2 33
11.56
QE Q QA QB 3.1
FA F0.05 (2,4) A影响不显著。 F0.05 (2,4) FB F0.01(2,4) B影响显著,由于
高速钢洗刀的硬度越大越好,因此因素B可取B3水平,即淬火温度1250‘C为好,因素 A水平的确定,应考虑经济方便,取A1水平为好。
16
五、各水平下试验次数不等时的方差分析 设第 i个水平试验次数为ni, 则有
式中:
m
n ni
i 1
Q
m i 1
ni
( X ij X )2
j 1
m i 1
ni j 1
X
2 ij
T2 n
Ti
ni
Xij
j1
QE
m i1
ni
( X ij X i )2
j 1
m i1
ni
T 2 X ij n j 1
m i 1
n j 1
X
2 ij
T2 mn
12
同样可推出:
QE
m i 1
n j 1
X
2 ij
1 n
m
Ti 2
i 1
QA
1 n
m
Ti 2
i 1
T2 mn
2、数据的简化: 试验数据经过变换
X
' ij
b( Xij
a)
数据简化后对F值的计算没有影响,不会影响检验的结果 四、方差分析表
方差来源 因素A 试验误差 总误差
做法:为了检验假设H0,要从总的误差中将系统误差和随机误差分开。
8
二、离差平方和的分解与显著检验
记:
X i
1 n
n
X ij
j 1
X
1 mn
m i 1
n
X ij
j 1
将Q进行分解:
mn
Q ( Xij X )2 i1 j1
m n
Q
( X ij X i ) ( X i X ) 2
i 1 j 1
mn
mn
mn
( X ij X i )2
(Xi X )2 2
( X ij X i )( X i X )
i1 j1
i1 j1
i1 j1
mn
由于
( X ij X i )( X i X )
i 1 j 1
m
n
m
( X i X ) ( X ij X i ) ( X i X )(nX i nX i ) 0
令:
n
Ti X ij
j 1
mn
m
T X ij Ti
i1 j 1
i 1
mn
mn
Q
( X ij X )2
(
X
2 ij
2 X ij X
X
2)
i1 j 1
i1 j 1
m i 1
n
X
2 ij
mnX
2
j 1
m i 1
n j 1
X
2 ij
1 mn
(
m i 1
n
X ij )2
j 1
67
68
假设:美中不足组合水平下服从正态分布、互相独立、方差相等。 所需要解决的问题是:所有Xij的均值是否相等。
18
假设检验:
1)在假设H0成立的条件下。
2)统计量
QA
FA
(m 1) QE
F (m 1, (m 1)(l 1))
(m 1)(l 1)
Q
m i 1
l j 1
X
2 ij
T2 ml
方差分析
1
日常生活中经常发现,影 响一个事物的因素很多, 希ቤተ መጻሕፍቲ ባይዱ找到影响最显著的因 素