刚柔耦合动力学的建模方法

合集下载

刚柔耦合动力学模型

刚柔耦合动力学模型

刚柔耦合动力学模型刚柔耦合动力学是一种多体动力学分析方法,它考虑了刚体和柔性物体之间的相互作用以及柔性物体自身的运动。

这种分析方法在机器人、汽车、航空航天等领域中都有广泛应用。

在本文中,我们将介绍刚柔耦合动力学模型的相关内容。

刚柔耦合动力学模型的建立需要考虑一系列参数,包括刚体的质量、惯量、刚度、柔性物体的质量、柔性程度等。

其中,刚体和柔性物体之间的瞬时相互作用力非常复杂,并且很难用数学公式来精确描述,因此需要进行实验或者仿真来验证模型的精度。

在建立模型的过程中,需要结合刚体和柔性物体的运动学和动力学方程,得到其运动轨迹和力学特征。

例如,在机器人中,需要考虑机械臂的角速度和加速度,以及末端执行器对外界物体施加的力和力矩等。

刚柔耦合动力学模型的基本框架是多体动力学模型。

在多体动力学模型中,从宏观上考虑各个物体的运动,不考虑系统内部的趋于平衡的微观相互作用。

在刚柔耦合动力学模型中,柔体和刚体也被视为多体系统的一部分。

多体动力学模型可以建立物体的状态方程、速度方程和位移方程,并将它们组合成一个大的非线性微分方程。

可以通过求解这个微分方程来得到物体的运动轨迹和力学特征。

建立刚柔耦合动力学模型的关键问题在于如何将刚体和柔性物体进行耦合。

有两种常用的耦合方法:一种是对柔性物体进行网格剖分,将其分成很多小块,每个小块与周围的小块通过弹簧和阻尼器相连;另一种是通过刚柔接口来实现刚体和柔性物体之间的耦合。

在刚柔接口中,刚体和柔性物体之间的连接部分被视为一种弹性连接,它可以模拟刚体和柔性物体之间的相互作用。

针对具体应用场景,刚柔耦合动力学模型可以按照不同的方式进行建立。

例如,在机械臂中,可以将机械臂分成多个刚性杆,通过关节连接起来,同时将机械臂末端的执行器与周围的物体通过柔性连接相连。

在汽车悬挂系统中,可以将车身视为刚体,将悬挂系统中的弹簧和减震器视为柔性物体,然后通过刚柔接口将两者进行耦合。

总之,刚柔耦合动力学模型是一种复杂的多体动力学分析方法,需要考虑多种参数和复杂的相互作用力。

刚柔耦合动力学模型

刚柔耦合动力学模型

刚柔耦合动力学模型刚柔耦合动力学模型是一种描述刚体和柔性结构相互作用的数学模型。

这种模型可以用来研究各种复杂的力学问题,例如机械振动、机器人动力学、运动控制等。

本文将从刚柔耦合动力学模型的基本原理、应用领域和建模方法等方面进行介绍。

刚柔耦合动力学模型的基本原理是通过将刚体和柔性结构的运动方程进行耦合,描述刚体与柔性结构之间的相互作用。

在该模型中,刚体通常被描述为质点或刚性体,具有确定的质量、形状和运动状态。

而柔性结构则被描述为连续介质,其形状和运动状态受到刚体的作用影响。

刚柔耦合动力学模型可以应用于多个领域,其中最常见的应用是机械振动。

在机械振动中,刚柔耦合动力学模型可以用于研究机械系统的自由振动和强迫振动。

例如,模拟汽车行驶过不平坦道路时车身和悬挂系统的振动,或者研究机器人手臂在运动过程中的柔顺性。

在建立刚柔耦合动力学模型时,需要考虑刚体和柔性结构的几何特性、材料性质和力学行为。

为了描述柔性结构的运动,在模型中通常采用有限元法或杆模型等方法进行建模。

这些方法可以将柔性结构离散成为许多小的单元,在每个单元内求解位移和应力等参数,从而得到整个系统的运动方程。

刚柔耦合动力学模型的求解通常涉及到数值方法。

常用的数值方法有有限元法、迭代法和离散化方法等。

这些方法在模型求解过程中,会生成大量的矩阵方程,需要用计算机进行求解。

数值方法的选择将影响模型求解的精度和计算速度。

刚柔耦合动力学模型可以有多种扩展和应用。

例如,可以将多个柔性结构耦合起来进行分析,研究多体动力学问题。

还可以加入控制系统,用于实现对刚柔耦合系统的运动控制。

另外,还可以将刚柔耦合动力学模型与其他领域的模型进行耦合,例如流体力学模型,研究复杂的多物理场耦合问题。

总之,刚柔耦合动力学模型是一种重要的数学模型,用于描述刚体和柔性结构之间的相互作用。

它在机械振动、机器人动力学、运动控制等领域有着广泛的应用。

建立刚柔耦合动力学模型需要考虑几何特性、材料性质和力学行为等因素,并采用适当的数值方法进行求解。

刚柔耦合动力学模型

刚柔耦合动力学模型

刚柔耦合动力学模型刚柔耦合动力学模型是一种优秀的分析研究机械系统动态响应的方法。

它将刚体与柔体耦合在一起,综合考虑了它们各自的特性,可以更加真实地模拟实际的复杂机械系统。

刚柔耦合动力学模型着重考虑了两种物体的特性:刚体和柔体。

其中,刚体通常是指机械系统中的固定部分,它的运动状态可以由其欧拉角度量表示。

柔体则是指机械系统中的可以变形的部分,比如弹性杆、柔性连杆等,其变形可以通过弹性力表示。

通过将这两种物体结合起来,就可以建立一个更为真实的机械系统动力学模型。

在刚柔耦合动力学模型中,总的动力学方程可以分解为两个部分。

一部分是刚体的运动方程,它可以表示为:M*q''+C*q'+K*q=F(t)其中,q表示系统的状态向量,M、C、K分别是系统的质量矩阵、阻尼矩阵和刚度矩阵,F(t)是系统的外力,q'和q''分别表示状态向量q的一阶导数和二阶导数。

这个方程主要描述了刚体的运动规律。

另一部分则是柔体的运动方程,它可以表示为:D(x,t)x''+K(x)x=F(t)其中,x表示柔体的状态变量,D和K分别是柔体的阻尼系数和刚度系数,F(t)是系统的外力。

这个方程主要描述了柔体的运动规律。

通过将这两个方程组合在一起,就可以得到刚柔耦合动力学方程,即:[M 0 ;0 D(x,t)]*[q'';x'']+[C K(x);-K(x) 0]*[q';x']+[K(x) 0;00]*[q;x]=[F(t);0]其中,0代表零矩阵。

这个方程表示了整个机械系统的运动规律,可以通过求解状态向量q和柔体状态变量x的运动方程,来获得系统运动的轨迹和响应。

在实际应用中,一般采用有限元方法或类似方法来求解柔体的运动方程,求解刚体的运动方程则常采用欧拉积分或基于Runge-Kutta方法等数值方法。

除了上述的动力学方程以外,还需要考虑其他因素对机械系统的影响,比如摩擦力、已知外力等。

考虑刚_柔_热耦合的板结构多体系统的动力学建模_张炜华

考虑刚_柔_热耦合的板结构多体系统的动力学建模_张炜华
T
( 6)
Байду номын сангаас
T r0 x S x T H = r0 y S y T r0 x S y + r0 y T S x
( 17 )
中面的单位法向量在惯 基于 Kirchhoff 假设, 性基下的坐标阵 n0 可表示为: n0 = n n ( 18 )
( 7)
n 为 r x 与 r y 的叉积, n 为矢量 n 的模, 其中, 可表示 为: n=r 珓 0 x r0 y n= 槡 nT n 利用式( 2 ) , 得到: 对( 19 ) 求变分, ( 19 ) ( 20 )
[7 - 8 ]
a, 宽度为 b, 厚度为 h, 体密度为 ρ. 建立固结在地面 y→ z . 有限元方法将矩形薄板等 x→ 的惯性坐标系 O - → 分为 n = n1 × n2 个单元, 对第 e 个单元建立单元坐
→ → → 则板单元的长度和宽度分别为 a e 标系 O e -x e ye z e,
10. 6052 /16726553201588 由于温度上升幅值较大, 需要考虑太阳帆板热 膨胀引起的轴向变形对弯曲变形的影响. 此外, 由 于太阳帆板具有质量轻和尺度大的特点 , 弹性变形 较为显著, 因此, 为了保证计算结果的准确性, 在建 立动力学方程的过程中需要考虑几何非线性项 . 在 几何非线性动力学研究方面, 国内外学者针对大变 形板壳构件的力学研究开展了一系列工作. Oguamanam 等学者[5] 针对热冲击作用下中心刚体和复 合材料层合壳组成的多体系统, 利用 Von Karman 应变与位移的关系建立了考虑几何非线性的刚柔 耦合动力学方程, 在研究刚柔耦合特性的同时, 研 究了几何非线性项对动力学特性的影响 . 笔者

刚柔耦合齿轮三维接触动力学建模与振动分析

刚柔耦合齿轮三维接触动力学建模与振动分析

振 动 与 冲 击第28卷第2期JOURNAL OF V I B RATI O N AND SHOCKVol .28No .22009 刚柔耦合齿轮三维接触动力学建模与振动分析基金项目:云南省应用基础研究基金资助项目(2006E021Q )云南省省院省校合作基金资助项目(2004YX12)云南省教育厅科技研究基金资助项目(5Y0553D )收稿日期:2008-02-13 修改稿收到日期:2008-05-23第一作者姚廷强男,博士生,1979年生通讯作者迟毅林男,教授,博士生导师,1953年生姚廷强,迟毅林,黄亚宇,谭 阳(昆明理工大学机电工程学院,昆明 650093) 摘 要:基于多体动力学理论和迟滞接触动力学方法,提出了刚柔耦合齿轮三维接触动力学模型和动力学分析新方法。

考虑轮齿与轮体间的相对柔性变形,啮合齿对间球-面三维动态接触和齿轮几何参数等因素,通过离散齿廓渐开线获得了齿面的离散接触面,从而建立了齿轮啮合传动动力学模型。

通过数值求解与仿真分析,研究了单侧齿面接触、双侧齿面接触和刚柔耦合特性对齿轮啮合传动特性的影响规律,获得了啮合轮齿全齿面接触冲击力,力矩和角速度等齿轮啮合传动的动态响应特性。

研究表明:新方法和动力学模型更真实地模拟了齿轮啮合传动的齿轮柔性变形和接触冲击等振动响应特性。

该方法和数值计算结果为齿轮啮合传动和齿轮系统动力学研究提供了理论指导和参考数据。

关键词:齿轮系统动力学;接触动力学;刚柔耦合方法;多体动力学;振动分析中图分类号:TP302 文献标识码:A 齿轮传动在实际机械系统中得到了广泛地应用,在机械系统中研究齿轮传动的动力学建模方法将具有重要的工程价值。

由于齿轮啮合传动影响因素众多,如轮齿刚度,啮合刚度,齿侧间隙和几何参数等非线性因素,使得齿轮啮合传动的接触动力学建模具有一定的难度[1-4]。

有限元法被广泛应用于研究单齿对的啮合接触特性[5],但计算效率较低。

在齿轮传动系统中,通常将齿轮啮合接触参数简化为一定数量的弹簧阻尼器连接或齿轮运动副,具有很好的计算效率,但这不是真正意义上的齿轮接触传动,计算结果存在一定的误差[7,8]。

刚柔耦合动力学的建模方法

刚柔耦合动力学的建模方法

第42卷第11期 2008年11月上海交通大学学报JOU RN AL O F SH AN G HA I JIA OT O N G U N IV ERSIT YVol.42No.11 Nov.2008收稿日期:2007 10 08基金项目:国家自然科学基金资助项目(10772113);高等学校博士学科点专项科研基金资助项目(20040248013)作者简介:洪嘉振(1944 ),男,浙江宁波市人,教授,博士生导师,研究方向:多体系统动力学与控制.电话(T el.):021 ********;E mail:jzhong@s .文章编号:1006 2467(2008)11 1922 05刚柔耦合动力学的建模方法洪嘉振, 刘铸永(上海交通大学工程力学系,上海200240)摘 要:对柔性多体系统动力学研究的若干阶段和研究现状进行回顾,对已有的刚柔耦合动力学建模方法进行总结.为了对已有的建模方法进行评价,提出了5项指标:科学性、通用性、识别性、兼容性和高效性,指出现有的建模方法尚无法满足工程实际应用的需要,应研究满足全部评价指标的刚柔耦合动力学建模方法.文中对今后柔性多体系统刚柔耦合动力学的几个研究方向进行展望,包括理论建模、计算方法和试验研究等方面.关键词:刚柔耦合系统;动力学;建模方法;评价指标中图分类号:O 313 文献标识码:AModeling Methods of Rigid Flexible Coupling DynamicsH ON G J ia z hen, L I U Zhu y ong(Department of Engineering M echanics,Shanghai Jiaotong Univ er sity,Shanghai 200240,China)Abstract:A brief review about several phases and present status o f flexible multi bo dy dynamics w as given and the ex isting m odeling m ethods o f r ig id flex ible coupling dynam ics w ere sum marized.Five indexes,in cluding scientific index,g eneral index,identifiable index,compatible index and efficient index ,w ere pro posed to evaluate the ex isted mo deling methods.It show s that the ex isted m odeling metho ds can no t satis fy the actual needs of eng ineer ing application and new modeling m ethod w hich satisfies all the evaluating index es should be inv estig ated.T he r esearch tar gets including modeling theor y,com putational methods and exper im ents w er e sugg ested for the rigid flexible co upling dynamics o f the flex ible multi body sys tems.Key words:rigid flex ible coupling sy stem s;dy nam ics;mo deling methods;evaluating index柔性多体系统是指由多个刚体或柔性体通过一定方式相互连接构成的复杂系统,是多刚体系统动力学的自然延伸.考虑刚柔耦合效应的柔性多体系统动力学称之为刚柔耦合系统动力学,主要研究柔性体的变形与其大范围空间运动之间的相互作用或相互耦合,以及这种耦合所导致的动力学效应.这种耦合的相互作用是柔性多体系统动力学的本质特征,使其动力学模型不仅区别于多刚体系统动力学,也区别于结构动力学.因此,柔性多体系统动力学是与经典动力学、连续介质力学、现代控制理论及计算机技术紧密相联的一门新兴交叉学科[1 3],它对高技术、工业现代化和国防技术的发展具有重要的应用价值.根据力学的基本原理,基于不同的建模方法,得到形式不同的动力学方程,尽管在理论上等价,但是其数值性态的优劣不尽相同.衡量一个学科成熟度的标志之一就是清楚地理解不同方法之间的关系.显然,评价一个刚柔耦合系统动力学模型的优劣的重要标准应该是该模型是否能够可靠与高速处理各种动力学现象.通常解的精确与计算所要付出的代价是一对矛盾,因此有必要对各种建模方法进行对比研究.本文对柔性多体系统动力学研究的若干阶段和研究现状进行回顾;对已有的刚柔耦合动力学建模方法进行总结;提出了一系列指标对这些建模方法进行评估;并对今后刚柔耦合动力学建模理论的研究方向进行展望.1 刚柔耦合动力学研究现状到目前为止,柔性多体系统的建模理论的发展大体可以分为4个阶段.(1)运动 弹性动力学建模方法.该方法的实质是将柔性多体系统动力学问题转变成多刚体系统动力学与结构动力学的简单叠加,忽略了两者之间的耦合.随着轻质、高速的现代机械系统的不断出现,该方法的局限性日益暴露出来.(2)混合坐标建模方法.该方法首先对柔性构件建立浮动坐标系,将构件的位形认为是浮动坐标系的大范围运动与相对于该坐标系的变形的叠加.提出了用大范围浮动坐标系的刚体坐标与柔性体的节点坐标(或模态坐标)建立动力学模型.混合坐标建模方法虽然考虑了构件弹性变形与大范围运动的相互影响,但对低频的大范围刚体运动和高频的柔性体变形运动之间的耦合处理得过于简单.从实质上讲这种方法是一字零次近似的刚柔耦合方法.(3)动力刚化问题的研究.1987年,Kane等[4]对作大范围运动弹性梁进行了研究,指出了在采用零次近似耦合模型处理高速旋转的悬臂梁的动力分析中将产生发散的错误的结论,并提出了动力刚化的概念.近20年来,国内外研究的核心是对上述模型采用各种方法 捕捉动力刚度项,以期对传统混合坐标模型进行修正,得到了高速旋转的悬臂梁不发散的结果.(4)一般刚柔耦合动力学问题的研究.动力刚化只是刚柔耦合动力学的一种特例情况,其实质是一个非惯性系下的结构动力学问题.近年来,Liu、Yang等[5,6]从连续介质力学的基本原理出发,建立了较传统混合坐标模型(零次近似模型)更精确的一次近似的数学模型.2 刚柔耦合动力学建模方法柔性体建模方法根据参考坐标系选取的不同,可以归为3类[3]:浮动坐标系方法、随转坐标系方法和惯性坐标系方法.浮动坐标系方法是将多刚体动力学与结构动力学结合的一种方法,这种方法使多刚体动力学软件扩展应用于柔性多体系统成为可能.它可以充分利用模态技术,对于小变形和低速的大范围运动的情况有较佳的计算效率与和精度,是目前柔性多体系统建模使用最广泛的方法.随转坐标系方法源于计算结构动力学.惯性坐标系方法源于大变形非线性有限元.针对动力刚化现象和刚柔耦合问题,国内外学者做了大量的研究,提出了不同的观点和方法,本文将进行概括和总结.2.1 浮动坐标系方法(1)初始应力法.Banerjee[7]认为增加的动力刚度是由于大范围运动所产生的惯性力作用在未变形柔性体上所产生的初始应力而引起的,并将其产生的动力刚度称为大范围运动诱发刚度.该方法将大范围运动所产生的惯性力分为12个惯性力和9个惯性力偶,然后采用结构力学中的单位力法形成动力刚度阵,附加到传统的混合坐标动力学模型上形成新的系统动力学方程.该方法适用于任意柔性体且动力刚度阵可以一次形成,无需重复迭代求解,计算效率高,但是该建模方法在理论上未得到严格证明.(2)几何非线性法.M ayo等[8]认为增加的动力刚度是由于柔性体大挠度产生的应变与位移之间的几何非线性关系所引起,并将其得到的刚度称为几何刚度.该方法在求系统的应变能时引入了应变与位移的几何非线性关系,将非线性项表示为与节点位移有关的几何刚度阵.但是在计算几何刚度阵时需要对位移的非线性项积分,表达式及其复杂,难以应用.(3)几何变形约束法.Kane等[4]对作大范围运动的悬臂梁的变形位移作了较精确的几何描述,将梁非中线上一点的纵向变形位移用中线上对应点的轴向伸长s和耦合变形项表示,得到动力刚度矩阵是常值矩阵,计算效率较高.在此基础上,Baner jee[7]研究了作大范围运动的板,但这种方法难以推广到柔性多体系统.(4)变形耦合方法.Zhang等[9]认为柔性体刚度的减弱是由于在运动学关系中过早地对变形的广义坐标进行了线性化,忽略了导致刚度增加的非线性项.因此,为了保留弹性变形耦合的非线性特征,将柔性体的变形场用广义坐标的2阶小量进行描1923第11期洪嘉振,等:刚柔耦合动力学的建模方法述,利用非线性的应变和变形位移的关系式和小变形假设,得到耦合模态形函数的表达式,最终形成一致线性化的动力学方程.由于此方法局限于将变形场用模态形函数来表示,其计算精度取决于模态形函数和真实模态形函数的近似程度,而且取几阶模态也较难确定.为了将此方法与有限元法相结合,王建明等[10]将梁单元内中线上任意点的位移表示为单元节点位移的非线性插值形式,同理求出单元耦合形函数阵,但是由于单元耦合形函数和变形位移只满足部分边界条件,不能保证有限元各单元节点变形位移的连续性.(5)子结构法.Liu等[11]将柔性体分成若干个子结构,虽然柔性体整体的位移-应变关系是非线性的,但是在子结构内部,位移-应变的线性化假设仍然成立.用假设模态法或线性有限元处理子结构的内部变形,子结构边界公共节点通过定义其位移约束方程来表示相邻子结构之间的位移协调性.但此方法结果明显依赖于子结构的数目,且在子结构的对接面上必须引入约束方程以满足变形的连续性.对复杂的大型结构,此方法的计算工作量非常大.(6)基于轴线积分的一次近似耦合模型.Liu、Yang等[5,6]提出的一次近似耦合模型是利用中线(面)耦合变形得到耦合变形阵,从而建立更高阶的耦合模型.传统线性变形场就是不计二次耦合项,当柔性体的大范围刚体运动速度不高时,二次耦合项对系统动力学性质影响较小;但是,当大范围刚体运动速度或加速度较大时,二次耦合项与大范围运动的耦合将对系统动力学性质产生大的影响.一次近似模型已经从数值仿真和物理实验两方面验证了变形场的高阶耦合项将对刚柔耦合系统的动力学特性产生大的影响,这也是动力刚化现象产生的本质. 2.2 惯性坐标方法(1)非线性有限元法.Simo等[12]认为增加的动力刚度项是由于柔性体的大应变而引起.在结构动力学非线性有限元方法的基础上,将柔性体的大范围运动及其变形运动统一采用相对惯性坐标系的节点位移来表示,得到的动力学方程中包含了由于大应变带来的非线性项,然后作为假设将该项化作与大范围运动有关的动力刚度项,发展了能够处理小变形大应变柔性体的非线性有限元模型,但以上方法仅限于梁式构件,计算效率非常低,无法应用到复杂的柔性多体系统动力学分析.(2)绝对节点坐标方法.Sugiyam aa等[13]提出了绝对节点坐标方法,不再区分物体的刚体运动和变形,采用一致质量有限元对柔性体进行离散.在绝对节点坐标方法中,有限元的位形是在惯性系下的绝对位移坐标和斜率定义的,梁单元和板单元可以作为等参元处理.但是绝对节点坐标法的定义决定了它无法区分刚体运动和弹性变形,即使是小变形也要按照大变形的方法处理.2.3 随转坐标系方法随转坐标系方法源于计算结构动力学[14],最早是由Argy ris等提出作为固有模态方法的一部分而发展起来的.随转坐标系随弹性体内部的每个单独的有限元的平均刚体运动而运动.这种方法被用于大位移,大转角和小应变结构的建模.Belytschko等引进单元刚性轮转坐标系或随转坐标系,用于平面连续体和粱型单元的动力学建模.2.4 综合方法近年来还有研究者综合以上几类方法进行研究,可称之为综合方法.(1)浮动坐标系上的绝对节点坐标方法.Garcia Vallejo等[15,16]在浮动坐标系上采用绝对节点坐标法建模理论,研究了大范围运动已知的平面梁的动力刚化问题.刘锦阳等[17]在浮动坐标系上采用绝对节点坐标法建模理论,在小变形的假设下,建立了做大范围空间运动的柔性梁的刚柔耦合动力学模型.(2)浮动坐标系上的随转坐标系方法.尤超蓝[18]基于有限元技术,在浮动坐标系上使用随转坐标系建模方法,建立了作大范围运动的平面梁和板的刚柔耦合动力学模型.广义坐标采用浮动坐标系上的节点位移坐标,在随转坐标系上进行插值.插值单元内部的变形只与本单元的节点位移与转角有关,从通用性的角度对一般刚柔耦合动力学建模跨出了很大的一步.3 建模方法评价本文从以下几个指标来考核刚柔耦合动力学建模理论:!科学性,应该从严格的理论推导得到,而不是通过猜测捕捉得到;∀通用性,即可以推广到不同连续柔性体构件,而不能像已有的一次耦合模型依赖于沿整个轴(面)积分;#识别性,能够区分刚体运动和弹性变形;∃兼容性,能够退化为零次耦合模型;%高效性,即具有较快的计算速度.以平面梁为例,表1所示为最近几种建模方法的评价. 下面根据评价指标对建模方法进行分析:(1)科学性.科学性是所有评估指标中最重要的.初应力法虽然具有较高的计算效率,但是其在未变形柔性体上所产生的初始应力的假定在理论上未1924上 海 交 通 大 学 学 报第42卷表1 几种主要建模方法评价Tab.1 The evaluation of main modeling methods方法科学性 通用性识别性兼容性高效性初应力法无有有有有变形耦合法(有限元)无有有有有子结构法无有有有无基于轴线积分的一次近似法有无有有有绝对节点坐标法有有无无无浮动坐标系的绝对节点坐标法有有有无无浮动坐标系的随转坐标系方法有有有无无得到严格证明.变形耦合方法(有限元)中,单元耦合形函数和变形位移只满足部分边界条件,不能保证有限元各单元节点变形位移的连续性.子结构方法没有给出如何选取子结构数目和大小的规则.(2)通用性.基于轴线积分的一次近似模型揭示了刚 柔耦合的本质,但是其对非线性变形场的描述并不完美.一次近似模型的耦合型函数阵从梁(或板)的端点沿整个轴(面)积分,这就限制了其应用范围只能是直梁、矩形板等具有规则外形的柔性体,对于像中间有孔或不规则形状的板等一般柔性构件,基于轴线积分的一次耦合模型则无能为力.(3)识别性.采用浮动坐标系方法的都可以区分刚性运动和弹性变形.惯性坐标系方法和随转坐标系方法的建模理论决定了它们不区分刚性运动和弹性变形,不便于进行结构强度分析.(4)兼容性.零次耦合模型在处理某些刚柔耦合问题时具有足够的精度,计算工作量较小.针对当前处理柔性多体系统动力学问题的方法大多是基于零次耦合模型的现状,刚柔耦合动力学理论应该具备兼容性,在一定条件下能够退化为零次耦合模型.惯性坐标系方法由于采用的广义坐标为单元节点和斜率,无法退化到传统的线性有限元坐标.浮动坐标系上的随转坐标系方法中广义坐标定义在浮动坐标系上,然后在单元随转坐标系上线性插值,但在浮动坐标系上是高度非线性耦合的,也无法退化到零次耦合模型.(5)高效性.初应力法、基于轴线积分的一次近似方法和变形耦合方法(有限元)质量阵和刚度阵中的与积分相关的项都是一次生成,具有较高的计算效率.4 结 论本文综述了柔性多体系统动力学研究的若干阶段和研究现状.总结了已有的刚柔耦合动力学建模方法,并提出5项指标对这些建模方法进行评估.分析发现有的建模方法都无法全部满足5项评价指标,进一步研究刚柔耦合动力学建模理论具有重要的意义,大致有以下几项内容:(1)刚柔耦合动力学建模理论研究.建立同时满足以上评价指标的通用一次耦合动力学模型,并将其拓展到较复杂的刚柔耦合动力学系统.研究对象包括梁和板等复杂连续柔性体构件;运动形式从平面转动拓展到更复杂的耦合运动形式.研究的关键问题是如何合理地描述复杂结构变形场的高阶耦合项,评价这些高阶变形项与大范围运动耦合的效应.(2)刚柔耦合动力学计算方法研究.研究刚柔耦合理论应用于柔性多体系统程式化建模,便于计算机实现.再进一步对该模型的计算方法进行研究,提出高速、高精度、稳定的算法成为理论成果转化为生产力的关键.(3)刚柔耦合系统实验研究.一方面要通过设计新试验来验证刚柔耦合理论,另一方面通过试验可为进一步深入进行理论研究提供重要的启示,从而推动新理论的发展.同时还可以对物理试验和仿真的配合使用做进一步研究.参考文献:[1] 洪嘉振.计算多体动力学[M].北京:高等教育出版社,1999.[2] Schiehlen W.M ultibo dy sy stem dynamics:Roo ts andperspectives[J].Multibody System Dynamics,1997(1):149 188.[3] W asfy T M,No or A putat ional strat eg ies forflex ible multibody sy st ems[J].Appl M ech Rev,2003,56(6):553 613.[4] K ane T R,Ryan R R,Baner jee A K.Dy namics o f acantilev er beam attached to a mov ing base[J].Journal of Guidance,Control and Dynamics,1987,10(2):139 151.[5] L IU Jin y ang,H ON G Jia zhen.Dynamic modelingand mo dal truncat ion appr oach for a high speed r otating elastic beam[J].Archive of Applied Mechanics,2002,72:554 563.[6] Y A NG H ui,HO N G Jia zhen,YU Zheng yue.D ynam ics mo deling o f a flex ible hub beam sy st em w ith atip mass[J].Journal of Sound and Vibration,2003,266:759 774.[7] Baner jee A K.Block diag onal equatio ns for multibo dyelasto dy namics w it h g eo metric stiffness and constraints[J].Journal of Guidance,Control and Dynamics,1994,16(6):1092 1100.1925第11期洪嘉振,等:刚柔耦合动力学的建模方法[8] M ayo J,Doming uez J.G eometrically nonlinear formulat ion of flexible multibody systems in terms ofbeam elements:Geometr ic stiffness[J].Computers&Structures,1996,59:1039 1050.[9] Zhang D J,Huston R L.On dynamic stiffening offlex ible bodies hav ing hig h ang ular velo city[J].MechStruct and M ach,1996,24(3):313 329.[10] 王建明.柔性体刚柔耦合动力学建模理论及动力刚化有限元算法研究[D].上海:上海交通大学工程力学系,1999.[11] L iu A Q,L iew K M.N on linear substr ucture appro ach for dy namic analy sis of r ig id f lex ible multibody sy stem[J].C omputer Methods in Applied Mechanics and Engineering,1994,114:379 396. [12] Simo J C,Q uo c L V.A three dimensio n f inite strainrod mo del Part2:Com putatio nal aspects[J].Computer Methods in Applied Mechanics and Engineering,1986,58:79 116.[13] Sug iyamaa H,Ger stma yrb J,Shabana A A.Defor mation modes in the finite element absolute nodal co ordinate for mulatio n[J].Jounal of Sound and Vibration,2006,298:1129 1149.[14] H o ng H C,Wen Y L,K uo M H.Co r otational finiteelement for mulatio n for thin w alled beams w ith gener ic o pen sectio n[J].Computational Methods AppliedMechanics Engeering,2006,195:2334 2370.[15] Gar cia V allejo D,Sugiyama H,Shabana A A.Finiteelement analysis of the geo metric stiffening effect.P art1:A cor rectio n in the floating frame of referenceof fo rmulat ion[J].Multi body Dynamics,2005,219(K):187 202.[16] Gar cia V allejo D,Sugiyama H,Shabana A A.Finiteelement analysis of the geo metric stiffening effect.P art2:N onlinear elasticity[J].Multi body Dynamics,2005,219(K):203 211.[17] 刘锦阳,李 彬,洪嘉振.作大范围运动的柔性梁的刚 柔耦合动力学[J].力学学报,2006,38(2):276282.L IU Jin yang,L I Bin,HO N G Jia zhen.Rig id flex i ble co upling dy nam ics of a flex ible beam w ith thr eedimensional larg e o ver all mo tion[J].Chinese Journalof Theoretical and Applied Mechanics,2006,38(2):276 282.[18] 尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究[D].上海:上海交通大学船建学院,2006.(上接第1921页)[4] 李长春,施德培,王伯成.矩形板极限承载能力的探讨[J].上海交通大学学报,1996,30(5):49 54.LI Chang chun,SH I D e pei,WA N G Bo cheng.Adiscussion of lim ited loading ability of square plate[J].Journal of Shanghai Jiaotong University,1996,30(5):49 54.[5] 辛可贵,王书纯.考虑剪切变形的薄壁杆件稳定分析[J].工程力学,2000,17(1):47 56.XIN Ke g ui,WA N G Shu chun.Buckling analysis ofthin w alled members in co nsideration o f shear lag[J].Engineering Mechanics,2000,17(1):47 56. [6] 陈 婷,童根树.楔形变截面压杆的弹塑性稳定[J].工业建筑,2004,34(10):62 65.CH EN T ing,T ON G Gen shu.Elast oplastic stabilityof taper ed compressed member s[J].Industrial Construction,2004,34(10):62 65.[7] Zelenskii V S.Deter minatio n of cr itical lo ads in thethree dimensional stability pr oblem of t hin w alled barof angular prof ile[J].Strength of Materials,2006,38(3):307 312.[8] 余同希.塑性力学[M].北京:高等教育出版社,1989.[9] 徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981.[10] 李庆阳,王能超,易大义.数值分析[M].北京:清华大学出版社,2001.1926上 海 交 通 大 学 学 报第42卷。

刚—柔耦合问题与空间多杆柔性机械臂的动力学建模理论研究

刚—柔耦合问题与空间多杆柔性机械臂的动力学建模理论研究

刚—柔耦合问题与空间多杆柔性机械臂的动力学建模理论研究一、本文概述随着现代机器人技术的发展,空间多杆柔性机械臂在航天、深海探索、精密制造等领域的应用日益广泛。

这类机械臂在运动中不仅呈现出刚体动力学特性,而且由于结构柔性,其动力学行为还受到弹性变形的影响。

对刚—柔耦合问题的深入研究,以及建立准确的空间多杆柔性机械臂动力学模型,对于提高机械臂的运动精度、稳定性和控制效率具有重要意义。

本文旨在探讨空间多杆柔性机械臂的动力学建模理论。

我们将回顾和梳理刚—柔耦合问题的基本概念和研究现状,分析现有动力学模型的优缺点及适用范围。

接着,我们将基于弹性力学、多体动力学和计算机仿真技术,建立一种综合考虑刚体运动和弹性变形的动力学模型。

该模型将能够更准确地描述机械臂在运动过程中的动力学行为,为后续的轨迹规划、控制和优化提供理论基础。

本文还将对所建立的动力学模型进行实验验证。

通过对比仿真结果与实验结果,评估模型的准确性和可靠性,并提出改进和优化建议。

我们期望通过本文的研究,能够为空间多杆柔性机械臂的动力学建模提供新的理论和方法,推动相关领域的技术发展和应用创新。

二、刚-柔耦合问题的基础理论刚-柔耦合问题涉及机械系统中刚性部分与柔性部分之间的相互作用和动力学特性。

在解决这类问题时,我们需要结合刚体动力学和弹性力学的基本理论,对系统的整体运动进行建模和分析。

刚体动力学是研究刚体在力和力矩作用下的运动规律的学科。

根据牛顿第二定律,刚体的运动可以通过建立运动方程来描述,其中包含了刚体的质量、惯性矩以及所受的力和力矩。

这些方程可以通过数值方法求解,得到刚体的位移、速度和加速度等运动参数。

弹性力学则关注物体在受到外力作用时发生的形变和应力分布。

对于柔性机械臂,其弹性形变会对整体运动产生影响,因此需要考虑其弹性特性。

在弹性力学中,物体的形变可以通过位移场来描述,而位移场满足弹性力学的基本方程,如平衡方程、几何方程和本构方程。

在刚-柔耦合问题中,我们需要将刚体动力学和弹性力学的基本理论相结合,建立系统的整体动力学模型。

刚柔耦合动力学模型

刚柔耦合动力学模型

刚柔耦合动力学模型
刚柔耦合动力学模型是一种模拟柔性物体在刚性结构体上运动和互动的模型。

它是基于多体动力学和弹性理论的复杂模型,通常用于机器人的机械臂、手指、足部等柔性部件的控制和仿真。

在这个模型中,刚性部件和柔性部件之间相互作用,并且对于柔性物体,则采用比较精确地黎曼曲面理论表示。

动力学模型包含了刚性部件的质量、几何结构、摩擦和约束力以及柔性物体的刚度、阻尼和粘滞阻尼。

在这个模型中,刚性结构体可以被表示成结构体中的多个质点,这些点可以通过使用牛顿运动定律和质点系统动力学方程进行运动学和动力学分析。

而柔性物体则可以通过有限元分析进行数值求解和建模,并考虑其非线性本质。

这个模型的分析使得我们可以预测柔性物体在刚性结构体上的运动和应变情况。

刚柔耦合动力学模型的成功建立与应用,为控制机器人手指、足部等柔性部件的制造和控制提供了有效的数学工具。

在现代机器人领域,一些先进的机器学习算法和控制方法已经被成功地应用到刚柔耦合动力学模型中,使得机器人系统的性能和精度得到了大幅提升。

同时,这个模型也为金属材料、塑料材料等柔性材料的应用和制造提供了有力的理论参考。

总之,刚柔耦合动力学模型对于研究和控制复杂机器人和柔性材料产生了重要的价值,为领域的发展奠定了坚实的理论基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第42卷第11期 2008年11月上海交通大学学报JOU RN AL O F SH AN G HA I JIA OT O N G U N IV ERSIT YVol.42No.11 Nov.2008收稿日期:2007 10 08基金项目:国家自然科学基金资助项目(10772113);高等学校博士学科点专项科研基金资助项目(20040248013)作者简介:洪嘉振(1944 ),男,浙江宁波市人,教授,博士生导师,研究方向:多体系统动力学与控制.电话(T el.):021 ********;E mail:jzhong@s .文章编号:1006 2467(2008)11 1922 05刚柔耦合动力学的建模方法洪嘉振, 刘铸永(上海交通大学工程力学系,上海200240)摘 要:对柔性多体系统动力学研究的若干阶段和研究现状进行回顾,对已有的刚柔耦合动力学建模方法进行总结.为了对已有的建模方法进行评价,提出了5项指标:科学性、通用性、识别性、兼容性和高效性,指出现有的建模方法尚无法满足工程实际应用的需要,应研究满足全部评价指标的刚柔耦合动力学建模方法.文中对今后柔性多体系统刚柔耦合动力学的几个研究方向进行展望,包括理论建模、计算方法和试验研究等方面.关键词:刚柔耦合系统;动力学;建模方法;评价指标中图分类号:O 313 文献标识码:AModeling Methods of Rigid Flexible Coupling DynamicsH ON G J ia z hen, L I U Zhu y ong(Department of Engineering M echanics,Shanghai Jiaotong Univ er sity,Shanghai 200240,China)Abstract:A brief review about several phases and present status o f flexible multi bo dy dynamics w as given and the ex isting m odeling m ethods o f r ig id flex ible coupling dynam ics w ere sum marized.Five indexes,in cluding scientific index,g eneral index,identifiable index,compatible index and efficient index ,w ere pro posed to evaluate the ex isted mo deling methods.It show s that the ex isted m odeling metho ds can no t satis fy the actual needs of eng ineer ing application and new modeling m ethod w hich satisfies all the evaluating index es should be inv estig ated.T he r esearch tar gets including modeling theor y,com putational methods and exper im ents w er e sugg ested for the rigid flexible co upling dynamics o f the flex ible multi body sys tems.Key words:rigid flex ible coupling sy stem s;dy nam ics;mo deling methods;evaluating index柔性多体系统是指由多个刚体或柔性体通过一定方式相互连接构成的复杂系统,是多刚体系统动力学的自然延伸.考虑刚柔耦合效应的柔性多体系统动力学称之为刚柔耦合系统动力学,主要研究柔性体的变形与其大范围空间运动之间的相互作用或相互耦合,以及这种耦合所导致的动力学效应.这种耦合的相互作用是柔性多体系统动力学的本质特征,使其动力学模型不仅区别于多刚体系统动力学,也区别于结构动力学.因此,柔性多体系统动力学是与经典动力学、连续介质力学、现代控制理论及计算机技术紧密相联的一门新兴交叉学科[1 3],它对高技术、工业现代化和国防技术的发展具有重要的应用价值.根据力学的基本原理,基于不同的建模方法,得到形式不同的动力学方程,尽管在理论上等价,但是其数值性态的优劣不尽相同.衡量一个学科成熟度的标志之一就是清楚地理解不同方法之间的关系.显然,评价一个刚柔耦合系统动力学模型的优劣的重要标准应该是该模型是否能够可靠与高速处理各种动力学现象.通常解的精确与计算所要付出的代价是一对矛盾,因此有必要对各种建模方法进行对比研究.本文对柔性多体系统动力学研究的若干阶段和研究现状进行回顾;对已有的刚柔耦合动力学建模方法进行总结;提出了一系列指标对这些建模方法进行评估;并对今后刚柔耦合动力学建模理论的研究方向进行展望.1 刚柔耦合动力学研究现状到目前为止,柔性多体系统的建模理论的发展大体可以分为4个阶段.(1)运动 弹性动力学建模方法.该方法的实质是将柔性多体系统动力学问题转变成多刚体系统动力学与结构动力学的简单叠加,忽略了两者之间的耦合.随着轻质、高速的现代机械系统的不断出现,该方法的局限性日益暴露出来.(2)混合坐标建模方法.该方法首先对柔性构件建立浮动坐标系,将构件的位形认为是浮动坐标系的大范围运动与相对于该坐标系的变形的叠加.提出了用大范围浮动坐标系的刚体坐标与柔性体的节点坐标(或模态坐标)建立动力学模型.混合坐标建模方法虽然考虑了构件弹性变形与大范围运动的相互影响,但对低频的大范围刚体运动和高频的柔性体变形运动之间的耦合处理得过于简单.从实质上讲这种方法是一字零次近似的刚柔耦合方法.(3)动力刚化问题的研究.1987年,Kane等[4]对作大范围运动弹性梁进行了研究,指出了在采用零次近似耦合模型处理高速旋转的悬臂梁的动力分析中将产生发散的错误的结论,并提出了动力刚化的概念.近20年来,国内外研究的核心是对上述模型采用各种方法 捕捉动力刚度项,以期对传统混合坐标模型进行修正,得到了高速旋转的悬臂梁不发散的结果.(4)一般刚柔耦合动力学问题的研究.动力刚化只是刚柔耦合动力学的一种特例情况,其实质是一个非惯性系下的结构动力学问题.近年来,Liu、Yang等[5,6]从连续介质力学的基本原理出发,建立了较传统混合坐标模型(零次近似模型)更精确的一次近似的数学模型.2 刚柔耦合动力学建模方法柔性体建模方法根据参考坐标系选取的不同,可以归为3类[3]:浮动坐标系方法、随转坐标系方法和惯性坐标系方法.浮动坐标系方法是将多刚体动力学与结构动力学结合的一种方法,这种方法使多刚体动力学软件扩展应用于柔性多体系统成为可能.它可以充分利用模态技术,对于小变形和低速的大范围运动的情况有较佳的计算效率与和精度,是目前柔性多体系统建模使用最广泛的方法.随转坐标系方法源于计算结构动力学.惯性坐标系方法源于大变形非线性有限元.针对动力刚化现象和刚柔耦合问题,国内外学者做了大量的研究,提出了不同的观点和方法,本文将进行概括和总结.2.1 浮动坐标系方法(1)初始应力法.Banerjee[7]认为增加的动力刚度是由于大范围运动所产生的惯性力作用在未变形柔性体上所产生的初始应力而引起的,并将其产生的动力刚度称为大范围运动诱发刚度.该方法将大范围运动所产生的惯性力分为12个惯性力和9个惯性力偶,然后采用结构力学中的单位力法形成动力刚度阵,附加到传统的混合坐标动力学模型上形成新的系统动力学方程.该方法适用于任意柔性体且动力刚度阵可以一次形成,无需重复迭代求解,计算效率高,但是该建模方法在理论上未得到严格证明.(2)几何非线性法.M ayo等[8]认为增加的动力刚度是由于柔性体大挠度产生的应变与位移之间的几何非线性关系所引起,并将其得到的刚度称为几何刚度.该方法在求系统的应变能时引入了应变与位移的几何非线性关系,将非线性项表示为与节点位移有关的几何刚度阵.但是在计算几何刚度阵时需要对位移的非线性项积分,表达式及其复杂,难以应用.(3)几何变形约束法.Kane等[4]对作大范围运动的悬臂梁的变形位移作了较精确的几何描述,将梁非中线上一点的纵向变形位移用中线上对应点的轴向伸长s和耦合变形项表示,得到动力刚度矩阵是常值矩阵,计算效率较高.在此基础上,Baner jee[7]研究了作大范围运动的板,但这种方法难以推广到柔性多体系统.(4)变形耦合方法.Zhang等[9]认为柔性体刚度的减弱是由于在运动学关系中过早地对变形的广义坐标进行了线性化,忽略了导致刚度增加的非线性项.因此,为了保留弹性变形耦合的非线性特征,将柔性体的变形场用广义坐标的2阶小量进行描1923第11期洪嘉振,等:刚柔耦合动力学的建模方法述,利用非线性的应变和变形位移的关系式和小变形假设,得到耦合模态形函数的表达式,最终形成一致线性化的动力学方程.由于此方法局限于将变形场用模态形函数来表示,其计算精度取决于模态形函数和真实模态形函数的近似程度,而且取几阶模态也较难确定.为了将此方法与有限元法相结合,王建明等[10]将梁单元内中线上任意点的位移表示为单元节点位移的非线性插值形式,同理求出单元耦合形函数阵,但是由于单元耦合形函数和变形位移只满足部分边界条件,不能保证有限元各单元节点变形位移的连续性.(5)子结构法.Liu等[11]将柔性体分成若干个子结构,虽然柔性体整体的位移-应变关系是非线性的,但是在子结构内部,位移-应变的线性化假设仍然成立.用假设模态法或线性有限元处理子结构的内部变形,子结构边界公共节点通过定义其位移约束方程来表示相邻子结构之间的位移协调性.但此方法结果明显依赖于子结构的数目,且在子结构的对接面上必须引入约束方程以满足变形的连续性.对复杂的大型结构,此方法的计算工作量非常大.(6)基于轴线积分的一次近似耦合模型.Liu、Yang等[5,6]提出的一次近似耦合模型是利用中线(面)耦合变形得到耦合变形阵,从而建立更高阶的耦合模型.传统线性变形场就是不计二次耦合项,当柔性体的大范围刚体运动速度不高时,二次耦合项对系统动力学性质影响较小;但是,当大范围刚体运动速度或加速度较大时,二次耦合项与大范围运动的耦合将对系统动力学性质产生大的影响.一次近似模型已经从数值仿真和物理实验两方面验证了变形场的高阶耦合项将对刚柔耦合系统的动力学特性产生大的影响,这也是动力刚化现象产生的本质. 2.2 惯性坐标方法(1)非线性有限元法.Simo等[12]认为增加的动力刚度项是由于柔性体的大应变而引起.在结构动力学非线性有限元方法的基础上,将柔性体的大范围运动及其变形运动统一采用相对惯性坐标系的节点位移来表示,得到的动力学方程中包含了由于大应变带来的非线性项,然后作为假设将该项化作与大范围运动有关的动力刚度项,发展了能够处理小变形大应变柔性体的非线性有限元模型,但以上方法仅限于梁式构件,计算效率非常低,无法应用到复杂的柔性多体系统动力学分析.(2)绝对节点坐标方法.Sugiyam aa等[13]提出了绝对节点坐标方法,不再区分物体的刚体运动和变形,采用一致质量有限元对柔性体进行离散.在绝对节点坐标方法中,有限元的位形是在惯性系下的绝对位移坐标和斜率定义的,梁单元和板单元可以作为等参元处理.但是绝对节点坐标法的定义决定了它无法区分刚体运动和弹性变形,即使是小变形也要按照大变形的方法处理.2.3 随转坐标系方法随转坐标系方法源于计算结构动力学[14],最早是由Argy ris等提出作为固有模态方法的一部分而发展起来的.随转坐标系随弹性体内部的每个单独的有限元的平均刚体运动而运动.这种方法被用于大位移,大转角和小应变结构的建模.Belytschko等引进单元刚性轮转坐标系或随转坐标系,用于平面连续体和粱型单元的动力学建模.2.4 综合方法近年来还有研究者综合以上几类方法进行研究,可称之为综合方法.(1)浮动坐标系上的绝对节点坐标方法.Garcia Vallejo等[15,16]在浮动坐标系上采用绝对节点坐标法建模理论,研究了大范围运动已知的平面梁的动力刚化问题.刘锦阳等[17]在浮动坐标系上采用绝对节点坐标法建模理论,在小变形的假设下,建立了做大范围空间运动的柔性梁的刚柔耦合动力学模型.(2)浮动坐标系上的随转坐标系方法.尤超蓝[18]基于有限元技术,在浮动坐标系上使用随转坐标系建模方法,建立了作大范围运动的平面梁和板的刚柔耦合动力学模型.广义坐标采用浮动坐标系上的节点位移坐标,在随转坐标系上进行插值.插值单元内部的变形只与本单元的节点位移与转角有关,从通用性的角度对一般刚柔耦合动力学建模跨出了很大的一步.3 建模方法评价本文从以下几个指标来考核刚柔耦合动力学建模理论:!科学性,应该从严格的理论推导得到,而不是通过猜测捕捉得到;∀通用性,即可以推广到不同连续柔性体构件,而不能像已有的一次耦合模型依赖于沿整个轴(面)积分;#识别性,能够区分刚体运动和弹性变形;∃兼容性,能够退化为零次耦合模型;%高效性,即具有较快的计算速度.以平面梁为例,表1所示为最近几种建模方法的评价. 下面根据评价指标对建模方法进行分析:(1)科学性.科学性是所有评估指标中最重要的.初应力法虽然具有较高的计算效率,但是其在未变形柔性体上所产生的初始应力的假定在理论上未1924上 海 交 通 大 学 学 报第42卷表1 几种主要建模方法评价Tab.1 The evaluation of main modeling methods方法科学性 通用性识别性兼容性高效性初应力法无有有有有变形耦合法(有限元)无有有有有子结构法无有有有无基于轴线积分的一次近似法有无有有有绝对节点坐标法有有无无无浮动坐标系的绝对节点坐标法有有有无无浮动坐标系的随转坐标系方法有有有无无得到严格证明.变形耦合方法(有限元)中,单元耦合形函数和变形位移只满足部分边界条件,不能保证有限元各单元节点变形位移的连续性.子结构方法没有给出如何选取子结构数目和大小的规则.(2)通用性.基于轴线积分的一次近似模型揭示了刚 柔耦合的本质,但是其对非线性变形场的描述并不完美.一次近似模型的耦合型函数阵从梁(或板)的端点沿整个轴(面)积分,这就限制了其应用范围只能是直梁、矩形板等具有规则外形的柔性体,对于像中间有孔或不规则形状的板等一般柔性构件,基于轴线积分的一次耦合模型则无能为力.(3)识别性.采用浮动坐标系方法的都可以区分刚性运动和弹性变形.惯性坐标系方法和随转坐标系方法的建模理论决定了它们不区分刚性运动和弹性变形,不便于进行结构强度分析.(4)兼容性.零次耦合模型在处理某些刚柔耦合问题时具有足够的精度,计算工作量较小.针对当前处理柔性多体系统动力学问题的方法大多是基于零次耦合模型的现状,刚柔耦合动力学理论应该具备兼容性,在一定条件下能够退化为零次耦合模型.惯性坐标系方法由于采用的广义坐标为单元节点和斜率,无法退化到传统的线性有限元坐标.浮动坐标系上的随转坐标系方法中广义坐标定义在浮动坐标系上,然后在单元随转坐标系上线性插值,但在浮动坐标系上是高度非线性耦合的,也无法退化到零次耦合模型.(5)高效性.初应力法、基于轴线积分的一次近似方法和变形耦合方法(有限元)质量阵和刚度阵中的与积分相关的项都是一次生成,具有较高的计算效率.4 结 论本文综述了柔性多体系统动力学研究的若干阶段和研究现状.总结了已有的刚柔耦合动力学建模方法,并提出5项指标对这些建模方法进行评估.分析发现有的建模方法都无法全部满足5项评价指标,进一步研究刚柔耦合动力学建模理论具有重要的意义,大致有以下几项内容:(1)刚柔耦合动力学建模理论研究.建立同时满足以上评价指标的通用一次耦合动力学模型,并将其拓展到较复杂的刚柔耦合动力学系统.研究对象包括梁和板等复杂连续柔性体构件;运动形式从平面转动拓展到更复杂的耦合运动形式.研究的关键问题是如何合理地描述复杂结构变形场的高阶耦合项,评价这些高阶变形项与大范围运动耦合的效应.(2)刚柔耦合动力学计算方法研究.研究刚柔耦合理论应用于柔性多体系统程式化建模,便于计算机实现.再进一步对该模型的计算方法进行研究,提出高速、高精度、稳定的算法成为理论成果转化为生产力的关键.(3)刚柔耦合系统实验研究.一方面要通过设计新试验来验证刚柔耦合理论,另一方面通过试验可为进一步深入进行理论研究提供重要的启示,从而推动新理论的发展.同时还可以对物理试验和仿真的配合使用做进一步研究.参考文献:[1] 洪嘉振.计算多体动力学[M].北京:高等教育出版社,1999.[2] Schiehlen W.M ultibo dy sy stem dynamics:Roo ts andperspectives[J].Multibody System Dynamics,1997(1):149 188.[3] W asfy T M,No or A putat ional strat eg ies forflex ible multibody sy st ems[J].Appl M ech Rev,2003,56(6):553 613.[4] K ane T R,Ryan R R,Baner jee A K.Dy namics o f acantilev er beam attached to a mov ing base[J].Journal of Guidance,Control and Dynamics,1987,10(2):139 151.[5] L IU Jin y ang,H ON G Jia zhen.Dynamic modelingand mo dal truncat ion appr oach for a high speed r otating elastic beam[J].Archive of Applied Mechanics,2002,72:554 563.[6] Y A NG H ui,HO N G Jia zhen,YU Zheng yue.D ynam ics mo deling o f a flex ible hub beam sy st em w ith atip mass[J].Journal of Sound and Vibration,2003,266:759 774.[7] Baner jee A K.Block diag onal equatio ns for multibo dyelasto dy namics w it h g eo metric stiffness and constraints[J].Journal of Guidance,Control and Dynamics,1994,16(6):1092 1100.1925第11期洪嘉振,等:刚柔耦合动力学的建模方法[8] M ayo J,Doming uez J.G eometrically nonlinear formulat ion of flexible multibody systems in terms ofbeam elements:Geometr ic stiffness[J].Computers&Structures,1996,59:1039 1050.[9] Zhang D J,Huston R L.On dynamic stiffening offlex ible bodies hav ing hig h ang ular velo city[J].MechStruct and M ach,1996,24(3):313 329.[10] 王建明.柔性体刚柔耦合动力学建模理论及动力刚化有限元算法研究[D].上海:上海交通大学工程力学系,1999.[11] L iu A Q,L iew K M.N on linear substr ucture appro ach for dy namic analy sis of r ig id f lex ible multibody sy stem[J].C omputer Methods in Applied Mechanics and Engineering,1994,114:379 396. [12] Simo J C,Q uo c L V.A three dimensio n f inite strainrod mo del Part2:Com putatio nal aspects[J].Computer Methods in Applied Mechanics and Engineering,1986,58:79 116.[13] Sug iyamaa H,Ger stma yrb J,Shabana A A.Defor mation modes in the finite element absolute nodal co ordinate for mulatio n[J].Jounal of Sound and Vibration,2006,298:1129 1149.[14] H o ng H C,Wen Y L,K uo M H.Co r otational finiteelement for mulatio n for thin w alled beams w ith gener ic o pen sectio n[J].Computational Methods AppliedMechanics Engeering,2006,195:2334 2370.[15] Gar cia V allejo D,Sugiyama H,Shabana A A.Finiteelement analysis of the geo metric stiffening effect.P art1:A cor rectio n in the floating frame of referenceof fo rmulat ion[J].Multi body Dynamics,2005,219(K):187 202.[16] Gar cia V allejo D,Sugiyama H,Shabana A A.Finiteelement analysis of the geo metric stiffening effect.P art2:N onlinear elasticity[J].Multi body Dynamics,2005,219(K):203 211.[17] 刘锦阳,李 彬,洪嘉振.作大范围运动的柔性梁的刚 柔耦合动力学[J].力学学报,2006,38(2):276282.L IU Jin yang,L I Bin,HO N G Jia zhen.Rig id flex i ble co upling dy nam ics of a flex ible beam w ith thr eedimensional larg e o ver all mo tion[J].Chinese Journalof Theoretical and Applied Mechanics,2006,38(2):276 282.[18] 尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究[D].上海:上海交通大学船建学院,2006.(上接第1921页)[4] 李长春,施德培,王伯成.矩形板极限承载能力的探讨[J].上海交通大学学报,1996,30(5):49 54.LI Chang chun,SH I D e pei,WA N G Bo cheng.Adiscussion of lim ited loading ability of square plate[J].Journal of Shanghai Jiaotong University,1996,30(5):49 54.[5] 辛可贵,王书纯.考虑剪切变形的薄壁杆件稳定分析[J].工程力学,2000,17(1):47 56.XIN Ke g ui,WA N G Shu chun.Buckling analysis ofthin w alled members in co nsideration o f shear lag[J].Engineering Mechanics,2000,17(1):47 56. [6] 陈 婷,童根树.楔形变截面压杆的弹塑性稳定[J].工业建筑,2004,34(10):62 65.CH EN T ing,T ON G Gen shu.Elast oplastic stabilityof taper ed compressed member s[J].Industrial Construction,2004,34(10):62 65.[7] Zelenskii V S.Deter minatio n of cr itical lo ads in thethree dimensional stability pr oblem of t hin w alled barof angular prof ile[J].Strength of Materials,2006,38(3):307 312.[8] 余同希.塑性力学[M].北京:高等教育出版社,1989.[9] 徐秉业,陈森灿.塑性理论简明教程[M].北京:清华大学出版社,1981.[10] 李庆阳,王能超,易大义.数值分析[M].北京:清华大学出版社,2001.1926上 海 交 通 大 学 学 报第42卷。

相关文档
最新文档