刚柔耦合仿真分析流程及要点

刚柔耦合仿真分析流程及要点
刚柔耦合仿真分析流程及要点

本文主要介绍使用SolidWorks、HyperMesh、ANSYS和ADAMS软件进行刚柔耦合动力学分析的主要步骤。

一、几何建模

在SolidWorks中建立几何模型,将模型调整到合适的姿态,保存。此模型的姿态不要改动,否则以后的MNF文件导入到ADAMS中装配起来麻烦。

二、ADAMS动力学仿真分析

将模型导入到ADAMS中进行动力学仿真分析。

为了方便三维模型的建立,SolidWorks中是将每个零件单独进行建模然后在装配模块中进行装配。这一特点导致三维模型导入到ADAMS软件后,每一个零件都是一个独立的part,由于工作装置三维模型比较复杂,因此part数目也就相应的比较多,这样就对仿真分析的进行产生不利影响。下面总结一下从三维建模软件SolidWorks导入到ADAMS中进行机构动力学仿真的要点。(1)首先在SolidWorks中得到装配体。(2)分析该装配体中,到底有几个构件。(3)分别隐藏其他构件而只保留一个构件,并把该构件导出为*.x_t 格式文件。(4)在ADAMS中依次导入各个*.x_t 文件,并注意是用part的形式导入的。(5)对各个构件重命名,并给定颜色,设置其质量属性。(6)对于产生相对运动的地方,建议先在此处创建一个marker,以方便后面的操作。否则,三维模型进入ADAMS后,线条繁多,在创建运动副的时候很难找到对应的点。

部件的导入如下图1所示:

图1 文件输入

File Type选择Parasolid;

File To Read 找到相应的模型;

将Model Name 切换到Part Name,然后在输入框中右击,一次单击part →create 然后在弹出的新窗口中设置相应的Part Name,然后单击OK →OK 。将一个部件导入,重复以上步骤将部件依次导入。这里输入的技巧是将部件名称按顺序排列,如zpt_1、zpt_2、zpt_3. ,然后在图1中只需将zpt_1改为zpt_2、将PART_1改为PART_2即可。

三、HyperMesh中创建柔性体部件的有限元模型。

在SolidWorks中把其他部件隐藏,只显示将要柔性化的部件,模型另存为.iges 格式,导入到HyperMesh中进行前处理。或者将整个模型都导入到HyperMesh中,但只创建需要柔性化的部件有限元模型。

(1) 选择单元类型,赋予材料属性:实体采用Solid185单元类型,壳单元采用shell181单元类型(其他亦可,根据需要选择)。然后创建材料,赋予属性。

(2)单位的统一:因为在SolidWorks中建模一般使用的长度单位是mm,而ADAMS中使用mm的单位系统只有mm、 Kg、N、s、deg。因此,通过换算和推导,在HyperMesh (ANSYS)中使用的单位为:mm、Kg、s、e-3N、e3Pa。例如,钢材的弹性模量为2.1e8(e3Pa)、密度7.85e-6(Kg/mm3)、泊松比0.3。

(3)外部节点的设置:在柔性体与刚性体的铰接处必须有节点存在才能实现铰接,在ADAMS中将其作为外部节点使用,从模型的装配与约束方面考虑,一个铰接点只需要设置一个节点作为外部节点。外部节点的生成选用mass21质量点加上刚性区域法(刚性蜘蛛网),如图2 所示。

图2 外部节点

四、MNF(模态中性文件)的生成

在HyperMesh中完成所有的前处理工作后,导出为ANSYS可读取的后缀为.cbd的文件。然后打开ANSYS软件,读取该文件。点击操作界面Main Menu-Solution - Adams Connection-Export to ADAMS,弹出reselect attachment nodes对话框,选取外部节点作为外连接点,有几个选几个。然后弹出Export to ADAMS 对话框,在这一步中需要注意的是单位系统,在ADAMS与ANSYS中的单位系统需要保持一致。选择自定义单位系统,打开

Define User Unit 对话框,设置Length Factor为1000,Force Factor为1000,如图3所示。另外,根据实际需要在ANSYS中选择生成的模态的阶数。Element Results 选择Include Stress and Strain,然后单击Solve and create export file to ADAMS,生成.MNF文件。

图3 Export to ADAMS

五、刚柔替换

将模态中性文件.MNF 导入ADAMS,替换掉刚性的部件,得到刚柔耦合模型。由于采用替换刚性体的方法,导致原刚性体和柔性体的marker点发生变化,因此必须对边界条件重新审视,建议删除该柔性体上的全部边界条件,重新对柔性体施加约束,以防出错。可通过以下途径来检查柔性体正确与否:检查质量、质心位置、惯性矩;比较ANSYS中模态分析结果与ADMAS中柔性体的模态和振型;比较最大静力变形量/应力值是否与有限元模型相同。

刚柔耦合替换步骤:在模型树上选择需要替换的刚性部件,然后右击选择Make Flexible,弹出Make Flexible 对话框,选择IMPORT MNF ,弹出Swap a rigid body for a flexible body 对话框,在MNF File 中选择对应的.MNF文件,点击OK按钮。如图4所示

图4 刚柔替换

六、刚柔耦合动力学仿真分析

然后就可以进行刚柔耦合动力学仿真分析了。根据计算机性能和实际仿真的需要,可以

把多个部件设置成柔性体,也可以全部设为柔性体。

21ADAMS柔性体-刚柔耦合模块详解

ADAMS柔性体-刚柔耦合模块 一、ADAMS柔性体理论 1、ADAMS研究体系: a)刚体多体系统(低速运动) b)柔性多体系统(考虑弹性变形,大轻薄,高速) c)刚柔耦合多体系统(根据各个构件情况考虑,常用普遍仿真类型) 大部分仿真分析都采用的是刚性构件,在受到力的作用不会产生变形,现实中把大部分构件当做刚性体处理是可以满足要求的,因为各个零件之间的弹性变形对于机构各部分的动态特性影响微乎其微。 但是需要考虑构件变形,变形会影响精度结果,需要对构件其应力大小和分布以及载荷输出研究的时候,以及薄壁构件,高精密仪器部件等,则需要当做柔性体对待,这样计算结果会准确一些。对于柔性体机构,变形对动态影响起着决定性作用,刚柔耦合系统约束的添加必须考虑各个零部件之间的连接和受力关系,更可能还原实际工况,从而使模型更真实还原。 2、柔性体 柔性体是由模态构成的,要得到柔性体就需要计算构件的模态。柔性体最重要的假设就是仅考虑了相对于连体坐标系得晓得线性变形,而连体坐标系同时也在做大的非线性运动。 对于柔性体变形,模态中性文件必然存在某一些模态不响应,没有参与变形或者变性太大,参与系数非常小,比如前六阶或者不正常的阶数,如果去掉贡献较小的模态阶数,便可以提高仿真的效率。 ………… 3、模态 谈到柔性体,就必然脱不了模态的概念,构件的模态是构件自身的一个物理属性,一个构件一旦制造出来,他的模态就是自身的一种属性,再将几何模型离散成有限元模型以后,有限元模型的各个节点有一定的自由度,这样所有的节点自由度的和就构成了有限元模型的自由度,一个有限元模型有多少自由度,它就有多少阶模态。由于构件各个节点的实际位移是模态的按一定比例的线性叠加,这个比例就是一个系数,通常成为模态参与因子,参与因子越大,对应的模态对于构件变形的贡献量越多,因此对构件的振动分析,可以从构件的模态参与因子大小来分析,如果构建在振动时,某阶模态的参与因子大,可以通过改进设计,抑制改接模态对振动贡献量,可以明显降低构件的振动。 利用有限元技术,通过计算构件的自然频率和对应的模态,按照模态理论,将构件产生的变形看作是由构件模态通过线性计算得到的。在计算构建模态时,按照有限元理论,首先要将构件离散成一定数量的单元,单元数量越多,计算精度越高,单元之间通过共用一个节点来转递力的作用,在一个单元上的两个点之间可以产生相对位移,再通过单元的材料属性,进一步计算出构建的内应力和应变。 …………柔性体模态与有限元模态区别不同? …………约束模态? …………正交模态? ADAMS中建立柔性体的三种方法:离散柔性连接杆、ADAMS/ViewFlex模块生成mnf文件、FEA有限元软件输出mnf文件 二、离散柔性连接杆 1、定义:将一个构件离散成几段或者许多段小刚性构件,每个小刚性构件之间通过柔性梁连接,变形

实验一-交叉耦合滤波器设计与仿真

实验一交叉耦合滤波器设计与仿真 一、实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S参数 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N)表示各谐振腔的回路电流,Mij表示第i个谐振腔与第k个谐振腔之间的互耦合系数(i,j=1,2,…,N,且i≠j)。在这里取ω0=1,即各谐振回路的电感L和电容C均取单位值。Mkk(k=1,2,3,…,N)表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示:

e R 2 这个电路的回路方程可以写为 ?? ? ??? ? ??? ? ??????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j 其中,??? ? ? -=+ =ωωωω11j j j s 一般来讲,频率都归一成1,即ω≈ω0=1,则 ij ij ij M j M j jM 0ωω≈≈ 其中E 为电压矩阵,I 为电流矩阵,Z 为阻抗矩阵, R M U Z ++=00j s U0是N ×N 阶单位矩阵。M 是耦合矩阵,它是一个N ×N 阶方阵,形式如下:

发电机并网模型建立与并网过程仿真分析doc

0前言 (3) 1设计任务及要求 (3) 1.1设计目的 (3) 1.2设计内容和基本要求 (3) 2发电机并网条件分析 (4) 2.1并网的理想条件 (4) 2.2相位差、频率差和电压差对滑差的影响 (4) 3发电机并网模型建立 (6) 3.1 仿真模型 (6) 3.2 系统仿真模型的建立 (7) 4发电机并网过程仿真分析 (8) 4.1 潮流计算和初始状态设置 (8) 4.2 发电机并网仿真 (8) 5仿真结果分析 (9) 6总结 (14) 参考文献 (14)

计算机仿真技术己成为电力系统研究、规划、设计和运行等各个方面的重要方法和手段。由于电力系统的特殊性, 很多研究无法采用实验的方法进行, 仿真分析显得尤为重要。发动机并网是电力系统中常见而重要的一项操作, 不恰当的并列操作将导致严重的后果。因此, 对同步发电机的并列操作进行研究, 提高并列操作的准确度和可靠性, 对于系统的可靠运行具有很大的现实意义。 MATlAB是高性能数值计算和可视化软件产品。它由主包、Simulink 及功能各异的工具箱组成。从版本开始增加了一个专用于电力系统分析的PSB(电力系统模块,Power system blockset )。PSB中主要有同步机、异步机、变压器、直流机、特殊电机的线性和非线性、有名的和标么值系统的、不同仿真精度的设备模型库单相\三相的分布和集中参数的传输线单相、三相断路器及各种电力系统的负荷模型、电力半导体器件库以及控制和测量环节。再借助其他模块库或工具箱,在Simulink环境下, 可以进行电力系统的仿真计算, 并可方便地对各种波形进行图形显示。本文以一单机一无穷大系统为模型, 在环境下使用GUI、Simulink、m语言等创建一发电机并网过程分析与仿真系统。该系统可以对多种情况下的发电机并网过程进行仿真分析, 并将仿真结果显示于GUI界面。 1设计任务及要求分析 1.1设计目的 通过发电机并网模型的建立与仿真分析,使学生掌握发电机并网方法和Matlab/Simulink中的电力系统模块(PSB),深化学生对发电机并网技术的理解,培养学生分析、解决问题的能力和Matlab软件的应用能力。 1.2设计内容和基本要求 设计内容主要包括发电机并网模型的建立和并网过程的Matlab仿真。 基本要求如下: 1、发电机并网条件分析; 2、发电机并网模型的建立; 3、分别对发电机端电压电压与电网电压幅值、频率和初相位在各种匹配情

ansys和adams刚柔耦合详细步骤

ANSYS与ADAMS进行联合柔性仿真 基本思路:在ANSYS进行.mnf文件输出,然后把输出的.mnf文件输入ADAMS,进行零件更换。然后在ADAMS 进行加载约束,仿真,查看结果。 软件:ANSYS10,ADAMS 2007 R3 具体步骤: 一ANSYS输出.mnf柔性文件 1.1 建立单元 单元1:solid45 或者其他3D单元 单元2:MASS21,此单元只用于连接点单元 设置弹性模量,泊松比,密度3个参数 1.2导入模型(.x_t)或者建立模型 完成后,创建连接点,ANSYS要求必须是2或者2个以上的连接点

创建连接点:如下图,在下面2个圆柱孔的中心,注意是圆柱体的中心,不是某个面得中心,创建2个keypoints。具体方法,看个人而定。 1.3 划分单元 对体用3D单元划分,我选用meshtool方法

接下来设置real constants,这个参数设置,一定要到等到3D网格划分完后再设置 对MASS21 进行设置。

Real constant Set No. 要大于2,下面的值要非常小。 然后对连接点,即keypoints进行单元划分:先设置keypoints 属性,如下 然后划分单元,用meshtool, 对keypoints划分单元,结果如下如下图

1.4建立刚性区域 刚性区域都是节点=连接节点+刚柔接触的面上所有节点 在ANSYS里面,这一步,连接点为主节点,刚柔接触面上的所有节点为从节点首先得按如下2个图片进行主节点和从节点节点组合。(或者用循环语句也行)

1.4.1建立主节点component 选择1个主节点,即连接节点。 接下来

刚柔耦合动力学的建模方法

第42卷第11期 2008年11月 上海交通大学学报 JOU RN AL O F SH AN G HA I JIA OT O N G U N IV ERSIT Y Vol.42No.11 Nov.2008 收稿日期:2007 10 08 基金项目:国家自然科学基金资助项目(10772113);高等学校博士学科点专项科研基金资助项目(20040248013) 作者简介:洪嘉振(1944 ),男,浙江宁波市人,教授,博士生导师,研究方向:多体系统动力学与控制.电话(T el.):021 ********; E mail:jzhong@s https://www.360docs.net/doc/9c6539645.html,. 文章编号:1006 2467(2008)11 1922 05 刚柔耦合动力学的建模方法 洪嘉振, 刘铸永 (上海交通大学工程力学系,上海200240) 摘 要:对柔性多体系统动力学研究的若干阶段和研究现状进行回顾,对已有的刚柔耦合动力学建模方法进行总结.为了对已有的建模方法进行评价,提出了5项指标:科学性、通用性、识别性、兼容性和高效性,指出现有的建模方法尚无法满足工程实际应用的需要,应研究满足全部评价指标的刚柔耦合动力学建模方法.文中对今后柔性多体系统刚柔耦合动力学的几个研究方向进行展望,包括理论建模、计算方法和试验研究等方面. 关键词:刚柔耦合系统;动力学;建模方法;评价指标中图分类号:O 313 文献标识码:A Modeling Methods of Rigid Flexible Coupling Dynamics H ON G J ia z hen, L I U Zhu y ong (Department of Engineering M echanics,Shanghai Jiaotong Univ er sity,Shanghai 200240,China)Abstract:A brief review about several phases and present status o f flexible multi bo dy dynamics w as given and the ex isting m odeling m ethods o f r ig id flex ible coupling dynam ics w ere sum marized.Five indexes,in cluding scientific index,g eneral index,identifiable index,compatible index and efficient index ,w ere pro posed to evaluate the ex isted mo deling methods.It show s that the ex isted m odeling metho ds can no t satis fy the actual needs of eng ineer ing application and new modeling m ethod w hich satisfies all the evaluating index es should be inv estig ated.T he r esearch tar gets including modeling theor y,com putational methods and exper im ents w er e sugg ested for the rigid flexible co upling dynamics o f the flex ible multi body sys tems. Key words:rigid flex ible coupling sy stem s;dy nam ics;mo deling methods;evaluating index 柔性多体系统是指由多个刚体或柔性体通过一定方式相互连接构成的复杂系统,是多刚体系统动力学的自然延伸.考虑刚柔耦合效应的柔性多体系统动力学称之为刚柔耦合系统动力学,主要研究柔性体的变形与其大范围空间运动之间的相互作用或相互耦合,以及这种耦合所导致的动力学效应.这种耦合的相互作用是柔性多体系统动力学的本质特 征,使其动力学模型不仅区别于多刚体系统动力学,也区别于结构动力学.因此,柔性多体系统动力学是 与经典动力学、连续介质力学、现代控制理论及计算机技术紧密相联的一门新兴交叉学科[1 3],它对高技术、工业现代化和国防技术的发展具有重要的应用价值. 根据力学的基本原理,基于不同的建模方法,得

某电机多物理场耦合分析

某电机多物理场耦合分析 1、概述 为了验证ANSYS耦合场分析功能在电机设计中的应用,采用ANSYS的多物理场耦合分析功能,对某机车牵引电机(包括定子、转子)的耦合场分析作了如下工作: 1建立起电机用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型; 2首先进行电机磁场分析,计算获取了电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电磁发热、电磁力和电磁力矩分布; 3利用电机磁场分析得到的热生成,进行电机的流体-热耦合分析,考核电机的通风冷却性能,得到电机的温度分布; 4使用电机磁场分析得到的电磁力和电磁力矩分布、以及温度分布,进行结构分析,得到考虑温度和电磁影响下的电机的应力和变形情况。同时对电机定子、以及定转子耦合情况进行振动模态分析。 所有分析相互间的载荷和边界条件的传递均由程序自动完成。 2、引言 众所周知,在电机设计与研究中,要涉及到电磁、绝缘、发热、通风冷却和力学等多种多样的问题,是一个典型的综合性研究学科,各学科之间是相互关联、相互影响的,是典型的多场耦合问题学科。由于多场耦合问题的研究十分复杂和困难,传统的电机分析研究方法,是把这些相互关联的问题分离,按各学科分类进行独立的研究。ANSYS是世界上唯一真正能够在同一个界面下,使用统一的数据库进行完善的电磁场、流场、温度场、结构(应力场)耦合分析的商业软件。应用ANSYS的这种多场耦合能力可以很方便地研究电机的多场耦合问题。 为了实际考核ANSYS的电磁、热、流体(通风冷却)、结构这些多物理场及其耦合分析在电机设计和研究中的应用能力,ANSYS公司成都办事处对某牵引电机进行了多物理场耦合研究分析。研究分析的内容为: 运用ANSYS软件建立起电机(包括定子和转子)用于电磁、流体、热、结构分析的统一的几何模型和有限元计算模型;首先进行电机磁场分析,计算获取电机设计中所关心的磁场和磁密分布、矩角特性、电感等参数,并获得电机的电

刚柔耦合仿真分析流程及要点

本文主要介绍使用SolidWorks、HyperMesh、ANSYS和ADAMS软件进行刚柔耦合动力学分析的主要步骤。 一、几何建模 在SolidWorks中建立几何模型,将模型调整到合适的姿态,保存。此模型的姿态不要改动,否则以后的MNF文件导入到ADAMS中装配起来麻烦。 二、ADAMS动力学仿真分析 将模型导入到ADAMS中进行动力学仿真分析。 为了方便三维模型的建立,SolidWorks中是将每个零件单独进行建模然后在装配模块中进行装配。这一特点导致三维模型导入到ADAMS软件后,每一个零件都是一个独立的part,由于工作装置三维模型比较复杂,因此part数目也就相应的比较多,这样就对仿真分析的进行产生不利影响。下面总结一下从三维建模软件SolidWorks导入到ADAMS中进行机构动力学仿真的要点。(1)首先在SolidWorks中得到装配体。(2)分析该装配体中,到底有几个构件。(3)分别隐藏其他构件而只保留一个构件,并把该构件导出为*.x_t 格式文件。(4)在ADAMS中依次导入各个*.x_t 文件,并注意是用part的形式导入的。(5)对各个构件重命名,并给定颜色,设置其质量属性。(6)对于产生相对运动的地方,建议先在此处创建一个marker,以方便后面的操作。否则,三维模型进入ADAMS后,线条繁多,在创建运动副的时候很难找到对应的点。 部件的导入如下图1所示: 图1 文件输入 File Type选择Parasolid; File To Read 找到相应的模型; 将Model Name 切换到Part Name,然后在输入框中右击,一次单击part →create 然后在弹出的新窗口中设置相应的Part Name,然后单击OK →OK 。将一个部件导入,重复以上步骤将部件依次导入。这里输入的技巧是将部件名称按顺序排列,如zpt_1、zpt_2、zpt_3. ,然后在图1中只需将zpt_1改为zpt_2、将PART_1改为PART_2即可。

DELMIA仿真操作流程

第一章软件设置 在进行仿真之前,建议完成培训阶段的DELMIA option设置(参考文件1-Option.pdf); 第二章仿真流程 2.12D布局图导入 1、AutoCAD布局图纸导入DELMIA:AutoCAD的零点坐标系与DELMIA一致,为保证导入的布局图在DELMIA原点附近,建议将CAD图纸导入之前进行偏移,选取某一点作为布局图的参考;如下图,选择布局图左下角为0,0位置; 2、偏移之后保存成较低版本dwg文件(如AutoCAD 2007),直接在DELMIA中打开,File->Open,然后保存成*.CATDrawing文件备用 3、选择进入DELMIA->AEC Plant->Plant Layout模块,如下图所示,建立一Area对象,保存;

4、切换至DELMIA->Resource Detailing->Resource Layout模块,创建Area对象的Foot Print; 勾选“show Footprint”选型,OK。 5、同时打开布局图,点击“Attach Drafting View”,按照图示顺序选择对象,布局图关联到 DELMIA环境;

将Product文件保存,然后插入到Resource节点; 备注:为了后续方便机器人和设备精确布局,可以结合CATIA草图模块,选取布局图机器人基座中心点,创建一组圆柱特征; 2.2机器人模型导入 根据布局图,切换至DELMIA->Resource Detailing->Device Task Definition模块,选择catalog方 式选择机器人型号并插入机器人模型,通过Snap命令将机器人精确定位;

CAXACAE流体、热传耦合分析教程

HeatExchanger 这里用一个简单的实例介绍CAXA CAE流体模块的使用。这里需使用CAXA 3D实体设计 2016和CAXA CAE 2016版。这里将模拟在热交换器中、用水冷却热气的问题。模型由热交换器、空气和水构成,几何外形如下: 热交换器用流动的30度的水将流动的300度的热空气冷却,最终稳态温度分布为: 这是热、流体物理性耦合分析,模拟设置的具体过程如下: 1.建立FEA分析。 用CAXA 3D实体设计打开HeatExchanger.ics模型。如果模型是直接在CAXA中绘制的,则应在建立分析前保存模型,以便让程序了解以后生成的FEA文件的保存路径。否则会造成程序报错而无法继续分析。建立分析的方法使用以下多物理性FEA主工具条: 工具条由左向右数第三个按钮为“添加FEA”按钮,点击后将弹出“选择分析类型”对话框。使用默认的“静态/稳态”和“3D”,单击“确定”: 各分析类型的简单介绍如下: ?静态/稳态:边界条件和结果是不随时间变化的。也可使用多步命令看到系统达到稳态的过程。 ?动态/瞬态:边界条件和结果的大小可随时间的变化而变化。 ?模态/振动模式:用于计算谐波共振模型的振型和频率。 ?不稳定屈曲:计算有负荷的失稳屈曲模型,获得结构特征值。 ?频域:分析施加了特定频率范围内载荷或约束的模型,来确定是否发生动态载荷放大效应 2.Multiphysics FEA 树图。 “选择分析类型”对话框关闭后弹出“Multiphysics FEA ”选项卡。它的上半部分为“Multiphysics FEA 树图”: 所有的模拟分析都可以从树图中依次选择各叶,并完成填写各叶对应的页面进行设置。单击各叶,对应的页面会显示在“Multiphysics FEA ”选项卡的下半部。有的叶前面会有双问号(??),这表示该叶对应的页面还未进行查看和设置。若在分析设置中碰到问题,可按“F1”键,程序自动弹出与当前设置内容相关的帮助文档。开始时,“Multiphysics FEA 树图”下方自动显示“分析”页面。 3.分析页面设置。 物理性部分用于设置分析涉及的物理性。这里我们将勾选“热”和“流体”,表示将进行热、流体耦合分析。 勾选“多步”,表示将进行分步分析。多步功能多用于进行非线性分析,在这里使用可以查看模拟逐渐达到稳态的过程。勾选多步后出现非线性伪时间部分。在非线性伪时间处的增量改为“0.5”,其它保持不变。这样的设置表示分析自0时开始,至1时结束,分析共计2步,每步0.5时。设置好后,页面如下: 4.模型、材料页面设置。 单击“模型”叶后会在“Multiphysics FEA 树图”下方显示模型页面: 模型页面可用于添加/删除材料叶,设置分析的单位系统、设置分析范围、设置实体网格类型等。 ?单击“添加新材料”可以在模型叶下增添材料叶。模拟中涉及材料数应等于材料叶个数。在材料页面中可设置使用这种材料的实体,设置后将在材料叶下方增添实体 叶,实体叶的实体使用上级材料叶对应的材料。“移除未用材料”用于删除多余的 材料叶。 ?单位系统部分可以设置所用单位系统,包括MKS、CGS和mMKS等。

多轴联动系统耦合控制的分析与仿真

多轴联动系统耦合控制的分析与仿真 发表时间:2018-07-03T10:36:17.270Z 来源:《电力设备》2018年第9期作者:李仁伟 [导读] 摘要:建立了多轴联动系统的同步误差模型,将交叉耦合结构等效为一种带敏感函数的模型,并用以分析耦合控制器对交叉耦合系统性能的影响。 (国网北京顺义供电公司北京顺义 101300) 摘要:建立了多轴联动系统的同步误差模型,将交叉耦合结构等效为一种带敏感函数的模型,并用以分析耦合控制器对交叉耦合系统性能的影响。在Matlab/Simulink环境下对双轴和三轴交叉耦合系统进行仿真,验证了本文的分析结论。 关键词:多轴联动;交叉耦合;同步误差 1 引言 多轴联动系统广泛应用于各类精密机械加工、编织、缠绕及轧钢等机电一体化设备。随着自动化水平及生产工艺要求的不断提高,现有控制方式已不能完全适应现代化生产的需要。因此,研究开发高性能的多轴协调控制策略具有普遍的现实意义和广泛的应用前景。 现今的多轴联动系统存在两种较为典型的结构,一种是非耦合结构,另一种是交叉耦合结构[1]。前者各个单轴控制系统独立运行,相互之间的控制没有任何电气上的连接,每台电机各自跟踪给定的位置信号,这种结构较为简单,但是当各轴的位置输出出现不同步时,仅能依靠单轴控制器来矫正误差,这种情况下同步误差较大,不能满足一些对同步性能要求较高的应用场合;交叉耦合控制结构是将各台电机输出的位置信号进行比较,从而得到一个同步误差补偿信号,再经过耦合控制器进行放大后分别前馈到单轴系统的输入端,各轴都修正本轴的状态以与其它轴实现快速同步,系统能够很好地抑制因某一台电机输出受到扰动而出现的同步误差,从而获得良好的同步控制精度[2-4]。然而耦合结构中耦合控制器的增益受系统稳定性的限制不能设计得过大,否则会急剧恶化稳定性,因而设计耦合控制器时需要严格控制增益大小。 本文对双轴和三轴驱动系统进行了研究,根据工程实际定义了两种情况下同步误差的概念,然后推导了耦合环节引入前后同步误差的关系模型。由这一关系模型分析了耦合控制器所起的作用,并探究了过大的增益对系统稳定性的具体影响。最后,通过Matlab/Simulink环境下的仿真结果验证分析结论。 2双轴系统 2.1 双轴同步误差模型 在两电机联动实现位置轨迹控制的场合,X轴和Y轴的位移分别由两套电机系统执行,输出为两台电机转子位置角度,两台电机通过十字滑台或其他机械部件相连,将转子位置角度转换为X轴和Y轴的位移,共同实现被控制对象的二维运动轨迹。 设T为被控对象期望达到的参考位置,P=[P1 P2]T为被控对象的实际位置,为目标位置轨迹的角度。 图1 双轴系统同步误差模型 理想情况下目标会沿着两台电机联动输出的位置信号运动,其路线为给定轨迹,然而实际情况中会由于各种扰动和控制精度的限制,实际运动的轨迹通常与给定轨迹存在偏差,由图1定义单轴跟踪误差e和双轴同步误差分别为 (1) (2) 式中L=[-sinθ cosθ]为变换矩阵。由式(2)可知,双轴同步误差是由单轴跟踪误e1,e2和轨迹角度θ共同决定的。 2.2 交叉耦合控制系统 双轴交叉耦合系统中,X轴和Y轴系统的跟踪误差被转换为同步误差后经过耦合控制器前馈到系统输入端,通过双轴之间的耦合提升系统的同步性能,其结构如图2(a)所示。 图2 双轴交叉耦合控制系统 图2中分别为X轴和Y轴电机调速系统的输入和输出转速信号,c为同步误差。C为耦合控制器,通常采用比例(P)控制,即C=kc;Gp1(s),F1(s),Gp2(s)和F2(s)分别为X轴和Y轴系统的位置环控制器和前馈控制器。交叉耦合系统中的X轴和Y轴均为带前馈的典型伺服系统,由调速系统,位置环控制器和前馈控制器组成。 引入交叉耦合环节前后,双轴系统的简化结构框图如图3所示,图3(a)为双轴并联运行的非耦合结构,图3(b)为交叉耦合结构。图中M=diag(M1,M2),o为非耦合结构下的同步误差。

业务流程建模仿真功能介绍

业务流程仿真功能说明 一、总述 业务流程仿真工具是由清华大学自动化系集成化企业制造实验室开发完成的,基于工作流理论的仿真系统。使用业务流程仿真系统可以针对实际物流、制造、生产等流程进行模型的构建及过程仿真,得到拟实仿真结果,通过分析资源利用率、活动排队、成本等数据,对实际排产、流程优化提供必要参考。 业务流程仿真工具与集成化企业建模工具直接集成,流程、资源、组织的建模和资源的配置工作在建模平台中完成,而业务流程仿真工具可以提供仿真场景配置、仿真运行展示以及仿真结果输出和展示的功能。以下各部分分别针对各部分功能进行简单介绍。 仿真配置功能 仿真配置是进行业务流程仿真的第一步骤,只有进行了正确的配置,业务流程仿真才能得到正确、有效、接近实际情况的结果。在仿真配置中,仿真者需要对业务流程、资源(组织)以及仿真场景等内容进行配置。以下分别对各部分的配置内容进行介绍。 1. 业务流程建模及配置 1)过程视图 业务流程配置在集成化建模工具的建模窗口中完成,通过对实际的业务流程进行抽 象,使用活动网络图的方式表现并建模。当前业务流程仿真工具中,可以提供开始节点、 结束节点、活动节点、过程节点、与节点、或节点、异或节点、决策节点等。在建模窗口中可以完成相应的业务流程图过程视图建模。 在完成业务流程过程视图建模后,可以针对不同的节点配置对应的仿真数据。比如对于活动节点,要设置活动完成时间的长度,这个长度可以是正态分布、常数、指数分布等,同时,还要将活动引用的资源和人员添加进活动的资源列表和人员列表,包括使用的资源和人员的类型以及数量。 2)资源、人员数目设置 在资源、组织视图中,添加相应的资源,并为其设置资源名、资源类型、资源数目等,同时在组织视图中添加相应的人员,并为人员分配职位、角色等。这些资源作为仿真所使用的资源库,与实际的情况相对应。 2. 仿真场景设置 相同的业务流程在不同的时间、工作班次等情况下,会得到不一样的仿真结果,因此,在完成

某火炮减速器刚柔耦合动力学仿真

某火炮减速器刚柔耦合动力学仿真 王炎,马吉胜 (军械工程学院 武器系统仿真研究所, 河北 石家庄 050003) 摘要:通过CATIA 与LMS https://www.360docs.net/doc/9c6539645.html,b Motion 无缝接口实现了实体模型的数据导入。以多刚体动力学和柔性多体动力学理论为基础,建立了包含柔性轴和柔性箱体的方向机刚柔耦合虚拟样机模型。通过仿真分析了柔性体对齿轮啮合力的影响,得到了耦合作用下箱体及齿轮轴的应力和变形,为耦合动载工况下的减速器设计提供了理论依据。 关键词:啮合力;刚柔耦合;模态综合法;https://www.360docs.net/doc/9c6539645.html,b Motion. 引言: 减速器是在原动机和工作机之间用于降低速度、增大扭矩的传动装置,其主要部件包括齿轮、轴、轴承和箱体等。减速器输出端啮合力往往很大,当箱体、轴材料刚度较小时,箱体、轴的柔性变形与输出齿轮啮合力的耦合作用不可忽略。某火炮方向减速器如图1所示,齿圈1固定不动,输出端齿轮2与齿圈1啮合带动整个减速器及炮塔绕齿圈1转动。输出端齿轮2采用悬臂梁结构,如果箱体和齿轮轴变形过大则使啮合振动更加恶劣,不能保证传动精度。在设计过程中为减轻减速器重量,欲将箱体由40CrNiMoA 改为ZL205。为探讨采用轻质箱体后,箱体、轴的柔性变形是否会使啮合振动显著增大,本文以柔性多体动力学理论为基础,综合考虑箱体、轴的变形与啮合力的耦合作用,建立了该减速器刚柔耦合动力学模型,通过分析耦合作用下载荷特性,以及箱体、轴动载下的应力和变形验证了减重设计方案的可行性,为箱体和轴等部件的选材及强度校核提供了理论依据。 图1 某火炮方向减速传动示意图 图2 齿轮扭转振动模型 1 啮合力模型 在减速器的虚拟样机建模过程中,难点在于啮合力模型的建立,在多体软件中,啮合力建模主要由以下两种模型: 1、基于齿轮参数的啮合力模型[1,2]。 该方法以齿轮系统动力学为基础,根据齿轮系统动力学中的运动方程,建立齿轮系统扭转振动模型如图2所示。根据牛顿定律可得这一系统的动力学模型: (())()(())p p p m p p g g p p p g g p I R C R R e t R K t f R R e t T θθθθθ????? +??+??= (1) (())()(())g g g m p p g g g p p g g g I R C R R e t R K t f R R e t T θθθθθ????? ??????=? (2) ()(())(())p p g g m p p g g F K t f R R e t C R R e t θθθθ??? =??+??啮合力 (3) 式中:,p g I I 为主、被动轮的转动惯量;,p g θθ为主,被动轮的扭转振动位移;,p g R R 为主、被动轮的基圆半径;()K t 为时变啮合刚度;,p g T T 为作用在主,被动轮上的外力矩;()e t 为齿轮传动误

耦合场分析

ANSYS非线形分析指南基本过程 第四章耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程学科(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 第1页

PSPICE仿真流程

PSPICE仿真流程 (2013-03-18 23:32:19) 采用HSPICE 软件可以在直流到高于100MHz 的微波频率范围内对电路作精确的仿真、分析和优化。 在实际应用中,HSPICE能提供关键性的电路模拟和设计方案,并且应用HSPICE进行电路模拟时, 其电路规模仅取决于用户计算机的实际存储器容量。 二、新建设计工程 在对应的界面下打开新建工程: 2)在出现的页面中要注意对应的选择 3)在进行对应的选择后进入仿真电路的设计:将生成的对应的库放置在CADENCE常用的目录

中,在仿真电路的工程中放置对应的库文件。 这个地方要注意放置的.olb库应该是PSPICE文件夹下面对应的文件,在该文件的上层中library 中 的.olb中的文件是不能进行仿真的,因为这些元件只有.olb,而无网表.lib。 4)放置对应的元件: 对于项目设计中用到的有源器件,需要按照上面的操作方式放置对应的器件,对于电容, 电阻电感等分离器件,可以在libraries中选中所有的库,然后在滤波器中键入对应的元件 就可以选中对应的器件,点击后进行放置。 对分离元件的修改直接在对应的元件上面进行修改:电阻的单位分别为:k m; 电容的单位分别为:P n u ;电感的单位分别为:n 及上面的单位只写量级不写单位。 5)放置对应的激励源: 在LIBRARIES中选中所有的库,然后键入S就可以选中以S开头的库。然后在对应的 库中选中需要的激励源。 激励源有两种一种是自己进行编辑、手工绘制的这个对应在库中选择: 另外一种是不需要自己进行编辑:

该参数的修改可以直接的在需要修改的数值上面就行修改,也可以选定电源然后点击右键后进行对应的修改。 6)放置地符号: 地符号就是在对应的source里面选择0的对应的标号。 7)直流电源的放置: 电源的选择里面应该注意到选择source 然后再选定VDC或者是其它的对应的参考。 8)放置探头: 点击对应的探头放置在感兴趣的位置处。

练习二 创建柔性体并进行刚柔耦合仿真分析

练习二创建柔性体并进行刚柔耦合仿真 本示例将练习使用FlexPrep工具创建汽车下控制臂柔性体模型,通过替换汽车前悬架模型中刚性控制臂完成汽车前悬架的刚柔耦合仿真。练习中使用的下控制臂模型如图1所示。图2显示了汽车前悬架模型。 图1 下控制臂模型图2 汽车前悬架模型 创建柔性控制臂模型(MV-2010) 第1步:使用FlexPrep工具 练习中使用的模型均位于\tutorials\mv_hv_hg\mbd_modeling\flexbodies文件夹下。 1. 启动MotionView 2. 在Flex Tools下拉菜单中选择FlexProp,弹出FlexBodyProp对话框 图3 选择FlexProp工具 3. 激活OptiStruct Flexbody Generation,在下拉列表中选择Create OS prp(preparation) file and generate the h3d flexbody 4. 点击Select Bulk Data File右侧的文件浏览按钮选择sla_flex_left.fem 注:在这里可以使用任何OptiStruct(fem)和Nastran(nas,dat,bdf)文件 5. 在Save the *.h3d file as栏中输入输出H3D文件的文件名:sla_flex_left.h3d 6. 在组件模态综合类型(Component Mode Synthesis Type)栏中选择Craig-Bampton方法 7. 在指定界面节点栏中(Specify Interface Node List)输入:4927+4979+4984

UM软件入门系列教程04:刚柔耦合动力学仿真-pub

目录 1.曲柄-滑块机构 (1) 1.1配置ANSYS工作环境 (3) 1.2准备连杆柔性体模型 (4) 1.2.1在ANSYS里的工作 (4) 1.2.2柔性子系统向导 (6) 1.3刚柔耦合系统动力学建模 (12) 1.3.1创建几何图形 (13) 1.3.2创建刚体 (15) 1.3.3创建柔性子系统 (16) 1.3.4创建铰 (17) 1.4刚柔耦合系统动力学仿真 (20) 2.柔性平台-电机模型 (26) 2.1准备柔性平台 (27) 2.1.1在ANSYS环境里工作 (28) 2.1.2在ANSYS Workbench环境里工作 (29) 2.1.3柔性子系统向导 (36) 2.2刚柔耦合系统动力学建模与仿真 (37) 2.2.1导入柔性平台 (37) 2.2.2连接柔性平台与大地 (38) 2.2.3创建几何图形 (38) 2.2.4创建力元 (42) 2.2.5导入电机子系统 (45) 2.2.6设置电机转子速度曲线 (47) 2.2.7连接电机与柔性平台 (49) 2.2.8计算系统平衡位置和固有频率 (51) 2.2.9运动仿真 (53)

1.曲柄-滑块机构 本例模型为一个曲柄-滑块机构,如图 1.1所示。在{UM Data}\SAMPLES\ Flex目录有一个名为slider_crank_all的模型。这个模型里共有三个曲柄-滑块机构,其不同之处在于构件连杆的建模方式: ?连杆为一个刚体; ?连杆为一个子系统,由11个刚体通过铰和力元连接而成; ?连杆为一个柔性体,从有限元软件导入。 图1.1 曲柄-滑块机构:1-机架,2-曲柄,3-连杆,4-滑块 这里主要介绍第三个模型——刚柔耦合机构的建模流程: 1.建立连杆的有限元模型; 2.计算所需的模态,并转换保存为UM格式; 3.创建几何图形; 4.创建刚体(曲柄和滑块); 5.导入连杆弹性体; 6.创建铰和力元。 前两步在ANSYS里进行,后面四步在UM软件里进行。 备注:UM使用子系统技术处理外部导入的柔性体,每个柔性体都是一个独立的子系统,导入时选择Linear FEM Subsystem类型。 我们可以先创建一个工作目录,方便后续模型使用,如:{UM Data}\My Models,或者D:\models。 以下以“.\”来表示工作目录。在这个目录下我们再创建两个子文件夹:?flexbeam:存放柔性体数据; ?slider_crank_fem,存放刚柔耦合模型。

【ANSYS分析】耦合场分析

第四章耦合场分析 耦合场分析的定义 耦合场分析是指在有限元分析的过程中考虑了两种或者多种工程(物理场)的交叉作用和相互影响(耦合)。例如压电分析考虑了结构和电场的相互作用:它主要解决由于所施加的位移载荷引起的电压分布问题,反之亦然。其他的耦合场分析还有热-应力耦合分析,热-电耦合分析,流体-结构耦合分析,磁-热耦合分析和磁-结构耦合分析等等。 耦合场分析的类型 耦合场分析的过程取决于所需解决的问题是由哪些场的耦合作用,但是,耦合场的分析最终可归结为两种不同的方法:序贯耦合方法和直接耦合方法。 序贯耦合解法 序贯耦合解法是按照顺序进行两次或更多次的相关场分析。它是通过把第一次场分析的结果作为第二次场分析的载荷来实现两种场的耦合的。例如序贯热-应力耦合分析是将热分析得到的节点温度作为“体力”载荷施加在后序的应力分析中来实现耦合的。 直接耦合解法 1

直接耦合解法利用包含所有必须自由度的耦合单元类型,仅仅通过一次求解就能得出耦合场分析结果。在这种情形下,耦合是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。例如利用单元SOLID5,PLANE13,或SOLID98可直接进行压电分析。 何时运用直接耦合解法或序贯耦合解法 对于不存在高度非线性相互作用的情形,序贯耦合解法更为有效和方便,因为我们可以独立的进行两种场的分析。例如,对于序贯热-应力耦合分析,可以先进行非线性瞬态热分析,再进行线性静态应力分析。而后我们可以用热分析中任意载荷步或时间点的节点温度作为载荷进行应力分析。这里耦合是一个循环过程,其中迭代在两个物理场之间进行直到结果收敛到所需要的精度。 直接耦合解法在解决耦合场相互作用具有高度非线性时更具优势,并且可利用耦合公式一次性得到最好的计算结果。直接耦合解法的例子包括压电分析,伴随流体流动的热传导问题,以及电路-电磁场耦合分析。求解这类耦合场相互作用问题都有专门的单元供直接选用。 1

ANSYS耦合场分析指南第三章

ANSYS耦合场分析指南第三章 发表时间:2007-11-20 作者: 安世亚太来源: e-works 关键字: ANSYS 耦合场分析 CAE教程 第三章直接耦合场分析 3.1进行直接耦合场分析 在直接耦合场分析中,只需用耦合场单元进行一次分析。表3-1中列出了具有耦合场分析能力的单元。 1. 有限元模型可以混合一些带有VOLT自由度的耦合场单元,要保证相容性,单元必须有相同的支反力(参见《ANSYS Electromagnetic Field Analysis Guide》中的第§13.3节)。 耦合场单元包含所有必要的自由度,通过计算适当的单元矩阵(矩阵耦合)或是单元载荷矢量(载荷矢量耦合)来实现场的耦合。在用矩阵耦合方法计算的线性问题中,通过一次迭代即可完成耦合场相互作用的计算,而载荷矢量耦合方法在完成一次耦合响应中至少需要二次迭代。对于非线性问题,矩阵方法和载荷矢量耦合方法均需迭代。表3-2给出了ANSYS/Multiphysics产品用于直接方法时所支持的不同类型的

耦合场分析,以及每种类型所需要的耦合类型。想进一步了解有关矩阵和载荷矢量耦合请参阅《ANSYS Theory Reference》。 ANSYS/Professional软件包只支持热-电直接耦合,ANSYS/Emag软件包只支持电磁场和电磁-电路直接耦合。 注意-在子结构分析中使用载荷矢量耦合方法的耦合场单元无效。在生成子结构的过程中,迭代解无效,所以,ANSYS程序忽略所有的载荷矢量和反馈耦合效应。 因为有时载荷矢量耦合场单元的非线性行为可能很严重,故需要用到预测器和线性搜索选项以加强收敛。《ANSYS Structural Analysis Guide》中的§8介绍了这些选项。 对于上述的分析类型,本章将重点介绍如何进行热-电分析、压电分析、磁-结构分析和电磁-结构分析。 3.1.1热-电分析 在ANSYS/Multiphysics和ANSYS/Professional软件包中提供热-电分析功能,即计算导体中由于直流电(DC)带来的焦耳热所造成的温度分布。典型应用为加热线圈、保险丝和电子部件。 进行热电分析需要用到下列单元类型: LINK68耦合热-电线单元 PLANE67耦合热-电四边形单元 SOLID69耦合热-电六面体单元 SOLID5耦合场六面体单元 SOLID98耦合场四面体单元 SHELL157耦合热-电壳单元

相关文档
最新文档