【中考备考金钥匙】2015中考数学压轴题精编 专题18 静态几何之圆问题
2015年中考专题复习之:综合问题

2015年中考专题复习之:静态几何之综合问题A :填空题1:浙江省金华市如图2是装有三个小轮的手拉车在爬楼梯时的侧面示意图,定长的轮架OA 、OB 、OC 抽象为线段,有OA=OB=OC ,且∠AOB=120°,折线NG HE EF 表示楼梯,GH 、EF 是水平线,NG 、HE 是铅垂线,半径相等的小轮子⊙A 、⊙B 与楼梯两边都相切,且AO ∥GH , (1):如图2①,若点H 在线段OB 上,则OHBH的值是 ;(2):如果一级楼梯的高度HE=(83+2)cm ,点H 到线段OB 的距离d 满足条件d ≤3cm ,那么小轮子半径r 的取值范围是 。
2:嘉兴市如图,点C 在以AB 为直径的半圆上,AB=8,∠CBA=30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F.下列结论:①CE=CF ;②线段EF 的最小值为32;③当AD=2时,EF 与半圆相切;④若点F 恰好落在B C 上,则AD=52;⑤当点D 从点A 运动到点B 时,线段EF 扫过的面积是316.其中正确结论的序号是 3:潍坊如图,两个半径均为3的⊙O 1与⊙O 2相交于A 、B 两点,且 每个圆都经过另一个圆的圆心,则图中阴影部分的面积为 .(结果保留π)4:自贡 如图,一个边长为4cm 的等边三角形ABC 的高与⊙O 的直径相等。
⊙O 与BC 相切于点C 与AC 相交于点E 。
则CE 的长为 cm 。
5:十堰如图,扇形OAB 中,∠AOB =60°,扇形半径为4,点C 在AB 上,CD ⊥OA ,垂足为点D ,当△OCD的面积最大时,图中阴影(第16题)FEOCBADCB O A DA部分的面积为_________.6:山西一走廊拐角的横截面积如图,已知AB⊥BC,AB∥DE,BC∥FG,且两组平行墙壁间的走廊宽度都是1m,的圆心为O,半径为1m,且∠EOF=90°,DE、FG分别与⊙O相切于E、F两点.若水平放置的木棒MN的两个端点M、N分别在AB和BC上,且MN与⊙O相切于点P,P是的中点,则木棒MN的长度为m.7:山西如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为.8:厦门如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是(,).B:选择题1:泰安如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2B.(+1)cm2C.1cm2D.cm22:泸州市如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A .4 B .C.D.3:孝感市如图,在半径为6cm 的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC上一点,且30D ∠=︒,下列四个结论:①BC OA ⊥;②63c m BC =;③23s in =∠AOB ;④四边形ABOC 是菱形.其中正确结论的序号是() A .①③ B .①②③④ C .②③④ D .①③④ 4:东营下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么, 这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是( )A .②③B .①②C .③④D .②③④ 5:东营如图,四边形ABCD 为菱形,AB=BD ,点B 、C 、D 、G 四个点在同一个O 圆上,连接BG 并延长交AD 于点F ,连接DG 并延长交AB 于点E ,BD 与CG 交于点H ,连接FH .下列结论:①AE =DF ;②FH ∥AB ;③△DGH ∽△BGE ;④当CG 为O 的直径时,DF =AF .其中正确结论的个数是( ) 6:莱芜在正五边形ABCDE 中,连接AC 、AD 、CE,CE 交AD 于点F,连接BF ,下列说法不正确的是 A .△CDF 的周长等于AD+CD B .FC 平分∠BFDC .2224AC BF CD +=D .。
2015年中考数学压轴题分析与解答

2015年中考数学压轴题分析与解答案1.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.考点:反比例函数综合题.分析:(1)把点A坐标代入y=(x>0),即可求出k的值;(2)先求出直线AB的解析式,设M(t,),N(t,t﹣3),则MN=﹣t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.解答:解:(1)把点A(8,1)代入反比例函数y=(x>0)得:k=1×8=8,y=,∴k=8;(2)设直线AB的解析式为:y=kx+b,根据题意得:,解得:k=,b=﹣3,∴直线AB的解析式为:y=x﹣3;设M(t,),N(t,t﹣3),则MN=﹣t+3,∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,∴△BMN的面积S是t的二次函数,∵﹣<0,∴S有最大值,当t=3时,△BMN的面积的最大值为;(3)∵MA⊥AB,∴设直线MA的解析式为:y=﹣2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=﹣2x+17,解方程组得:或(舍去),∴M的坐标为(,16),∴t=.点评:本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组才能得出结果.2.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.考点:圆的综合题.分析:(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.解答:(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•CD;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.点评:本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.3.如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为2a,2b,点A,D,G在y轴上,坐标原点O为AD的中点,抛物线y=mx2过C,F两点,连接FD并延长交抛物线于点M.(1)若a=1,求m和b的值;(2)求的值;(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由.考点:二次函数综合题.分析:(1)由a=1,根据正方形的性质及已知条件得出C(2,1).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+1)代入y=x2,即可求出b的值;(2)由正方形ABCD的边长为2a,坐标原点O为AD的中点,得出C(2a,a).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+a)代入y=x2,整理得出方程b2﹣2ab﹣a2=0,把a看作常数,利用求根公式得出b=(1±)a(负值舍去),那么=1+;(3)先利用待定系数法求出直线FD的解析式为y=x+a.再求出M点坐标为(2a﹣2a,3a﹣2a).又F(2a+2a,3a+2a),利用中点坐标公式得到以FM为直径的圆的圆心O′的坐标为(2a,3a),再求出O′到直线AB(y=﹣a)的距离d的值,以FM为直径的圆的半径r的值,由d=r,根据直线与圆的位置关系可得以FM为直径的圆与AB所在直线相切.解答:解:(1)∵a=1,∴正方形ABCD的边长为2,∵坐标原点O为AD的中点,∴C(2,1).∵抛物线y=mx2过C点,∴1=4m,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+1)代入y=x2,得2b+1=×(2b)2,b=1±(负值舍去).故m=,b=1+;(2)∵正方形ABCD的边长为2a,坐标原点O为AD的中点,∴C(2a,a).∵抛物线y=mx2过C点,∴a=m•4a2,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+a)代入y=x2,得2b+a=×(2b)2,整理得b2﹣2ab﹣a2=0,解得b=(1±)a(负值舍去),∴=1+;(3)以FM为直径的圆与AB所在直线相切.理由如下:∵D(0,a),∴可设直线FD的解析式为y=kx+a,∵F(2b,2b+a),∴2b+a=k•2b+a,解得k=1,∴直线FD的解析式为y=x+a.将y=x+a代入y=x2,得x+a=x2,解得x=2a±2a(正值舍去),∴M点坐标为(2a﹣2a,3a﹣2a).∵F(2b,2b+a),b=(1+)a,∴F(2a+2a,3a+2a),∴以FM为直径的圆的圆心O′的坐标为(2a,3a),∴O′到直线AB(y=﹣a)的距离d=3a﹣(﹣a)=4a,∵以FM为直径的圆的半径r=O′F==4a,∴d=r,∴以FM为直径的圆与AB所在直线相切.点评:本题是二次函数的综合题型,其中涉及到正方形的性质,待定系数法求二次函数、一次函数的解析式,一元二次方程的求根公式,直线与抛物线交点坐标的求法,直线与圆的位置关系.综合性较强,难度适中.正确求出抛物线的解析式是解题的关键.。
精品 2015年全国数学中考压轴题真题汇总共43页

2015年全国省市中考数学压轴题精选题2015年北京市2015年北京在平面直角坐标系xOy 中,C 的半径为r ,P 是与圆心C 不重合的点,点P 关于O 的反称点的定义如下:若在射线..CP 上存在一点P ',满足2CP CP r '+=,则称P '为点P 关于C 的反称点,下图为点P 及其关于C 的反称点P '的示意图。
(1)当O 的半径为1时.①分别判断点(2,1)M ,3(,0)2N ,(1,3)T 关于O 的反称点是否存在,若存在?求其坐标; ②点P 在直线2y x =-+上,若点P 关于O 的反称点P '存在,且点P '不在x 轴上,求点P 的横坐标的取值范围; (2)当C 的圆心在x 轴上,半径为1,直线3233y x =-+与x 轴,y 轴分别交于点A ,B ,若线段AB 上存在点P ,使得点P 关于C 的反称点P '在C 的内部,求圆心C 的横坐标的取值范围。
如图.抛物线y=x 2-4x 与x 轴交于O,A 两点,P 为抛物线上一点,过点P 的直线y=x+m 与对称轴交于点Q.(1)这条抛物线的对称轴是 , 直线PQ 与x 軸所夹锐角的度数是 ,(2)若两个三角形面积满足PAQ POQ S S ∆∆=31,求m 的値: (3)当点P 在x 軸下方的抛物线上时.过点C(2,2)的直线AC 与直线PQ 交于点D ,求:①PD+DQ 的最大值;②PD ·DQ 的最大值.已知二次函数2ax y =的图象经过点(2,1)。
(1)求二次函数2ax y =的解析式;(2)一次函数4+=mx y 的图象与二次函数2ax y =的图象交于点A (1x ,1y ),B (2x ,2y )两点 ①当23=m 时(图①),求证:△AOB 为直角三角形; ②试判断当23≠m 时(图②),△AOB 的形状,并证明; (3)根据第(2)问,说出一条你能得到的结论(不要求证明)。
2015年重庆中考数学填空第18题几何压轴题

1.(重庆一中)如图,正方形ABCD 中, E 为CD 中点,BF ⊥AE 于点F ,M 为CF上一点,将△BMF 绕点F 顺时针旋转得△GNF,M 的对应点N 恰在边AB 上, B的对应点G 恰在线段EA 延长线上,若2CM =,则DG 的长为__________. 2.(南开)如图,ABC ∆中,4AB AC ==,BAC ∠=120°,以A 为一个顶点的等边三角形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC 边分别交于点F 、G ,若点B 关于直线AD 的对称点为'B ,当'FG B ∆是以点G 为直角顶点的直角三角形时,BF 的长为______ _(1) (2)3.(南开)如图,E ,F 分别是边长为6的正方形ABCD 的边CD ,AD 上两点,且CE=DF ,连接CF ,BE 交于点M ,在MF 上截取MC MN =,连接AN ,若CM FN 34=,则AN 的长度为 4.(育才)如图,已知:正方形ABCD 的边长为1,点E 、 F 分别在AC 、DC 上,若EC=BC ,EF ⊥BE,BF 与EC 相交于G ,则BG 与GF 的乘积为_______(3) (4)5.(巴蜀)如图,AC 、BD 是正方形ABCD 的对角线,点F 在边AD 上,AF =DF =4cm ,DF 是正方形DEFG 的一条对角线,CG 的延长线交AE 于点P ,连接GA 、GC 、GE ,则线段PE 的长为 cm.(结果保留无理数)6.(联中)如图,以Rt ABC △的斜边AB 为一边在ABC ∆同侧作正方形ABEF .点O 为AE 与BF 的交点,连接CO ,若CA = 2,CO =,那么CB 的长为______________.(5) (6)7.(万州)如图,等腰Rt △ABC 中,O 为斜边AC 的中点,∠CAB 的平分线分别交BO ,BC 于点E ,F ,BP ⊥AF 于H ,PC ⊥BC ,AE=1, PG= .8.(八中)如图,正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,且PE PC =,过点P 作PF AE F ⊥于点,1,3BE AB PF ==若,则的长为 .(7) (8)OFECBABCE。
2015年全国中考数学试卷解析分类汇编专题圆的有关性质

MP+NQ=14 ,AC+BC=18,则 AB 的长为( C
A.
B.
C. 13
D.
16
13. (2015 年浙江衢州 14,4 分) 一条排水管的截面如图 所示,已知排水管的半径 OA 1m ,水面宽 AB 1.2m ,某天下雨 后,水管水面上升了 0.2m ,则此时排水管水面宽 CD 等于
②当AB=AP时
③当 PA=PB 时
∴ ,
易得△PFB∽△ CGB,
设 BG=t,则 CG=2t, 易得∠PAF=∠ ACG, ∵∠ AFP=∠AGC=90°, ∴△ APF∽△ CAG, ∴ ∴ , ,解得 t= ,
在 Rt△ BCG 中, BC= t=
16. ( 2015•长沙,第 18 题 3 分)如图, AB 是⊙O 的直径, 点 C 是 ⊙O 上的一点,若 BC=6, AB=10,OD ⊥ BC 于点 D , 则 OD 的长为 \.
1. (2015•江苏南通,第 15 题 3 分)如图,在⊙O 中,半径 OD 垂直于弦 AB ,垂足为 C , OD=13cm ,AB=24cm ,则 CD= cm.
8
5. (2015•青岛 ,第 13 题 3 分)如图,圆内接四边形 ABCD 两 组对边的延长线分别相交于点 E, F,且∠ A=55°, ∠E=30°,则∠ F=
8.( 2015•宁夏第 13 题 3 分)如图,在⊙O 中, CD 是直径, 弦 AB⊥CD ,垂足为 E,连接 BC.若 AB=2 ,∠BCD=30° , 则⊙ O 的半径为 .
10. (4 分) ( 2015•黔南州) (第 15 题)如图是一个古代车轮 的碎片,小明为求其外圆半径,连接外圆上的两点 A 、 B, 并使 AB 与车轮内圆相切于点 D ,半径为 OC ⊥AB 交外圆于 点 C.测得 CD=10cm ,AB=60cm ,则这个车轮的外圆半径 是 .
长沙2015中考黑白卷狂押到底(数学)含答案解析

扫扫刊——数学特殊题型猜押题型一 四边形的性质1.顺次连接对角线相等的四边形的各边中点,所得图形一定是 ( )A .平行四边形B .矩形C .菱形D 正方形2.若四边形的对角线互相垂直且相等,则它一定是 ( )A .菱形B .平行四边形C .正方形D .以上说法均不正确 题型二 旋转、图形识别1.如图,该图形绕其旋转中心旋转一定角度后与自身重合,则旋转的度数可能是( )A.150°B.120°C.90°D.60°第1题图 第2题图2.如图是一个旋转对称图形,要使它旋转后与自身重合,那么至少应将它绕旋转中心逆时针方向旋转的度数为 ( )A.180°B.120°C.60°D.30°题型三 三视图1.下列几何体的主视图、左视图、俯视图的图形完全相同的是 ( )A .三棱锥B .长方体C .三棱柱D .球体2.下列几何体中,三视图既有圆又有长方形的是 ( )A .棱柱B .圆柱C .圆锥D .球题型四 新概念阅读理解题1.我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左(或向右)平移||m 个单位,再向上(或向下)平移||k 个单位得到,我们称函数2y ax=为“基本函数”,而称它平移得到的二次函数2()y a x m k =++为“基本函数” 2y ax=的“朋友函数”.22m k +称为朋友距离.如一次函数25y x =-是基本函数2y x =的朋友函数,由252(1)3y x x =-=--可知朋友路径可以是向右平移1个单位,再向下平移3个单位,朋22(1)310-+(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径为由基本函数2y x =先向 ,再向下平移7个单位,相应的朋友距离为 ; (2)探究二:将函数y =431x x --化成y= ,使它和基本函数y=1x 成为基本 函数,并写出路径和相应的朋友距离;(3)探究三:将二次函数23y x =先向 平移 个单位,再向 平移 个单位,得到朋友函数23(2)5y x =-+,相应的朋友距离为 .2.对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足-M ≤ y ≤M 则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.第2题图(1)分别判断函数1(0)y x x=>和1(42)y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1(,)y x a x b b a =-+≤≤>的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足314t ≤≤? 创新题猜押1.12-的绝对值的相反数是( ) A.21 B.21- C.2 D.-2 2.若121442=⋅-+-w aa )(,则w =( ) A.2(2)a a +≠- B.2(2)a a -+≠±C.2(2)a a -≠D.2(2)a a --≠±名校内部模拟题命题点 三视图(2015邵阳市模拟考试7题3分)如图,直线AB 、CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3的大小是( )A .80°B .70°C .90°D .100°命题点 实数的运算(2015邵阳市模拟考试19题8分)计算:︒-+60cos 49201510)(. 扫扫刊——数学答案 特殊题型猜押题型一 四边形的性质【答案】1.C 2.C题型二 旋转、图形识别【答案】1.B 2.C题型三 三视图【答案】1.D 2.C题型四 新概念阅读理解题1.解:(1)左平移1个单位,52【解答提示】∵y =2x -5化为y =2(x +1)-7的形式,∴基本函数y =2x 先向左平移1个单位,再向下平移7个单位,相应的朋友距离=221752+=.(2)1+41x -;【解答提示】y =431411411x x x x x ---==+--()+1,因此函数可化为y =1+41x - 朋友函数为先向左平移1个单位,再向上平移4个单位,相应的朋友距离为221+4=17;(3)右,2,上,5,29.【解答提示】将二次函数23y x =先向右平移2个单位,再向上平移5个单位得到朋友函数23(2)5y x =-+,相应的朋友距离为222529+=.2.解:(1)1(0)y x x=>没有最大值与最小值,所以不是有界函数; 1(42)y x x =+-<≤是有界函数,边界为-3;(2)∵1(,)y x a x b b a =-+≤≤>,∴y 随着x 的增大而减小,当x a =时,max 1y a =-+,又∵max 2y =,∴12a -+=,∴1a =-,当x b =时,min 1y b =-+,则2121b b -≤-+≤⎧⎨>-⎩, ∴13b -<≤;(3)当m >1时,函数2y x =的图象向下平移m 个单位后,其解析式为2'y x m =-. 当0x =时,函数的最小值小于1-,故此时函数的边界大于1,与题中1t ≤不符,故m 的取值范围为1m ≤.对于函数2(1,0)y x x m m =-≤≤≥,2max (1)1y =-=,2min 00y ==.故平移后的函数2'y x m =-满足2max '(1)1y m m =--=-,2min '0y m m =-=-. ∵边界t 满足314t ≤≤, ∴max 3'14y ≤≤,min 31'4y -≤≤-,即3114m ≤-≤,314m -≤-≤-, 故m 的取值范围为104m ≤≤或314m ≤≤. 创新题猜押【答案】1.B 2.D名校内部模拟题命题点 三视图【答案】A命题点 实数的运算解:原式=1+3-4×12=1+3-2=2.狂押到底·扫扫刊——数学特殊题型猜押题型一四边形的性质1.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分2.菱形具有而矩形不具有的性质是()A.对角相等B.四边相等C.对角线互相平分D.四角相等题型二旋转、图形识别1.如图,有四个图案,它们绕中心旋转一定的角度后,都能和原来的图案重合,其中有一个图案与其余三个图案旋转的角度不同,它是()A B C D2.下列图案中,可以由一个“基本图案”连续旋转45°得到的是()A B C D题型三三视图1.下列几何体中,主视图和俯视图都为矩形的是()A.圆柱体B.圆锥C.三棱柱D.长方体2.下列几何体中,主视图是三角形的是()A.圆B.圆锥C.正方体D.圆柱题型四新概念阅读理解题把一条线段关于原点位似变换,如果原线段的两个端点坐标分别是(a,b)与(c,d),前后两条线段的位似比是1: k,易得位似变换后的线段的两个端点的坐标分别是(ka,kb)与(kc,kd),或者是(-ka,-kb)与(-kc,-kd),把从点(a,b)到(ka,kb)的变换称为正向变换,点(a,b)到(-ka,-kb)的变换称为反向变换,运用位似变换可以把常见的图形,如三角形、四边形与圆等位似变换,得出图形顶点或圆心的坐标,下面我们把几种函数图象关于原点进行位似变换,探究位似变换后函数图象的解析式:(1)反比例函数y =1x 图象关于原点O 位似变换,前后两个函数图象的位似比是1: 4,判断正向与反向位似变换后函数图象是否一致?通过计算加以说明.(2)把一次函数y =kx +b (k ≠0)图象关于原点O 作正向位似变换,使得前后函数图象的位似比是1: m (m ≠0),确定变换后函数图象的解析式.(3)已知抛物线解析式是y = x 2-2x +2,如果关于点M (-2,-1)作位似变换,使得变换前后两条抛物线的位似比是1:2,确定正向位似变换后抛物线的解析式,并直接运用中心对称的性质,写出反向位似变换后,所得抛物线的对称轴与顶点坐标.创新题猜押1.若关于x 的不等式13a x ->()的解集为ax -<13,则a 的取值范围是 ( ) A.1<a B.1>a C.1≠a D.1-<a2.下列图形中,阴影部分面积最大的是 ( )A B C D 名校内部模拟题命题点 整式的化简求值(2015常德模拟考试18题5分)先化简,再求值:2)2()1(4)32(32-+---+x x x x x )(,其中3-=x .命题点 三视图(2015邵阳模拟考试3题4分)如图,是由七个相同的小正方体摆成的几何体,则这个几何体的俯视图是( )A B C D狂押到底·扫扫刊——数学答案特殊题型猜押题型一 四边形的性质1.【答案】C2.【答案】B题型二 旋转、图形识别1.【答案】A2.【答案】B题型三 三视图1.【答案】D2.【答案】B题型四 新概念阅读理解题解:(1)在反比例函数y =1x图象上取点A (1,1),按照题目中的要求,正向位似变换后,点A 对应点B 1坐标是(4,4),反向变换后对应点坐标是B 2(-4,-4), 设经过点B 1、B 2 的反比例函数的解析式y =1k x 、y =2k x; 因此k 1=4×4=16,k 2=(-4)×(-4)=16.显然都是y =16x ,所以正向与反向位似变换后的图象一致,都是y =16x. (2)在一次函数y =kx +b (k ≠0)图象上取两点A (b k -,0)、B (0,b ), 把线段AB 关于原点正向位似变换,前后线段位似比是1:m (m ≠0),则线段对应端点坐标分别是C (bm k-,0)、D (0,mb ). 设经过C 、D 两点的一次函数解析式是y =px +q ,则0q mb bm p mb k ⎧⎪⎨⎪⎩==(-)+,解得p =k . 因此位似变换后经过两点C 、D 的一次函数解析式是y =kx +mb .(3)如图,抛物线解析式y = x 2-2x +2,变化为顶点式为2(1)1y x =-+,顶点坐标是A (1,1),在图象上取一点B (2,2),连接MA 、MB 并分别延长,在MB 延长线上截取BB '=MB ,在MA 延长线上截取AA '=MA ,过点A 、B 、A ' 、B '分别作经点M 所引的x 轴的平行线的垂线,垂足分别是点C 、E 、D 、F ,根据三角形相似,因此得出MF =2ME ,DM =2CM ,B F '=2BE ,A D '=2AC ,设点A '坐标是(x 1,y 1),点B '坐标是(x 2,y 2),点M 坐标是(-2,-1),因此有:x 1+2=2×(1+2)、y 1+1=2(1+1);解得x 1=4,y 1=3,x 2+2=2×(2+2)、y 2+1=2(2+1);解得x 2=6,y 2=5,则点A '坐标是(4,3),点B '坐标是(6,5),设经过点A '、B '的抛物线解析式是y =a (x -4)2+3,代入点B '坐标(6,5),则a ·(6-4)2+3=5,解得a =12, 因此位似变换后抛物线的解析式是21(4)32y x =-+,即是y =12x 2-4x +11. 根据中心对称的性质,点A '坐标是(4,3)关于点M (-2,-1)的中心对称点是A ''(-8,-5),因此反向位似变换后抛物线的对称轴是直线x =-8,顶点坐标是A ''(-8,-5).创新题猜押1.【答案】B2.【答案】C名校内部模拟题命题点 整式的化简求值解:原式=222494444x x x x x --++-+=25x -.当3x =-时,25x -=2352--=-(). 命题点 三视图的判断【答案】C。
初中数学中考模拟复习专题18 静态几何之圆问题考试卷及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,在半径为2的扇形OAB中,∠AOB=90°,点C是弧AB上的—个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E,则DE的长度()A.1B.2C.D.试题2:如图,⊙O1,⊙O2、相交于A、B两点,两圆半径分别为6cm和8cm,弦AB的长为9.6cm,则两圆的连心线O1O2的长为【】A.11cm B.10cm C.9cm D.8cm试题3:在Rt△ABC中,∠A=90°,∠B=30°, AC=1,点O在BC上,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径为;∠MND的度数为。
评卷人得分试题4:【阅读材料】己知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切⊙O的半径为r.连接OA、OB、OC,△ABC 被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r∴(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC分别相切于D、E和F,己知AD=3,BD=2,求r的值.试题5:如图,已知⊙B与△ABD的边A D相切于点C,AC=,⊙B的半径为2,当⊙A与⊙B相切时,⊙A的半径是【】1 3 2或4 1或3试题6:如图,ABCD是边长为a的正方形,以A为圆心,AD为半径的圆弧与以CD为直径的半圆交于另一点P,过P作⊙A的切线分别交BC、CD于M、N两点,则= .试题7:如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E, AB=2cm.则图中阴影部分面积为cm2.试题8:如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AD于F,△OBD是等边三角形。
2015年全国各地中考数学试题压轴题解析汇编解答题.doc
2015年全国各地中考数学试题压轴题解析汇编解答题(1)1. (2015年广东9分)⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1)如题图1;若D是线段OP的中点,求∠BAC的度数;(2)如题图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如题图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】解:(1)∵AB为⊙O直径,点P是»BC的中点,∴PG⊥BC,即∠ODB=90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.2.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N 到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN 的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°.∴sin 15°=FCNC. 又∵NC =x ,sin 15°=624-,∴624-=FC x . ∴NE =DF =62224-+x . ∴点N 到AD 的距离为62224-+x cm .(3)∵NC =x ,sin 75°=FNNC,且sin 75°=624+∴624+=FN x ,∵PD =CP =2,∴PF =6224-+x . ∴16262116262(26)(22)(26)2(2)()2442244+--+=+-+--⨯-+y x x x x x x ·即22673222384---=++y x x .∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---.【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.3. (2015年广东深圳9分)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,,3,6cm OD cm BC AB ===开始的时候BD =1cm ,现在三角板以2cm/s 的速度向右移动. (1)当B 与O 重合的时候,求三角板运动的时间; (2)如图2,当AC 与半圆相切时,求AD ;(3)如图3,当AB 和DE 重合时,求证:2CF CG CE =⋅.【答案】解:(1)∵开始时,4BO cm =,三角板以2cm/s 的速度向右移动,∴当B 与O 重合的时候,三角板运动的时间为422/cms cm s=.(2)如答图1,设AC 与半圆相切于点H ,连接OH ,则OH AC ⊥.∵0,90AB BC ABC =∠= ,∴045A ∠=.又∵3OH OD cm ==,∴232AO OH ==.∴()323AD AO DO cm =-=-. (3)如答图2,连接EF ,∵OD OF =,∴ODF OFD ∠=∠.∵DF 是直径,∴090DFE ∠=. ∴090ODF DEF ∠+∠=. 又∵090DEC DEF CEF ∠=∠+∠=.∴ODF CEF ∠=∠. ∴CFG OFD ODF CEF ∠=∠=∠=∠. 又∵FCG ECF ∠=∠,∴CFG CEF ∆∆∽. ∴CF CE CG CF=,即2CF CG CE =⋅. 【考点】面动平移问题;等腰(直角)三角形的判定和性质;圆周角定理;相似三角形的判定和性质. 【分析】(1)直接根据“=路程时间速度”计算即可. (2)作辅助线“连接O 与切点H ”,构成等腰直角三角形求出AO 的长,从而由AO DO -求出AD的长.(3)作辅助线“连接EF ”,构成相似三角形CFG CEF ∆∆∽,得比例式即可得解.4.(2015年广东深圳9分)如图1,关于x 的二次函数2y x bx c =-++经过点(3,0)A - ,点(0,3)C ,点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上. (1)求抛物线的解析式;(2)DE 上是否存在点P 到AD 的距离与到x 轴的距离相等,若存在求出点P ,若不存在请说明理由; (3)如图2,DE 的左侧抛物线上是否存在点F ,使23FBC EBC S S ∆∆=,若存在求出点F 的坐标,若不存在请说明理由.【答案】解:(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++,得9303b c c --+=⎧⎨=⎩,解得23b c =-⎧⎨=⎩. ∴抛物线的解析式为223y x x =--+. (2)存在.∵()222314y x x x =--+=-++,∴2,4,25AE DE AD === .∴25sin 525AE ADE AD ∠===. 设()1,P p - ,当点P 在DAB ∠的角平分线时,如答图1,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-= , ∵PM PE =,∴()545p p -=,解得51p =-. ∴()1,51P -- . 当点P 在DAB ∠的外角平分线时,如答图2,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-=- , ∵PM PE =,∴()545p p -=-,解得51p =--. ∴()1,51P -- -.综上所述,DE 上存在点P 到AD 的距离与到x 轴的距离相等,点P 的坐标为()1,51--或()1,51-- -.(3)存在.假设存在点F ,使23FBC EBC S S ∆∆=, 设()2,23F f f f --+∵2,3BE OC == ,∴3EBC S ∆=. ∵23FBC EBC S S ∆∆=,∴92FBC S ∆=. 设CF 的解析式为y mx n =+,则2233fm n f f n ⎧+=--+⎨=⎩,解得23m f n =--⎧⎨=⎩.∴CF 的解析式为()23y f x =--+. 令0y =,得32x f =+,即CF 与x 轴的交点坐标为3,02Q f ⎛⎫ ⎪+⎝⎭. 若点F 在x 轴上方,如答图2,则BCF BCQ BFQ S S S ∆∆∆=-, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅-⋅-⋅--+ ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值).当1372f -=时,233715232f f ---+=.∴13733715,22F ⎛⎫-- ⎪ ⎪⎝⎭. 若点F 在x 轴下方,如答图3,则BCF BCQ BFQ S S S ∆∆∆=+, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅+⋅-⋅+- ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值). 当1372f -=时,23371523>02f f ---+=,不符合点F 在x 轴下方,舍去. 综上所述,DE 的左侧抛物线上存在点F ,使23FBC EBC S S ∆∆=,点F 的坐标为13733715,22⎛⎫-- ⎪ ⎪⎝⎭.【考点】二次函数综合题;待定系数法的应用;曲线上点的坐标与方程的关系;锐角三角函数定义;角平分线的性质;分类思想、转换思想和方程思想的应用.【分析】(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++即可求解.(2)根据角平分线上的点到角的两边距离相等的性质,分点P 在DAB ∠的角平分线和点P 在DAB ∠的外角平分线两种情况讨论即可.(3)由已知求出92FBC S ∆=,分点F 在x 轴上方和点F 在x 轴下方两种情况讨论,当点F 在x 轴上方时,BCF BCQ BFQ S S S ∆∆∆=-;当点F 在x 轴下方时,BCF BCQ BFQ S S S ∆∆∆=+,据此列方程求解.5. (2015年广东汕尾11分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+. ∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.6.(2015年广东汕尾10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,,∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =. ∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.7. (2015年广东广州14分)如图,四边形OMTN 中,OM =ON ,TM =TN ,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD 中,已知AB =AD =5,BC =CD ,BC >AB ,BD ,AC 为对角线,BD =8;①是否存在一个圆使得A ,B ,C ,D 四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由; ②过点B 作BF ⊥CD ,垂足为F ,BF 交AC 于点E ,连接DE . 当四边形ABED 为菱形时,求点F 到AB 的距离.【答案】解:(1)筝形的对角线互相垂直. 证明如下:如答图1,连接,MN OT ,在OMT ∆和ONT ∆中,∵OM ON TM TN OT OT =⎧⎪=⎨⎪=⎩,∴()OMT ONT SSS ∆∆≌.∴MOT NOT ∠=∠. 又∵OM =ON ,∴OT MN ⊥,即筝形的对角线互相垂直. (2)存在.由(1)知,AC BD ⊥,设,AC BD 相交于点M ,如答图2, ∵AB =AD =5, BD =8,∴4BM =.∴22534AM =-=. ∵A ,B ,C ,D 四点共圆,∴0180ABC ADC ∠+∠=. 又∵ABC ADC ∆∆≌,∴090ABC ADC ∠=∠=. ∴AC 即为所求圆的直径.∵090,ABC AMB BAC MAB ∠=∠=∠=∠ ,∴BAC MAB ∆∆∽.∴AB AM AC AB =,即535AC =,解得253AC =. ∴圆的半径为256.(3)∵四边形ABED 为菱形,∴5AB AD BE DE ====.∴03,4,,90AM ME BM MD BD AE BME ====⊥∠= .又∵0,90BF CD BFD ⊥∠= .∴090BME BFD ∠=∠=又∵MBE FBD ∠=∠,∴BME BFD ∆∆∽. ∴BE EM BD DF =,即538DF =,解得245DF =. 在Rt DEF ∆中,由勾股定理,得22E F D ED F=-, ∴22247555EF ⎛⎫=-= ⎪⎝⎭.∴325BF =. ∵//AB DE ,∴ABF DEF ∠=∠.如答图3,过点F 作FG AB ⊥于点G ,则FG 就是点F 到AB 的距离.∵090BGF EFD ∠=∠=,∴BGF EFD ∆∆∽.∴BF FG DE DF =,即3252455FG =,解得768125FG =. ∴点F 到AB 的距离为768125.【考点】新定义;全等三角形的判定和性质;等腰三角形的性质;勾股定理;圆内接四边形的性质;圆周角定理;相似三角形的判定和性质.【分析】(1)筝形的对角线互相垂直,利用SSS 证明OMT ONT ∆∆≌得到MOT NOT ∠=∠,从而根据等腰三角形三线合一的性质即可得出结论.(2)根据垂径定理和勾股定理求出AM 的长,证明BAC MAB ∆∆∽,由对应边成比例列式求解即可.(3)证明BME BFD ∆∆∽,求出245DF =,应用勾股定理求出75EF =,得到325BF =,作辅助线“过点F 作FG AB ⊥于点G ”构造相似三角形BGF EFD ∆∆∽,由对应边成比例列式求得FG 的长, FG 就是点F 到AB 的距离.8.(2015年广东广州10分)已知O 为坐标原点,抛物线21(0)y ax bx c a =++≠与x 轴相交于点1(,0)A x ,2(,0)B x .与y 轴交于点C ,且O ,C 两点之间的距离为3,12120,4x x x x ⋅<+= ,,点A ,C在直线23y x t =-+上.(1)求点C 的坐标;(2)当1y 随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线1y 向左平移(0)n n >个单位,记平移后y 随着x 的增大而增大的部分为P ,直线2y 向下平移n 个单位,当平移后的直线与P 有公共点时,求225n n -的最小值. 【答案】解:(1)令0x =,得1y c =,∴()0,C c .∵O ,C 两点之间的距离为3,∴3c =,解得3c =±. ∴点C 的坐标为()0,3 或()0,3 -. (2)∵120x x ⋅<,∴12,x x 异号.①若()0,3C ,把()0,3C 代入23y x t =-+得30t =+,即3t =. ∴233y x =-+.把()1,0A x 代入233y x =-+得1033x =-+,即11x =.∴()1,0A . ∵12,x x 异号,11>0x =,∴2<0x .∵124x x +=,∴214x +=,214x -=,23x =-.∴()3,0B - .把()1,0A ,()3,0B - 代入213y ax bx =++,得309330a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=-⎩.∴()2212314y x x x =--+=-++.∴当1x ≤-时,1y 随着x 的增大而增大.②若()0,3C -,把()0,3C -代入23y x t =-+得30t -=+,即3t =-. ∴233y x =--.把()1,0A x 代入233y x =--得1033x =--,即11x =-.∴()1,0A - . ∵12,x x 异号,11<0x =-,∴2>0x .∵124x x +=,∴214x -+=,214x +=,23x =.∴()3,0B .把()1,0A - ,()3,0B 代入213y ax bx =++,得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩.∴()2212314y x x x =--=--.∴当1x ≥时,1y 随着x 的增大而增大.综上所述,若()0,3C ,当1y 随着x 的增大而增大时,1x ≤-;若()0,3C -,当1y 随着x 的增大而增大时,1x ≥.(3)①若()0,3C ,则()2212314y x x x =--+=-++,233y x =-+,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+++,则当1x n ≤--时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =-+-. 要使平移后直线与P 有公共点,则当1x n =--时,34y y ≥,即()()2114313n n n n ---+++≥---+-,解得1n ≤-,与>0n 不符,舍去.②若()0,3C -,则()2212314y x x x =--=--,233y x =--,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+-,则当1x n ≥-时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =---. 要使平移后直线与P 有公共点,则当1x n =-时,43y y ≥, 即()()2313114n n n n ----≥---+-,解得1n ≥. 综上所述,1n ≥.∵2252525248n n n ⎛⎫-=-- ⎪⎝⎭,∴当54n =时,225n n -的最小值为258-. 【考点】二次函数综合题;线动平移问题;曲线上点的坐标与方程的关系;不等式和绝对值的性质;二次函数的最值;分类思想的应用.【分析】(1)一方面,由点C 在抛物线21(0)y ax bx c a =++≠得到()0,C c ,另一方面,由O ,C 两点之间的距离为3,得到3c =±,从而得到点C 的坐标.(2)分()0,3C 和()0,3C -两种情况讨论.(3)分()0,3C 和()0,3C -两种情况讨论得到n 的范围内1n ≥,从而根据二次函数最值原理即可求解.9. (2015年广东佛山10分)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数24y x x =-+刻画,斜坡可以用一次函数12y x =刻画. (1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连结抛物线的最高点P 与点O 、A 得△POA . 求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积,请直接写出点.....M 的坐标.【答案】解:(1)∵()()222444424y x x x x x =-+=--++=--+,∴点P 的坐标为()2,4 .(2)联立2412y x x y x⎧=-+⎪⎨=⎪⎩,解得00x y =⎧⎨=⎩或7274x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点A 的坐标为77,24⎛⎫ ⎪⎝⎭.(3)如答图1,作二次函数图象的对称轴交OA 于点B ,则点B 的坐标为()2,1 ,3BP =. ∴1172132322224POA OBP BAP S S S ∆∆⎛⎫=+=⨯⨯+⨯⨯-= ⎪⎝⎭V.(4)315,24⎛⎫⎪⎝⎭ . 【考点】二次函数的应用(实际问题);二次函数的性质;曲线上点的坐标与方程的关系;等高三角形面积的应用;待定系数法、转换思想和数形结合思想的应用. 【分析】(1)化为顶点式即可得二次函数图象的顶点坐标.(2)联立24y x x =-+和12y x =即可求出点A 的坐标. (3)作辅助线“作二次函数图象的对称轴交OA 于点B ”,将POA S V 转化为OBP S ∆和BAP S ∆之和. (4)作辅助线“过点P 作//PM OA 交抛物线于另一点M ”,则△MOA 的面积等于△POA 的面积,设直线PM 的解析式为12y x m =+, 将()2,4P 代入,得14232m m =⋅+⇒=, ∴直线PM 的解析式为132y x =+.联立24132y x x y x ⎧=-+⎪⎨=+⎪⎩,解得,24x y =⎧⎨=⎩或32154x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点M 的坐标为315,24⎛⎫⎪⎝⎭ . 10.(2015年广东佛山11分)如图,在ABCD Y 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE EF FD ==. 连结BE 、BF ,使它们分别与AO 相交于点G 、H . (1)求 : EG BG 的值; (2)求证:AG OG =;(3)设 ,AG a GH b HO c ===,,求 : : a b c 的值.【答案】解:(1)∵AE EF FD ==,∴13AE AD =. ∵四边形ABCD 是平行四边形,∴//AD BC .∴AEG CBG ∆∆∽.∴13EG AE BG AD ==,即1: 3EG BG =. (2)证明:由(1)AEG CBG ∆∆∽,∴13AG CG =.∵四边形ABCD 是平行四边形,∴AO OC =.∴2CG AO AG =-. ∴123AG AO AG =-,即12AG AO =.∴AG OG =.(3)如答图,过点F 作//FM AC 交BD 于点M ,∵AE EF FD ==,∴13DM DF DO DA ==.∴16DM BD =,56BM BD =. ∵12BO BD =.∴35BO BM =.∵//FM AC ,∴BOH BMF ∆∆∽.∴35HO BO FM BM ==,即35HO FM =. ∵//FM AC ,∴DFM DAO ∆∆∽.∴13FM DF AO DA ==,即13FM AO =.∴33115535HO FM AO AO ==⋅=.由(2)得12AG AO =,∴1132510GH AO AG HO AO AO AO AO =--=--=.∵ ,AG a GH b HO c ===,, ∴131532: : : : : : 5 : 3 : 22105101010a b c AO AO AO ===. 【考点】平行四边形的综合题;平行四边形的性质;平行的性质;相似三角形的判定和性质;数形结合思想的应用.【分析】(1)由平行四边形对边平行的性质可得AEG CBG ∆∆∽,从而得出结果.(2)由(1)AEG CBG ∆∆∽得到13AG CG =,从而根据平行四边形对角线互相平分的性质得出结论. (3)作辅助线“过点F 作//FM AC 交BD 于点M ”,构造两组相似三角形BOH BMF ∆∆∽和BOH BMF ∆∆∽,通过相似三角形对应边成比例的性质,求出AG GH HO 、、与AO 的关系即可求得 : : a b c 的值.11. (2015年广东梅州10分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+.∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.12.(2015年广东梅州10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,, ∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =.∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.13. (2015年浙江衢州10分)高铁的开通,给衢州市民出行带来了极大的方便. 五一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘高铁从衢州出发,先到杭州火车东站,然后乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园.他们离开衢州的距离y (千米)与乘车时间t (小时)的关系如下图所示.请结合图象解决下面问题: (1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?【答案】解:(1)∵24024021=-, ∴高铁的平均速度是每小时240千米. (2)设乐乐乘私家车路线的解析式为y kt b =+,∵当1t =时,0y =;当2t =时,240y =,∴02240k b k b +=⎧⎨+=⎩,解得240240k b =⎧⎨=-⎩.∴乐乐乘私家车路线的解析式为240240y t =-.∴当 1.5t =时,120y =.设颖颖乘高铁路线的解析式为1y k t =,∴1120 1.5k =,解得180k =.∴颖颖乘高铁路线的解析式为80y t =. ∴当2t =时,160y =.∵21616056-=,∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米. (3)把216y =代入80y t =得 2.7t =.∵182.7 2.460-=(小时),216902.4=(千米), ∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.【考点】一次函数的图象和应用;待定系数法的应用;直线上点的坐标与方程的关系.. 【分析】(1)由图象提供的信息,根据“路程÷时间=速度”计算即可.(2)先求乐乐乘私家车路线的解析式,得到 1.5t =时的函数值,即可求得颖颖乘高铁路线的解析式,得到2t =时,颖颖乘高铁街的路程,从而得到当颖颖到达杭州火车东站时,乐乐距离游乐园的距离.(3)求得私家车按原速度到达游乐园的时间,得到提前18分钟的实际用时,即可得到乐乐要提前18分钟到达游乐园,私家车必须达到的速度.14. (2015年浙江衢州12分)如图,在ABC ∆中,275,9,2ABC AB AC S ∆===,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时, P 、Q 两点同时停止运动. 以PQ 为边作正方形PQEF (P Q E F 、、、按逆时针排序),以CQ 为边在AC 上方作正方形QCGH . (1)求tan A 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.【答案】解:(1)如答图1,过点B 作BM AC ⊥于点M ,∵279,2ABC AC S ∆== ,12ABC S AC BM ∆=⋅⋅,∴271922BM =⋅⋅,解得,3BM =. 又∵5,AB = ∴根据勾股定理,得2222534AM AB BM =-=-=.∴3tan 4BM A AM ==.(2)存在.如答图2,过点P 作PN AC ⊥于点N , 经过时间t ,5AP CQ t == ∵3tan 4A =, ∴4,3AN t PN t == .∴99QN AC AN CQ t =--=-.根据勾股定理,得,()()2222223999016281PQ PN NQ t t t t =+=+-=-+,∴22990162810<<5S PQ t t t ⎛⎫==-+ ⎪⎝⎭. ∵90>0a =,且1629229010b a --=-=⨯在t 的取值范围内, ∴2244908116281449010ac b S a -⨯⨯-===⨯最小值.∴S 存在最小值?若存在,这个最小值是8110. (3)当914t =或911或1或97秒时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上.【考点】双动点问题;勾股定理;锐角三角函数定义;二次函数最值的应用;分类思想的应用.【分析】(1)作辅助线“过点B 作BM AC ⊥于点M ”构造直角三角形ABM ,根据已知求出BM 和应用AM 的长,即可根据正切函数定义求出3tan 4BM A AM ==. (2)根据2S PQ =求得S 关于t 的二次函数,应用研究二次函数的最值原理求解即可.(3)分四种情况讨论:①当点E 在HG 上时,如答图3,1914t =;②当点F 在GH 上时,如答图4,2911t =;③当点P 在QH 上(或点E 在QC 上)时,如答图5,31t =;④当点F 在CG 上时,如答图6,197t =.15. (2015年浙江绍兴12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【答案】解:(1)证明:如答图1,正方形ABCD和正方形AEFG中,∵GF=EF,AG=AE,AD=AB,∴DG=BE.又∵∠DGF=∠BEF=90°,∴△DGF≌△BEF(SAS).∴DF=BF.(2)反例图形如答图2:(3)不唯一,如点F在正方形ABCD内,或α<180°.【考点】开放型;正方形的性质;原命题和逆命题;真命题和假命题【分析】(1)由正方形的性质,通过SAS证明△DGF≌△BEF,从而得到结论.(2)(1)中命题的逆命题是:若DF=BF,则α=0°,它是假命题的反例是α=180°的情况.(3)限制点F范围或α的范围即可.16. (2015年浙江绍兴14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点. (1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F. 若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.【答案】解:(1)①∵四边形OABC为矩形,OA=4,OC=2,∴点B(4,2).②如答图1,过点P作PD⊥OA于点D,∵BQ:BP=1:2,点B1是点B关于PQ的对称点,∴∠PDB1=∠PB1Q=∠B1AQ=90°.∴∠PB 1D=∠B 1QA. ∴△PB 1D ∽△B 1QA. ∴111PB PD 2AB B Q==. ∴B 1A=1.∴OB 1=3,即B 1(3,0).(2)∵四边形OABC 为平行四边形,OA=4,OC=2,且OC ⊥AC ,∴∠OAC=30°.∴点C ()13 ,. ∵B 1E :B 1F=1:3,∴点B 1不与点E 、F 重合,也不在线段EF 的延长线上.①当点B 1在线段FE 的延长线上时,如答图2,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B 1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a . ∴CF=2323-a . ∴FE=4343-a ,B 1E=2323-a . ∴B 1G= B 1E+EF+FG=2343324333⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭a a a m . ∴36355=-+a m , 即点B 1的纵坐标为36355-+m ,m 的取值范围为17101777≤≤+m . ②当点B 1在线段EF (点E 、F 除外)上时,如答图3,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a ∴CF=2323-a . ∴FE=4343-a ,B 1F=34FE=33-a . ∴B 1G= B 1F +FG=()3333-+=a a m . ∴33322=-+a m , 即点B 1的纵坐标为33322-+m ,m 的取值范围为1537≤≤m . 【考点】轴对称问题;矩形和平行四边形的性质;轴对称的性质;相似三角形的判定和性质;含30度直角三角形的性质;点的坐标;分类思想的应用.【分析】(1)①直接根据矩形的性质得到点B 的坐标.②过点P 作PD ⊥OA 于点D ,证明△PB 1D ∽△B 1QA ,得到B 1A 的长,从而得到OB 1的长,进而得到点B 1的坐标.(2)分点B 1在线段FE 的延长线上和点B 1在线段EF (点E 、F 除外)上两种情况讨论即可.17. (2015年浙江台州12分)如图,在多边形ABCDE 中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E 作EF ∥CB 交AB 于点F ,FB=1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP=x ,⋅PO OQ =y .(1)①延长BC 交ED 于点M ,则MD = ▲ ,DC = ▲②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围.【答案】解:(1)①2;1.②∵=AP x ,∴2=-EP x . 在V Rt AEF 中,4tan 22∠===AF AEF AE , ∴tan 2(2)24=⋅∠=⨯-=-+PO PE AEF x x ∵90∠=∠=︒A AED ,∴AB DE P . ∵PQ AB P ,∴PQ ED P . 当01<≤x 时,如答图1所示, ∵EF CB P ,PQ AB P ,∴四边形OFBQ 是平行四边形.∴1==OQ FB . ∴(24)124=⋅=-+⨯=-+y PO OQ x x . 当12<≤x 时,如答图2所示, ∵90∠=∠=︒AED D ,∴AE CD P . ∵PQ ED P ,∴四边形DEPQ 是矩形. ∴3(24)21=--+=-OQ x x .∴2(24)(21)4104=⋅=-+⋅-=-+-y PO OQ x x x x .∴()()22401410412-+<≤⎧⎪=⎨-+-<≤⎪⎩x x y x x x (2)∵当()102≤≤>a x a 时,24y x =-+,∴42yx -=.由12a x ≤≤得,4122y a -≤≤,解得342y a ≤≤-.∵当1(0)2a x a ≤≤>时,96a y b ≤≤,∴93642a b a =⎧⎨=-⎩,解得1359a b ⎧=⎪⎪⎨⎪=⎪⎩.∴15,39a b ==. (3)15524+≤≤x . 【考点】由实际问题列函数关系式(几何问题);平行四边形、矩形的判定和性质;相似三角形的判定和性质;方程组和不等式组的应用;分类思想和数形结合思想的应用. 【分析】(1)①如答图1,延长BC 交ED 于点M ,则∵∠A =∠AED =90°,∴ED ∥AB .∵EF ∥CB ,∴四边形FBM E 是平行四边形. ∴EM =FB =1. ∵ED =3,∴MD =2. ∵△AFE ∽△DEC ,且21512==-AE AF ,∴DC =1. ②分01<≤x 和12<≤x 两种情况求y 关于x 的函数解析式. (2)由(1)得到的24y x =-+,化为42yx -=代入12a x ≤≤,解出342y a ≤≤-,结合已知条件得到关于a ,b 的方程组求解即可.(3)y 关于x 的函数图象如答图3,当13y ≤≤时,15524+≤≤x.18. (2015年浙江台州14分)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3,求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点;(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND 和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究∆AMF S ,∆BEN S 和四边形MNHG S 的数量关系,并说明理由.【答案】解:(1)∵点M ,N 是线段AB 的勾股分割点, AM =2,MN =3,∴若MN 为斜边,则222=+MN AM BN ,即22232=+BN ,解得5=BN . 若BN 为斜边,则222=+BN AM MN ,即22223=+BN ,解得13=BN . ∴BN 的长为5或13.(2)证明:∵点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,∴222=+EC DE BD .∵在△ABC 中,FG 是中位线,AD ,AE 分别交FG 于点M ,N , ∴F M 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线. ∴BD =2FM ,DE =2MN ,EC =2NG .∴()()()222222=+NG MN FM ,即222444=+NG MN FM . ∴222=+NG MN FM .∴点M ,N 是线段FG 的勾股分割点. (3)如答图1,C ,D 是线段AB 的勾股分割点.QPNM E(4)+=△△四边形AMF BEN MNHG S S S .理由如下:设=AM a ,=BN b ,=MN c , ∵H 是DN 的中点,∴12==DH HN c . ∵△MND ,△BNE 均为等边三角形,∴60∠=∠=︒D DNE .∵∠=∠DHG NHE ,∴△DGH ≌△NEH .∴==DG EN b .∴=-MG c b . ∵∥GM EN ,∴△AGM ∽△AEN . ∴-=+c b ab a c.∴22=-+c ab ac bc . ∵点M ,N 是线段AB 的勾股分割点,∴222=+c a b .∴2()()-=-a b b a c ,又∵-≠b a c .∴=a b .在△DGH 和△CAF 中,∠=∠D C ,=DG CA ,∠=∠DGH CAF , ∴△DGH ≌△CAF . ∴=△△DGH CAF S S .∵222=+c a b ,∴222333444=+c a b . ∴=+△△△DMN ACM ENB S S S .∵=+△△四边形DMN DGH MNHG S S S ,=+△△△ACM CAF AMF S S S , ∴+=△△四边形AMF BEN MNHG S S S .【考点】新定义和阅读理解型问题;开放型和探究型问题;勾股定理;三角形中位线定理;尺规作图(复杂作图);等边三角形的性质;全等、相似三角形的判定和性质;分类思想和数形结合思想的应用. 【分析】(1)根据定义,分MN 为斜边和BN 为斜边两种情况求解即可.(2)判断FM 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线后代入222=+EC DE BD 即可证明结论.(3)①过点C 作AB 的垂线MN ,②在MN 截取CE =CA ;③连接BE ,作BE 的垂直平分线PQ 交AB 于点D . 则点C ,D 是线段AB 的勾股分割点.(作法不唯一)(4)首先根据全等、相似三角形的判定和性质证明△AMC 和△NBM 是全等的等边三角形,再证明+=△△四边形AMF BEN MNHG S S S .19. (2015年浙江温州12分)如图,抛物线x x y 62+-=交x 轴正半轴于点A ,顶点为M ,对称轴NB 交x 轴于点B ,过点C (2,0)作射线CD 交MB 于点D (D 在x 轴上方),OE ∥CD 交MB 于点E ,EF ∥x 轴交CD 于点F ,作直线MF. (1)求点A ,M 的坐标;(2)当BD 为何值时,点F 恰好落在该抛物线上? (3)当BD=1时,①求直线MF 的解析式,并判断点A 是否落在该直线上;②延长OE 交FM 于点G ,取CF 中点P ,连结PG ,△FPG ,四边形DEGP ,四边形OCDE 的面积分别记为S 1,S 2,S 3,则S 1:S 2:S 3= ▲。
(完整word版)中考数学压轴题精选及答案(整理版)
2015年全国各地中考数学压轴题精选1、(黄石市2015年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线CB 与⊙1O 交于另一点D 。
(1)如图(8),若AC 是⊙2O 的直径,求证:AC CD =;(2)如图(9),若C 是⊙1O 外一点,求证:1O CAD ⊥;(3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。
2、(黄石市2015年)(本小题满分10分)已知二次函数2248y x mx m =-+-(1)当2x ≤时,函数值y 随x 的增大而减小,求m 的取值范围。
(2)以抛物线2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接正三角形AMN (M ,N 两点在抛物线上),请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(3)若抛物线2248y x mx m =-+-与x轴交点的横坐标均为整数,求整数m 的值。
3、(2015年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0),与x 轴相交于点A (5,0),过点A 的直线AB 与y 轴的正半轴交于点B ,与⊙P 交于点C .(1)已知AC=3,求点B的坐标; (4分)(2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数xky =的图象经过点1O ,求k 的值(用含a 的代数式表示).4、庆市潼南县2015年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物线的顶点为D . (1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由.第3题图χyGFE DCBA(第6题)5、苏省宿迁市2015年)(本题满分10分)如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =x 6(x >0)图象上的任意一点,以P 为圆心,PO 为半径的圆与x 、y 轴分别交于点A 、B .(1)判断P 是否在线段AB 上,并说明理由; (2)求△AOB 的面积; (3)Q 是反比例函数y =x6(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO 半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB .求证:AN ∥MB .6、苏省宿迁市2015年)(本题满分12分)如图,在Rt △ABC 中,∠B =90°,AB =1,BC =21,以点C 为圆心,CB 为半径的弧交CA 于点D ;以点A 为圆心,AD 为半径的弧交AB 于点E . (1)求AE 的长度;(2)分别以点A 、E 为圆心,AB 长为半径画弧,两弧交于 点F (F 与C 在AB 两侧),连接AF 、EF ,设EF 交弧DE 所 在的圆于点G ,连接AG ,试猜想∠EAG 的大小,并说明理由.E7、(11年广东省)10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.题8图(1)BHF A (D)GCEC (E )B FA (D )题8图(2)8、{1年广东省)21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2) (1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.9、11年凉山州)如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。
中考数学18 圆的基本性质和圆的有关位置关系(含解析)新人教版
专题18 圆基本性质和圆有关位置关系学校:___________姓名:___________班级:___________1.【辽宁阜新2015年中考数学试卷】如图,点A,B,C是⊙O上三点,已知∠AOB=100°,那么∠ACB度数是()A.30° B.40° C.50° D.60°【【答案】】C.【【分析】】考点:圆周角定理.2.【湖北襄阳2015年中考数学试卷】点O是△ABC外心,若∠BOC=80°,则∠BAC度数为()A.40° B.100° C.40°或140° D.40°或100°[#*&@^]【【答案】】C.【【分析】】 [*#%&@]试题分析:如图所示:∵O是△ABC外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC度数为:40°或140°.故选C. [%*#@&]考点:1.三角形外接圆与外心;2.圆周角定理;3.分类讨论.3.【2015届浙江省杭州市5月中考模拟】如图,A、D是⊙O上两个点,BC是直径,若∠D=35°,则∠OAC度数是()A.35° B.55° C.65° D.70°【【答案】】B.【【分析】】 [#%&^@]考点:圆周角定理.4.【2015届湖南省邵阳市邵阳县中考三模】如图,⊙O是△ABC外接圆,AD是⊙O直径,EA是⊙O切线.若∠EAC=120°,则∠ABC度数是()A.80° B.70° C.60° D.50°【【答案】】C.【【分析】】试题【分析】:∵EA是⊙O切线,AD是⊙O直径, [&%#~^]∴∠EAD=90°,∵∠EAC=120°,∴∠DAC=∠EAC-∠EAD=30°,∵AD是⊙O直径,∴∠ACD=90°,∴∠ADC=180°-∠A CD-∠DAC=60°, [%&~@*]∴∠ABC=∠ADC=60°(圆周角定理),故选:C.考点:切线性质.5.【辽宁沈阳2015年中考数学试题】如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB= cm时,BC与⊙A相切.[*#&^@]【【答案】】6.【【分析】】考点:切线判定.6.【黑龙江牡丹江2015年中考数学试题】如图,AB是⊙O直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .[%#@~*]【【答案】】4-7.【【分析】】试题分析: 连接OC ,如图:∵AB=8,CD=6,∴根据垂径定理(垂直于弦直径平分弦并且平分弦所对弧)得出CE=ED=12CD=3,∴OC=OB=12AB=4,在Rt △OEC 中,由勾股定理求出OE=2234 =7,∴BE=OB-OE=4-7.考点:1.垂径定理;2.勾股定理.7.【2015届湖北省黄冈市启黄中学中考模拟】如图所示,经过B (2,0)、C (6,0)两点⊙H 与y 轴负半轴相切于点A ,双曲线y=xk 经过圆心H ,则k= .【【答案】】﹣83. [&^%#*]【【分析】】[^&@*%]考点:1.切线性质;2.反比例函数图象上点坐标特征.8.【2015届山东省枣庄市滕州市中考三模】如图,在Rt△AOB中,OA=OB=4,⊙O半径为1,点P是AB边上动点,过点P作⊙O一条切线PQ(点Q为切点),则线段PQ长度最小值为. [~^%&#]【【答案】】7. [*~^%@]【【分析】】考点:切线性质.9.【辽宁盘锦2015年中考数学试题】如图1,AB为⊙O直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为P,过点B直线与线段AD延长线交于点F,且∠F=∠ABC. [%#*&^](1)若CD=23,BP=4,求⊙O半径;(2)求证:直线BF是⊙O切线;(3)当点P与点O重合时,过点A作⊙O切线交线段BC延长线于点E,在其它条件不变情况下,判断四边形AEBF是什么特殊四边形?请在图2中补全图象并证明你结论. [^@&~#]【【答案】】(1)198;(2)证明见【分析】;(3)四边形AEBF是平行四边形,证明见【分析】.【【分析】】(2)∵∠A=∠C,∠F=∠ABC,∴△PBC∽△BFA,∴∠ABF=∠CPB,∵CD⊥AB,∴∠ABF=∠CPB=90°,∴直线BF是⊙O切线;(3)四边形AEBF是平行四边形;理由: [*&#@%]如图2所示:∵CD⊥AB,垂足为P,∴当点P与点O重合时,CD=AB,∴OC=OD,∵AE是⊙O切线,∴BA⊥AE,∵CD⊥AB,∴DC∥AE,∵AO=OB,∴OC是△ABE中位线,∴AE=2OC,∵∠D=∠ABC,∠F=∠ABC,∴∠D=∠F,∴CD∥BF,∵AE∥BF,∵OA=OB ,∴OD 是△ABF 中位线,∴BF=2OD ,∴AE=BF ,∴四边形AEBF 是平行四边形.考点:1.圆综合题;2.三角形中位线定理;3.平行四边形判定;4.综合题.10.【2015届浙江省宁波市江北区中考模拟】已知:如图,△ABC 中,∠BAC=90°,点D 在BC 边上,且BD=BA ,过点B 画AD 垂线交AC 于点O ,以O 为圆心,AO 为半径画圆.(1)求证:BC 是⊙O 切线;(2)若⊙O 半径为8,tan ∠C=34,求线段AB 长,sin ∠ADB 值. 【【答案】】(1)证明见【分析】;(2)10103. [#&%^~] 【【分析】】试题【分析】:(1)连接OD,如图:∵BA=BD,BO⊥AD(已知),∴∠ABO=∠DBO(等腰三角形顶角三线合一),在△ABO 和△DBO中,根据边角边判定△ABO≌△DBO,∴OD=OA.,∵OA为半径,∴OD也为半径,∴∠ODB=∠OAB=90°,∴BD⊥OD,∴BC是⊙O切线;考点:1.切线判定;2.三角形全等判定和性质;3.锐角三角函数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题18 静态几何之圆问题一、选择题1. (2014年甘肃天水4分)如图,是某公园的一角,∠AOB=90°,AB 的半径OA 长是6米,点C 是OA 的中点,点D 在AB 上,CD∥OB,则图中草坪区(阴影部分)的面积是【 】A.3⎛+⎝π米2 B. 34⎛+ ⎝π米2 C. (3+π米2 D. 34⎛+ ⎝π米22. (2014年广东佛山3分)如图,AC⊥BC,AC=BC=4,以BC 为直径作半圆,圆心为O .以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是 ▲ .3. (2014年广东珠海3分)如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB=20°,则∠AOD 等于【 】A .160° B.150° C.140° D.120°4. (2014年黑龙江牡丹江农垦3分)如图,AB 是⊙O 的直径,弦CD⊥AB,∠CDB=30°,CD=,则S 阴影=【 】A. πB. 2πC. 23π D. 23π5. (2014年湖北江汉油田、潜江、天门、仙桃3分)如图,B,C,D是半径为6的⊙O上的三点,已知»BC的长为2π,且OD∥BC,则BD的长为【】A. 6 C. 126. (2014年江苏淮安3分)如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为【】A. 3πB. 3C.6πD. 67. (2014年辽宁大连3分)一个圆锥的高为4cm,底面圆的半径为3cm,则这个圆锥的侧面积为【】A. 12πcm2B. 15πcm2C. 20πcm2D. 30πcm28. (2014年辽宁丹东3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为【】A .122π+B .14π-C .142π+D .142π- 9. (2014年四川成都3分)在圆心角为120°的扇形AOB 中,半径OA=6cm ,则扇形AOB 的面积是【 】(A )π62cm (B )π82cm (C )π122cm (D )π242cm10.(2014年四川甘孜4分)如图,圆锥模具的母线长为10cm ,底面半径为5cm ,则这个圆锥模具的侧面积是【 】A. 10πcm2B. 50πcm2C. 100πcm2D. 150πcm 211.(2014年四川凉山4分)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB⊥CD,垂足为M ,且AB=8cm ,则AC 的长为【 】A. B. C. 或 D.5或 12.(2014年四川绵阳3分)如图,AB 是半圆O 的直径,C 是半圆O 上一点,OQ⊥BC 于点Q ,过点B 作半圆O 的切线,交OQ 的延长线于点P ,PA 交半圆O 于R ,则下列等式中正确的是【 】A .AQ AC AP AB = B .AC OQ OR AB = C .AQ BP AB BC = D .AC ORAP OP=13.(2014年四川宜宾3分)已知⊙O 的半径r=3,设圆心O 到一条直线的距离为d ,圆上到这条直线的距离为2的点的个数为m ,给出下列命题: ①若d >5,则m=0;②若d=5,则m=1;③若1<d <5,则m=3;④若d=1,则m=2;⑤若d <1,则m=4. 其中正确命题的个数是【 】A .1B .2C .3D .414.(2013年湖南娄底3分)如图,⊙O 1,⊙O 2、相交于A 、B 两点,两圆半径分别为6cm 和8cm ,两圆的连心线O 1O 2的长为10cm ,则弦AB 的长为【 】A .4.8cmB .9.6cmC .5.6cmD .9.4cm15.(2013年湖北武汉3分)如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点,若∠CED=x°,∠ECD=y°,⊙B 的半径为R ,则劣弧DE 的长度是【 】A .()90x R90π- B .()90y R90π- C .()180x R180π-D .()90y R90π-16.(2013年湖北襄阳3分)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E 、B ,E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为【 】A .9πB C 32π- D 23π-17.(2013年浙江温州4分)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C作BAC ,如图所示,若AB=4,AC=2,12S 4S π-=,则34S S -的值是【 】A. 429πB. 423πC. 411πD. 45π18.(2013年山东济宁3分)如图,以等边三角形ABC 的BC 边为直径画半圆,分别交AB 、AC 于点E 、D ,DF 是圆的切线,过点F 作BC 的垂线交BC 于点G .若AF 的长为2,则FG 的长为【 】A .4B .C .6D .19.(2013年江苏淮安3分)如图,点A 、B 、C 是⊙O 上的三点,若∠OBC=50°,则∠A 的度数是【 】A .40°B .50°C .80°D .100°20.(2013年江苏南通3分)如图,R t△ABC 内接于⊙O ,BC 为直径,AB=4,AC=3,D 是AB的中点,CD与AB的交点为E,则CEDE等于【】A.4 B.3.5 C.3 D.2.521.(2013年贵州安顺3分)如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于【】A.100°B.80°C.50°D.40°22. (2013年贵州毕节3分)在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为【】A.2,22.5°B.3,30°C.3,22.5°D.2,30°23.(2013年四川内江3分)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.cm B.C.D.4 cm24.(2013年云南红河3分)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是【】C.∠ADB=∠ACB D.∠DAB=∠CBA A.AD=DC B.AD DC25.(2013年四川成都3分)如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为【】A.40°B.50°C.80°D.100°26. (2012上海市4分)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是【】A.外离B.相切C.相交D.内含27. (2012广东珠海3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为【】A. 30°B.45° C .60° D.90°28. (2012湖南岳阳3分)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,AD与CD相交于D,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是【】A.①②⑤B.②③④C.③④⑤D.①④⑤29. (2012湖南湘潭3分)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=【】A.20°B.40°C.50°D.80°,则下30. (2012河南省3分)如图,已知AB为⊙O的直径,AD切⊙O于点A, EC CB列结论不一定正确的是【】A.BA⊥DA B.OC∥AE C.∠COE=2∠CAE D.OD⊥AC二、填空题1. (2014年福建龙岩3分)如图,∠AOB=60°,O1,O2,O3…是∠AOB平分线上的点,其中OO1=2,若O1,O2,O3…分别以为圆心作圆,使得⊙O1,⊙O2,⊙O3…均与∠AOB的两边相切,且相邻两圆相外切,则⊙O2014的面积是▲ (结果保留π)2. (2014年福建南平3分)如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.①四边形AO1BO2为菱形;②点D的横坐标是点O2的横坐标的两倍;③∠ADB=60°;④△BCD的外接圆的圆心是线段O1O2的中点.以上结论正确的是▲ .(写出所有正确结论的序号)3. (2014年福建泉州4分)米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为▲ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为▲ 米.4. (2014年广西来宾3分)如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=▲ 度.5. (2014年湖南湘西3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=6cm,则OE= ▲ cm.6. (2014年山东威海3分)如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是▲ .7. (2014年四川广安3分)如图,在直角梯形ABCD中,∠ABC=90°,上底AD,以对角线BD为直径的⊙O与CD切于点D,与BC交于点E,且∠ABD为30°.则图中阴影部分的面积为▲ (不取近似值).8.(2014年浙江杭州4分)点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H,若BH ,则∠ABC所对的弧长等于▲ (长度单位).9.(2014年浙江宁波4分)如图,半径为6cm的⊙O中,C,D为直径AB的三等分点,点E,F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连结AE,BF,则图中两个阴影部分的面积为▲ cm210.(2014年浙江温州5分)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=14 AB,⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相交于另一点F,且EG:. 当边AD或BC所在的直线与⊙O相切时,AB的长是▲ .11.(2013年湖南郴州3分)圆锥的侧面积为6πcm2,底面圆的半径为2cm,则这个圆锥的母线长为▲cm.12. (2013年江苏扬州3分)如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N 为AB上两点,且∠MEB=∠NFB=60°,则EM+FN= ▲ .13.(2013年福建漳州4分)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为▲厘米.14. (2012广东珠海4分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=▲.15. (2012福建厦门4分)如图,已知∠ABC=90°,AB =πr ,BC =πr2,半径为r 的⊙O从点A 出发,沿A→B→C 方向滚动到点C 时停止.请你根据题意,在图上画出圆心..O 运动路径的示意图;圆心O 运动的路程是 ▲ .16. (2012四川宜宾3分)如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD 的中点,弦CE ⊥AB 于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF 、BC 于点P 、Q ,连接AC .给出下列结论:①∠BAD=∠ABC ;②GP=GD ;③点P 是△ACQ 的外心;④AP •AD=CQ •CB . 其中正确的是 ▲(写出所有正确结论的序号).17. (2012山东日照4分)如图,过A 、C 、D 三点的圆的圆心为E ,过B 、F 、E 三点的圆的圆心为D ,如果∠A=63°,那么∠θ=▲ .18. (2012青海省2分)如图,在Rt △ABC 中,∠C=90°,AC=4,BC=2,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 ▲ (结果保留π).三、解答题1. (2014年福建厦门10分)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2. (2014年甘肃白银、定西、平凉、酒泉、临夏10分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.3. (2014年广东省9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π).(2)求证:OD=OE;(3)求证:PF是⊙O的切线.4. (2014年广西崇左10分)如图,BD为⊙O的直径,AB=AC,AD交BC于点E,AE=1,ED=2.(1)求证:∠ABC=∠D;(2)求AB的长;(3)延长DB到F,使得BF=BO,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.5. (2014年广西桂林10分)如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥A D于E,交AB于F,交⊙O于G。