天津理工大学概率论与数理统计第六章习题答案详解
概率论与数理统计第六章课后习题及参考答案

概率论与数理统计第六章课后习题及参考答案概率论与数理统计第六章课后习题及参考答案1.已知总体X ~),(2σµN ,其中2σ已知,⽽µ未知,设1X ,2X ,3X 是取⾃总体X 的样本.试问下⾯哪些是统计量?(1)321X X X ++;(2)µ31-X ;(3)222σ+X ;(4)21σµ++X ;(5)},,max{321X X X ;(6)σ221++X X ;(7)∑=3122i i X σ;(8)2µ-X .解:(1)(3)(4)(5)(6)(7)是,(2)(8)不是.2.求下列各组样本值的平均值和样本差.(1)18,20,19,22,20,21,19,19,20,21;(2)54,67,68,78,70,66,67,70.解:(1)9.19)21201919212022192018(101101101=+++++++++==∑=i i x x ;43.1)(9110122=-=∑=i i x x s .(2)5.67)7067667078686754(1018181=+++++++==∑=i i x x ;018.292)(718122=-=∑=i i x x s .3.(1)设总体X ~)1,0(N ,则2X ~)1(2χ.(2)设随机变量F ~),(21n n F ,则F1~),(12n n F .(3)设总体X ~),(2σµN ,则X ~),(2n N σµ,22)1(S n σ-~)1(2-n χ,nS X /µ-~)1(-n t .(4)设总体X ~)10(2χ,Y ~)15(2χ,且X 与Y 相互独⽴,则=+)(Y X E 25,=+)(Y X D 50.4.设随机变量X 与Y 都服从标准正态分布,则(C)A .Y X +服从正态分布B .22Y X +服从2χ分布C .2X 与2Y 均服从2χ分布D .22YX 服从F 分布5.在总体X ~)3.6,52(2N 中随机抽取⼀容量为36的样本,求样本平均值X 落在8.50到8.53之间的概率.解:因为X ~)3.6,52(2N ,即52=µ,223.6=σ,因为36=n ,22205.1363.6==n σ,所以X ~)05.1,52(2N .由此可得)8.538.50(≤≤X P 05.1528.50()05.1528.53(-Φ--Φ=8302.0)1429.1()7143.1(=-Φ-Φ=.6.设总体X ~)1,0(N ,1X ,2X ,…,10X 为总体的⼀个样本,求:(1))99.15(1012>∑=i i X P ;(2)写出1X ,2X ,…,10X 的联合概率密度函数;(3)写出X 的概率密度.解:(1)由题可知∑==1012i i X X ~)10(2χ,查2χ分布表有99.15)10(210.0=χ,可得10.0=α,即10.0)99.15(1012=>∑=i i X P .(2)1X ,2X ,…,10X 相互独⽴,则联合概率密度函数为}exp{321}21exp{21),,,(1012510121021∑∏==-=-=i i i i x x x x x f ππ.(3)X Y =~)1.0,0(N ,所以有2251.02)0(e 5e1.021)(y y y f -?--==ππ.7.设总体X ~)1,0(N ,1X ,2X ,…,5X 为总体的⼀个样本.确定常数c ,使25242321)(XX X X X c Y +++=~)3(t .解:因为i X ~)1,0(N ,5,,2,1 =i ,所以21X X +~)2,0(N ,)(2121X X +~)1,0(N ,252423X X X ++~)3(2χ,因为25242321252423212632XX X X X X X X X X +++=+++~)3(t ,所以有23=c .8.设1X ,2X ,3X ,4X 是来⾃正态总体)4,0(N 的样本.已知243221)43()2(X X b X X a Y -+-=为服从⾃由度为2的2χ分布,求a ,b 的值.解:由题可知i X ~)4,0(N ,4,3,2,1=i ,故有0)2(21=-X X E ,20)2(21=-X X D ,所以212X X -~)20,0(N .同理4343X X -~)100,0(N .⽽20)2(221X X -~)1(2χ,100)43(221X X -~)1(2χ,故有100)43(20)2(243221X X X X -+-~)2(2χ,⽐较可知201=a ,1001=b .9.设总体X ~)3.0,(2µN ,1X ,2X ,…,n X 为总体的⼀个样本,X 是样本均值,问样本容量n ⾄少应取多⼤,才能使95.0)1.0(≥<-µX P .解:易知X ~)3.0,(2nN µ,由题意有95.013(2/3.01.0/3.0()1.0(≥-Φ=<-=<-nnnX P X P µµ,即应有975.0)3(≥Φn,查正态分布表知975.0)96.1(=Φ,所以取96.13≥n,即5744.34≥n ,取35=n .10.设总体X ~)16,(µN ,1X ,2X ,…,10X 为总体的⼀个样本,2S 为样本⽅差,已知1.0)(2=>αS P ,求α的值.解:由抽样分布定理知22)1(σS n -~)1(2-n χ,因为10=n ,故有2249S ~)9(2χ,得1.0)169169()(22=>=>ααS P S P ,查2χ分布表得684.14)9(21.0=χ,即684.14169=α,解得105.26=α.11.设(1X ,2X ,…,1+n X )为来⾃总体X ~),(2σµN 的⼀个样本,记∑==n i i n X n X 11,∑=--=n i in X X n S 122(11,求证:nn n S X X n n T -?+=+11~)1(-n t .证:由题可知n X ~),(2nN σµ,n n X X -+1~))11(,0(2σn N +,标准化得σnX X nn 111+-+~)1,0(N .⼜因为∑=-=-ni inX XS n 1222)(1)1(σσ~)1(2-n χ,从⽽有nn nnn S XX n n n S n n X X -+=--+-++122111)1(11σσ~)1(-n t ,即nnn S X X n n T -?+=+11~)1(-n t .。
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

⎧0,
p(
x)
=
1 θ
Ι 0< x<θ
,
F
(
x)
=
⎪x ⎪⎨θ
,
⎩1,
x < 0; 0≤ x <θ; x ≥θ.
有 X (1)与 X (3)的密度函数分别为
p1 ( x)
=
3[1 −
F (x)]2
p(x)
=
3(θ − x)2 θ3
Ι 0< x<θ
,
p3 (x)
=
3[F (x)]2
p(x)
=
3x2 θ3
a2
−
2 n2
a+
1 n2
⎟⎟⎠⎞σ 2 ,
令
d da
Var(Y )
=
⎜⎜⎝⎛
n1 + n2 n1n2
⋅ 2a
−
2 n2
⎟⎟⎠⎞σ
2
=
0
,得
a
=
n1
n1 + n2
,且
d2 d 2a
Var(Y )
=
n1 + n2 n1n2
⋅ 2σ
2
>
0,
故当 a = n1 , b = 1 − a = n2 时,Var (Y ) 达到最小 1 σ 2 .
ai
Xi
⎟⎟⎠⎞
=
n Cov⎜⎛ 1
i=1
⎝n
X
i
,
ai
X
i
⎟⎞ ⎠
=
n i=1
ai n
Cov( X
i
,
X
i
)
=
σ2 n
n
概率与数理统计第六章习题参考解答

《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩令 ⎩⎨⎧==.2211μμA A 求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx ni ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆnii x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01nii x d L p ndp pp=-=-=-∑01)(ln 1=---=∑=pnxp n dp p L d ni i解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由22()2()x f x μσ--=(1)2σ已知,似然函数22122()()2211()(,)ni i i x nx n nii i L f x e μμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x n x ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i i x n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni ixn L d d解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22ni i x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33n ii x x n θ===∑(3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:1212222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i ni i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβni i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
概率论与数理统计 第六章习题附答案

习题6-11. 若总体(2,9)X N , 从总体X 中抽出样本X 1, X 2, 问3X 1-2X 2服从什么分布?解 3X 1-2X 2~N(2, 117).习题6-21. 选择题(1) 下面关于统计量的说法不正确的是( ).(A) 统计量与总体同分布. (B) 统计量是随机变量. (C) 统计量是样本的函数. (D) 统计量不含未知参数.解 选(A).(2) 已知X 1,X 2,…,X n 是来自总体2(,)X N μσ 的样本, 则下列关系中正确的是( ).(A) ().E X n μ= (B) 2().D X σ= (C) 22().E S σ= (D) 22().E B σ= 解 选(C).(3) 设随机变量X 与Y 都服从标准正态分布, 则( ).(A) X +Y 服从正态分布.(B) X 2+Y 2服从2χ分布.(C) X 2和Y 2都服从2χ分布. (D)22X Y服从F 分布.解因为随机变量X 与Y 都服从标准正态分布, 但X 与Y 不一定相互独立,所以(A),(B),(D)都不对, 故选(C).2. 设X 1,X 2,…,X n 是来自总体X 的样本, 总体X 的均值μ已知,方差σ2未知.在样本函数1nii X=∑,1nii Xμσ=-∑,1nii XSμ=-∑, n μ(21X +22X +…+2n X )中, 哪些不是统计量?解1nii Xμσ=-∑不是统计量.习题6-31.填空题(1) 设总体~(2,25)X N ,12100,,,X X X 是从该总体中抽取的容量为n 的样本, 则()E X = ; ()D X = ; 统计量~X .解 因为总体~(2,25)X N , 而12100,,,X X X 是从该总体中抽出的简单随机样本, 由正态分布的性质知, 样本均值也服从正态分布, 又因为1001111(()22100)n i i i E E X n X =====∑∑,而1002111125(()251001)1004n i i i D D X n X ======∑∑.所以 1~(2,)4N X .3. 在总体2(52,6.3)N 中随机抽取一个容量为36的样本, 求样本均值X 落在50.8到53.8 之间的概率.解 因为2~(,)X N n σμ,所以26.3~(52,)36X N .于是, 标准化随机变量52~(0,1)6.3X N -. 因此(50.852)6(52)6(53.852)6{50.853.8}{}6.3 6.3 6.3X P X P -⨯-⨯-⨯=≤≤剟10.87.2()()0.82936.36.3ΦΦ-=-=.。
概率论与数理统计 第六章抽样分布 练习题与答案详解

概率论与数理统计 第六章 抽样分布练习题与答案详解(答案在最后)1.设n X X X ,,,21 为取自总体X 的样本,总体方差2σ=DX 为已知,X和2S 分别为样本均值,样本方差,则下列各式中( )为统计量.(A)21)(∑=-ni iEX X(B) 22)1(σS n - (C) i EX X - (D) 12+nX2.设总体) ,(~2σμN X ,其中μ已知,2σ未知,n X X X ,,,21 是来自X的样本,判断下列样本的函数中,( )是统计量.(A) σ++21X X (B) 221)(S X ni i∑=-μ(C) ),,,min(21n X X X (D)212σ∑=ni iX3.今测得一组数据为12.06,12.44,15.91,8.15,8.75,12.50,13.42,15.78,17.23.试计算样本均值,样本方差及顺序统计量*1X ,*9X .4.设总体) ,(~2σμN X ,样本观测值为3.27,3.24,3.25,3.26,3.37,假设25.3=μ,22016.0=σ,试计算下列统计量的值:(1) nX U σμ-=,(2) 251221)(1∑=-=i iX Xσχ,(3) 251222)(1∑=-=i iXμσχ.5.某厂生产的电容器的使用寿命服从指数分布,但参数λ未知,为统计推断需要,任意抽查n 只电容器测其实际使用寿命.试问此题中的总体,样本及其分布各是什么?6.某市抽样调查了一百户市民的人均月收入,试指出总体和样本. 7.某校学生的数学考试成绩服从正态分布) ,(2σμN .教委评审组从该校学生中随机抽取50人进行数学测试,问这题中总体,样本及其分布各是什么?8.设1621,,,X X X 是来自正态总体) ,2(~2σN X 的样本,X 是样本均值,则~1684-X ( ) (A) )15(t (B) )16(t (C) )15(2χ (D) 1) ,0(N9.设总体) ,0(~2σN X ,n X X X ,,,21 为其样本,∑==n i i X n X 11,212)(1∑=-=n i i n X X n S ,在下列样本函数中,服从)(2n χ分布的是( ). (A)σnX (B)∑=ni iX1221σ (C)22σnnS (D)nS n X 1- 10.设总体) ,(~2σμN X ,n X X X ,,,21 为X 的简单随机样本,X ,2nS 同上题,则服从)1(2-n χ分布的是( ).(A)nX σμ- (B)1--n S X nμ (C)22σnnS (D)212)(1∑=-ni iXμσ11.设总体) ,(~2σμN X ,n X X X ,,,21 是X 的样本,X ,2S 是样本均值和样本方差,则下列式子中不正确的有( )(A))1(~)(2212--∑=n X Xni iχσ (B))1 ,0(~N X σμ-(C) )1(~--n t nSX μ (D))(~)(2221n Xni iχσμ∑=-12.设n X X X ,,,21 和n Y Y Y ,,,21 分别取自正态总体) ,(~21σμN X 和) ,(~22σμN Y ,且X 和Y 相互独立,则以下统计量各服从什么分布?(1) 22221))(1(σS S n +-; (2)nS S Y X )()()(222121+---μμ;(3) 2221221)]()[(S S Y X n +---μμ. 其中X ,Y 是X ,Y 的样本均值,21S ,22S 是X ,Y 的样本方差.13.设n X X X ,,,21 是正态总体) ,(~2σμN X 的样本,记2121)(11∑=--=n i i X X n S , 2122)(1∑=-=n i i X X n S , 2123)(11∑=--=n i i X n S μ, 2124)(1∑=-=n i i X n S μ, 则服从自由度为1-n 的t 分布的随机变量有( )(A) 11--n S X μ (B) 12--n S X μ (C) n S X 3μ- (D) nS X 4μ-14.设321 , ,X X X 是来自正态总体)9 ,(~μN X 的样本,232212)()(μχ-+-=X b X X a ,则当=a ____,=b ____时,22~χχ(___).15.设921,,,X X X 和1621,,,Y Y Y 分别为来自总体)2 ,(~21μN X 和)2 ,(~22μN Y 的两个相互独立的样本,它们的样本均值和样本方差分别为X ,Y 和21S ,22S .求以下各式中的621,,,ααα .(1) 9.0})({91221=<-<∑=i i X X P αα;(2) 9.0}|{|31=<-αμX P ;(3) 9.0)(||416122=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--∑=αμi i Y Y Y P ;(4) 9.0815621225=⎭⎬⎫⎩⎨⎧<<ααS S P . 16.在天平上重复称量一个重为a (未知)的物品.假设n 次称量结果是相互独立的,且每次称量结果均服从).20 ,(2a N .用n X 表示n 次称量结果的算术平均值.为使n X 与a 的差的绝对值小于0.1的概率不小于%95,问至少应进行多少次称量?17.根据以往情形,某校学生数学成绩)10 ,72(~2N X ,在一次抽考中,至少应让多少名学生参加考试,可以使参加考试的学生的平均成绩大于70分的概率达到0.9以上?18.在均值为80,方差为400的总体中,随机地抽取一容量为100的样本,X 表示样本均值,求概率}3|80{|>-X P 的值.19.设总体)5 ,40(~2N X ,从中抽取容量64=n 的样本,求概率}1|40{|<-X P 的值.20.设总体X 与Y 相互独立,且都服从)2 ,30(2N ,从这两总体中分别抽取了容量为201=n 与252=n 的样本,求4.0||>-Y X 的概率.21.设总体)2 ,0(~2N X ,而1521,,,X X X 是X 的样本,则)(221521121021X X X X Y ++++= 服从什么分布,参数是多少?又问当a 为何值时,215272621X X X X a F ++++= 服从)9 ,6(F ?22.设总体)4 ,0(~N X ,1021,,,X X X 是X 的样本,求(1) }13{1012≤∑=i i X P ;(2) }76)(3.13{2101≤-≤∑=i i X X P .23.从总体) ,(~2σμN X 中抽取容量为16的样本,2S 为样本方差,求}041.2{22≤σS P .24.从总体)2 ,12(~2N X 中随机抽取容量为5的样本521,,,X X X ,求} 284.44)12( {512>-∑=i i X P .答案详解1.B(A)中含总体期望EX 是未知参数,(C)中EX EX i =也是未知参数,都不是统计量,而(D)不是样本的函数,当然不是统计量.2.B ,C3.样本容量9=n ,利用计算器的统计功能键,算出92.12=x ,65.9)107.3(22==s ,观察921,,,x x x ,可得最小值15.8*1=x ,最大值23.17*=n x .注 上面得到的x ,2s ,*1x ,*nx 依次是统计量∑==ni i X n X 11,),,,max( ),,,,min( ,)(1121*21*1212n n n n i i X X X X X X X X X X n S ==--=∑=的观察值.注意统计量与统计量的观察值的区别,前者是随机变量,后者是具体的数值4.258.3=x ,00017.02=s (1) 118.1=u ; (2) 656.221=χ;(3) 906.322=χ,提示 为了计算22χ的值,先将其展开为)52(1251512222μμσχ+-=∑∑==i i i iX X ,其中,∑=512i iX ,∑=51i i X 均可由计算器的统计功能键求出来5.“电容器的使用寿命”是总体X ,其服从参数为λ的指数分布,即X 的概率密度为⎩⎨⎧≤>=-0.x , 0 0,x ,)(x X e x f λλ“抽查的n 只电容的使用寿命”是容量为n 的样本n X X X ,,,21 .由于n X X X ,,,21 相互独立且每个i X 与总体X 具有相同的分布,所以,样本的联合概率密度为⎩⎨⎧=>=∏=+++-=., 0,,,1 ,0,)(),,,()(12121其它n i x e x f x x x f i x x x n i X ni n n λλ 6.总体X 为该市市民户的人均月收入,容量为100的样本10021,,,X X X 为抽查的100户市民的人均月收入7.总体X 为该校学生的数学考试成绩,容量为50的样本5021,,,X X X 为抽取的50人的数学成绩总体) ,(~2σμN X ,即其概率密度为222)(21)(σμσπ--=x X ex f ,样本5021,,,X X X 的概率密度为∑⎪⎪⎭⎫⎝⎛==--50122)(2150502121),,,(i i x e x x x f μσσπ8.D因为) ,2(~2σN X ,根据正态总体的抽样分布),2(~2nN X σ,)1 ,0(~)2(4162222N X X n X U σσσ-=-=-=9.(A) 因) ,0(~2σN X ,由正态总体的抽样分布,有) ,0(~2nN X σ,所以)1 ,0(~2N nX nXU σσ==.(B) 因) ,0(~2σN X i ,得)1 ,0(~N X iσ,n i ,,1 =,且这n 个标准正态变量相互独立,所以由2χ分布的定义知,)(~1212122n X X ni i ni i χσσ∑∑==⎪⎭⎫⎝⎛=.(C) 2122)1()(S n X X nS ni i n-=-=∑=,由正态总体的抽样分布知)1(~)1()(22221222--=-=∑=n S n X XnSni iχσσσ.(D) ()nS X X n n n S n i i n 2122)1(11=--=-∑=,由正态分布的抽样分布知 )1(~11--=-=-=n t S n X n S X nSX T nnμ, 或者,由(A),(C)的结果,根据t 分布的定义有)1(~1)1(22--=-=n t S n X n nS n X T nn σσ.综上可知,应选B . 10.C 11.B12.(1) )22(2-n χ; (2) )22(-n t ; (3) )22 ,1(-n F 13.B 14.181=a ,91=b 时,)2(~22χχ 15.(1) 由正态总体的抽样分布得∑=-91222)8(~)(21i iX Xχ,因此,}44)(4{})({2912191221αααα<-<=<-<∑∑==i ii i X XP X X P9.0}4)8({}4)8({2212=>->=αχαχP P ,令95.0}4)8({12=>αχP ,05.0}4)8({22=>αχP ,根据2χ分布得上侧临界值的定义,查表可得,733.2)8(4295.01==χα,955.21)8(4205.02==χα,即932.104733.21=⨯=α,82.874955.212=⨯=α注 一般来说,满足条件{}αχ-=<<12B A P的数(临界值)A ,B 有很多对,这里我们采用的取法是使A ,B 满足{}{}222αχχ=≥=≤B P A P .通常认为这样的取法比较好,对于F 分布也类似(2) 由正态总体的抽样分布)1 ,0(~91N X σμ-,即)1 ,0(~321N X μ-, 得9.0}23||23{}|{|3131=<-=<-αμαμX P X P ,根据)1 ,0(N 分布得双侧临界值的定义,查表得645.1232/10.03==u α,所以097.132645.13=⨯=α.(3) 由正态总体的抽样分布)15(~1622t S Y μ-,即)15(~)(422t S Y μ-,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<--∑=422241612215||)(||αμαμS Y P Y Y Y P i i 9.0154)(4 422=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=αμS Y P .根据t 分布的双侧临界值的定义,并查表得75.1)15(1542/10.04==t α,于是,113.015475.14==α.(4) 由正态总体得抽样分布)8 ,15(~222212222122F S S S S =,得90.005.095.0158158815621225621225=-=⎭⎬⎫⎩⎨⎧<<=⎭⎬⎫⎩⎨⎧<<ααααS S P S S P , 查F 分布上侧临界值表,得645.21)15 ,8(1)8 ,15(15805.095.05===F F α, 22.3)8 ,15(15805.06==F α, 所以,709.08645.2155=⨯=α,038.6709.081522.36==⨯=α 16.16≥n ,即至少应进行16次称量提示 对该物品进行独立重复称量的所有可能结果,看成总体X ,则n 次称量结果n X X X ,,,21 就是X 的一容量为n 的样本,n X 即样本均值.由题意知,).20 ,(~2a N X ,根据正态总体的抽样分布,)2.0 ,(~2na N X n ,按条件95.0}1.0 || {≥<-a X P n 来求出n17.至少要42个学生参加抽考18.0.1336提示 该总体并非正态总体,然而100=n 为大样本,所以)100400,80(~N X 19.0.8904 20.约等于0.3446 21.)5 ,10(~F Y ;23=a 22.(1) 因为)4 ,0(~N X i ,)10,,1( =i 且1021,,,X X X 相互独立,所以)10(~421012χ∑=i i X , }4134{}13{10121012∑∑==≤=≤i i i iX P X Pαχ-=>-=1}25.3)10({1 2P ,由于25.3)10(2=αχ,反查2χ分布表,得,975.0=α,故025.0975.01}13{1012=-=≤∑=i i X P .(2) 因为)9(~49)(2221012χσS X Xi i=-∑=,所以, }194932.3{}76)(3.13{21012≤≤=≤-≤∑=S P X X P i i 2122}19)9({}32.3)9({ ααχχ-=>->=P P , 由32.3)9(21=αχ及19)9(22=αχ,反查2χ分布表,得95.01=α及025.02=α,所以,925.0025.095.0}76)(3.13{1012=-=≤-≤∑=i i X X P23.0.99 24.0.05。
概率论与数理统计(茆诗松)第二版课后第六章习题参考答案

=
1 12n
>
Var⎢⎣⎡
1 2
( X (1)
+
X (n) )⎥⎦⎤
=
2(n
1 + 1)(n
+
2)
,
故
1 2
( X (1)
+
X (n) )
比样本均值
X
更有效.
6.
设
X1,
X2,
X3
服从均匀分布
U
(0,
θ
),试证
4 3
X (3) 及 4X (1)都是θ
的无偏估计量,哪个更有效?
解:因总体 X 的密度函数与分布函数分别为
且(Y (1), Y (n))的联合密度函数为 p1n ( y(1) , y(n) ) = n(n −1)[FY ( y(n) ) − FY ( y(1) )]n−2 pY ( y(1) ) pY ( y )Ι (n) y(1)<y(n)
=
n(n
− 1)( y(n)
−
y ) Ι n−2
(1)
0< y(1) < y( n) <1
n
∑ 4. 设总体 X ~ N (µ , σ 2),X1, …, Xn 是来自该总体的一个样本.试确定常数 c 使 c ( X i+1 − X i )2 为σ 2 的无 i=1
偏估计. 解:因 E[(Xi + 1 − Xi )2 ] = Var (Xi + 1 − Xi ) + [E(Xi + 1 − Xi )]2 = Var (Xi + 1) + Var (Xi ) + [E(Xi + 1) − E(Xi )]2 = 2σ 2,
天津理工大学概率论与数理统计同步练习册答案全pdf

9、设 A , B 是两事件且 P ( A ) 0.6, P ( B ) 0.7 ,问(1)在什么条件下 P ( AB ) 取到最大 值,最大值是多少?(2)在什么条件下 P ( AB ) 取到最小值,最小值是多少? 解: (1) A B, P ( AB ) 0.6 (2) A B S , P ( AB ) 0.3 a,b,c 闭 合 ,D 表 示 灯 亮 , ;(2) D = A B C
14、两射手同时射击同一目标,甲击中的概率为 0.9,乙击中的概率为 0.8,两射手 同时击中的概率为 0.72,二人各击中一枪,只要有一人击中即认为“中”的, 求“中”的概率. 解: A “甲中”
B “乙中”
P ( A B ) P ( A) P ( B ) P ( AB ) 0.9 0.8 0.72 0.98
PA2 A1 P A2 A1
4 99
,P
95 A A 99
2 1
, P A2 A1
5 99
= { 00 , 100 , 0100 , 0101 , 0110 , 1100 , 1010 , 1011 , 0111 , 1101 , 1110 , 1111 }
(4)在单位圆内任意取一点,记录它的坐标
= {(x , y ) | x 2 y
2
1}
(5)将一尺长的木棍折成三段,观察各段的长度
4 4 A12 A12 P ( A) 4 , P ( A) 1 P ( A) 1 4 0.427 12 12
17、将 3 个球随机地放入 4 个杯子中去,问杯子中球的最大个数分别为 1,2,3 的概 率各是多少? 解:3 个球放入 4 个杯子中去共有 4 3 种放法,设 B i 表示杯子中球的最大个数为 n 的
概率论与数理统计习题详解 周概容 习题6解

由于 X1, X 2,Λ , X n 独立同服从参数为 λ 的泊松分布,可见 ( X1, X 2,Λ , X n ) 的概率函数为
∏ ( ) f (x1, x2,Λ
, xn; λ) =
n i=1
p(xi ; λ) =
e−nλ x1! x2!Λ
λx1+x2 +Λ +xn xn!
xi = 0,1,2,Λ
+
n +1 (n + 1)2
( X n+1
−
X n )2
−
2( X n+1 − X n ) n +1
n+1 i=1
(Xi
−
Xn)
=
nSn2
+ ( X n+1
−
Xn) +
( X n+1 − X n )2 n +1
−
2( X n+1 − X n )2 n +1
=
nSn2
+
n
n +
1
(
X
n+1
−
X n )2;
S
2 0
≈
X
2
−
X
2
=
61.39.
—习题解答●6.2—
以上各式中使用近似等号“≈”,因为计算时使用的不是原始数据,而是数据所在组的组中
值.
S
2 0
≈
X
2
−
X
2
= 61.39 是未修正样本方差,样本方差为
S 2 = n S 2 ≈ 100 × 61.39 = 62.0&1&.
n −1
99
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 数理统计的基本概念一.填空题1.若n ξξξ,,,21 是取自正态总体),(2σμN 的样本,则∑==ni i n 11ξξ服从分布 )n ,(N 2σμ .2.样本),,,(n X X X 21来自总体),(~2σμN X 则~)(221n S n σ- )(1χ2-n ; ~)(nS n X μ- _)(1-n t __。
其中X 为样本均值,∑=--=n i n X X n S 12211)(。
3.设4321X X X X ,,,是来自正态总体).(220N 的简单随机样本,+-=221)2(X X a X 243)43(X X b -,则当=a 201=a 时,=b 1001=b时,统计量X 服从2X 分布,其自由度为 2 .4. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,)x x x 和129(,,,)y y y 是分别来自总体ξ和η的简单随机样本, 则统计量~U = (9)t .5. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X 与1216,,,Y Y Y 分别为X 与Y 的一个简单随机样本,则2221292221216X X X Y Y Y ++++++服从的分布为 (9,16).F6. 设随机变量~(0,1)X N , 随机变量2~()Y n χ, 且随机变量X 与Y 相互独立,令T =, 则2~T F (1,n ) 分布.解:由T =, 得22X T Y n =. 因为随机变量~(0,1)X N , 所以22~(1).X χ再由随机变量X 与Y 相互独立, 根据F 分布的构造, 得22~(1,).X T F n Y n= 7. 设12,,,n X X X 是总体(0,1)N 的样本, 则统计量222111n k k X n X =-∑服从的分布为(1,1)F n - (需写出分布的自由度).解:由~(0,1),1,2,,i X N i n =知222212~(1),~(1)nk k X X n χχ=-∑, 于是22122211(1)1~(1,1)./11nkn k k k Xn X F n X n X ==-=--∑∑8. 总体21234~(1,2),,,,X N X X X X 为总体X 的一个样本, 设212234()()X X Z X X -=-服 从 F (1,1) 分布(说明自由度)解:由212~(0,2)X X N σ+,有22~(1)χ, 又 234~(0,2)X X N σ-,故22~(1),χ因为2与2独立,所以21234~(1,1).X X F X X ⎛⎫+ ⎪-⎝⎭9.判断下列命题的正确性:( 在圆括号内填上“ 错” 或“ 对”)(1) 若 总 体 的 平 均 值 μ与 总 体 方 差 σ2 都 存 在 , 则 样 本 平 均 值 x 是 μ 的 一 致 估 计。
( 对 )(2) 若 0≠-θθ)ˆ(E 则 称 θ为 θ 的 渐 近 无 偏 估 计 量 .( 错 )(3) 设总体X 的期望E(X),方差D(X)均存在,21x x , 是X 的一个样本 ,则统计量213231x x +是 E(X) 的无偏估计量。
( 对 )(4) 若 θθθ==)ˆ()ˆ(21E E 且 )ˆ()ˆ(21θθD D <则 以 θ2估 计 θ 较 以θ1估计 θ 有 效 。
( 错 )(5) 设θn 为θ 的估计量,对任意ε > 0,如果0=≥-∞→}|ˆ{|lim εθθnn P 则称 θn 是θ 的一致估计量 。
( 对 )(6)样本方差()∑=--=ni in X X n D 1211是总体),(~2σμN X 中σ2 的无偏 估计量。
()211∑=-=ni iX Xn D *是总体X 中σ2的有偏估计。
( 对 )10.设321X X X ,,是取自总体X 的一个样本,则下面三个均值估计量3213321232111214331ˆ,1254131ˆ,2110351ˆX X X uX X X u X X X -+=++=++=μ都 是总体均值的无偏估计,其中方差越小越有效,则 2ˆμ最有效.二、选择题1、设总体ξ服从正态分布),(2σN N ,其中μ已知,σ未知,321,,ξξξ是取自总体ξ的一个样本,则非统计量是( D ).A 、)(31321ξξξ++ B 、μξξ221++ C 、),,m ax (321ξξξD 、)(12322212ξξξσ++2、设n ξξξ ,,21是来自正态总体),(2σμN 的简单随机样本∑=--=ni i n S 1221)(11ξξ,∑=-=n i i n S 1222)(1ξξ,∑=--=n i i n S 1223)(11μξ,∑=-=n i i n S 1224)(1μξ,则服从自由度为1-n 的t 分布的随机变量是( B ).A 、1/1--n S μξ B 、1/2--n S μξ C 、nS /3μξ- D 、nS /4μξ-3、设)2,1(~2N ξ,n ξξξ ,,21为ξ的样本,则( C ).A 、)1,0(~21N -ξB 、)1.0(~41N -ξC 、)1,0(~/21N n -ξD 、)1,0(~/21N n-ξ 4、设n ξξξ ,,21是总体)1,0(~N ξ的样本,S ,ξ分别是样本的均值和样本标准差,则有( C )A 、)1,0(~N n ξB 、)1,0(~N ξC 、∑=ni in x 122)(~ξD 、)1(~/-n t S ξ5.. 简 单 随 机 样 本 (X X X n 12,, ,) 来 自 某 正 态 总 体,X 为 样 本 平 均 值, 则 下 述 结 论 不 成 立 的 是 ( C )。
( A ) X 与 (¡)XX ii n-=∑21独 立( B )X i 与X j 独 立 ( 当 j i≠ ) ( C )Xii n=∑1与Xii n 21=∑ 独 立( D )X i 与X j 2独 立 ( 当 j i≠)6. 设 1n 21X , ,X ,X , 来自总体2n 21211Y ,,Y ,Y ),,(N ~X,X σμ 来自总体Y £, ),(N ~Y222σμ, 且 X 与 Y 独 立。
∑∑====21n 1i ,i 2n 1i ,i 1,Y n 1Y ,X n 1X∑∑==-=-=21211n 1i 2,i 22n 2n 1i 2,i 12n 1,)Y Y (n 1S ,)X X (n 1S则如下结论中错误的是 ( D )。
( A ) )1,0(N ~n n )]()Y X [(22212121σ+σμ-μ--=ξ-( B ) )1n ,1n (F ~S S )1n (n )1n (n 212n 22n 12122122121--⋅σσ⋅--=η( C ) )2n n (~S n S n 212222n 22212n 1121-+χσ+σ=ζ ( D ) )2n n (t ~2n n 2121-+ζξ⋅-+=ρ7. 设n X X X ,,21是取自总体),0(2σN 的样本,则可以作为2σ的无偏估计量是( A ).A 、∑=n i i X n 121B 、∑=-n i i X n 1211C 、∑=ni i X n 11D 、∑=-ni i X n 1118. 3、设321,,X X X 是来自母体X 的容量为3的样本,32112110351ˆX X X ++=μ,32121254131ˆX X X ++=μ,3213216131ˆX X X ++=μ,则下列说法正确的是( B ).A 、321ˆ,ˆ,ˆμμμ都是)(X E =μ的无偏估计且有效性顺序为321ˆˆˆμμμ>> B 、321ˆ,ˆ,ˆμμμ都是)(X E =μ的无偏估计,且有效性从大到小的顺序为312ˆˆˆμμμ>> C 、321ˆ,ˆ,ˆμμμ都是)(X E =μ的无偏估计,且有效性从大到小的顺序为123ˆˆˆμμμ>> D 、321ˆ,ˆ,ˆμμμ不全是)(X E =μ的无偏估计,无法比三. 计算题1、在总体)2,30(~2N X 中随机地抽取一个容量为16的样本,求样本均值X 在 29到31之间取值的概率.解:因)2,30(~2N X ,故)162,30(~2N X ,即))21(,30(~2N X)221302()3120(<-<-=<<∴X P X P 9544.01)2(2)2()2(=-Φ=-Φ-Φ=2、设某厂生产的灯泡的使用寿命),1000(~2σN X (单位:小时),抽取一容量为9的样本,其均方差100=S ,问)940(<X P 是多少?解:因2σ未知,不能用),1000(2nN X σ=来解题,而)1(~--=n t nS X T μ )8(~3t SX T μ-=∴ )()(39403940S S X P X P μμ-<-=<∴,而1000,100==μS)940(<∴X P )8.1()1003)1000940((-<=⨯-<=T P T P )8.1(>=T P由表查得056.0)8.1()940(=>=<T P X P 3、设721,,X X X 为总体)5.0,0(~2N X 的一个样本,求∑=>712)4(i i X P .解:)5.0,0(~2N X)1,0(~2N X i ∴∑∑===∴7171222)7(~4)2(i i iix X X∑∑==≈>=>∴717122025.0)164()4(i i i iX P X P4、设总体)1,0(~N X ,从此总体中取一个容量为6的样本654321,,,,,X X X X X X , 设26542321)()(X X X X X X Y +++++=,试决定常数C ,使随机变量CY 服 从2x 分布.解:)3,0(~321N X X X ++,)3,0(~654N X X X ++)1,0(~3321N X X X ++∴,)1,0(~3654N X X X ++)2(~)3()3(226542321x X X X X X X +++++∴即)2(~)(31)(31226542321x X X X X X X +++++ 31=∴C 时,)2(~2x CY5、设随机变量T 服从)(n t 分布,求2T 的分布.解:因为nY X T /=,其中)1,0(~N X ,)(~2n x Y ,nY X n Y X T /1//222==)1(~22x X ),1(~2n F T ∴6. 利 用 t 分 布 性 质 计 算 分 位 数 t 0.975( 50 ) 的 近 似 值 。