九年级数学学华师版上册第25章随机事件的概率【教学设计】频率与概率
华师大版-数学-九年级上册-第25章随机事件的概率全章教案

第二十五章随机事件的概率25.1.1什么是概率教学目标:<-)知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验一收集数据一分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末后体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阉、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阉、投硬币)追问,为什么要用抓阉、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定''正而朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究3.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计'‘正面朝上”的频数及“正面朝上” 的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上Pm 要求填好25-2.并根据所整理的数据,在25. 1-1图上标注出对应的点,完成统计图.表m正面向上的频率10.55。
2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率

第25章 随机事件的概率25.2 随机事件的概率2 频率与概率教学目标1.知道通过大量重复试验,可以用频率估计概率.2.掌握用列表法、画树状图法求简单事件概率的方法.3.运用频率估计概率解决实际问题.教学重难点重点:掌握用列表法、画树状图法求简单事件概率的方法. 难点:由试验得出的频率与理论分析得出的概率之间的关系.教学过程复习巩固概率:一个事件发生的可能性叫做该事件的概率. ()所有机会均等的结果关注结果发生数事件发生=P .导入新课【问题1】抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:一种是正面朝上,另一种是正面朝下.你认为正面朝上和正面朝下的可能性相同吗? 学生讨论,师归纳总结引出课题:25.2 随机事件的概率2 频率与概率探究新知探究点一 频率与概率的关系 活动1(学生互动,教师点评) 请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:(2)各组分工合作,分别累计正面朝上的次数到20、40、60、80、100、120、140、160、180、200次,并完成下表:教学反思(3)请同学们根据已填的表格,完成下面的折线统计图(4)观察上面的折线统计图,你发现了什么规律? 结论:(学生回答,老师点评)当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.【总结】(老师点评总结)1. 对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.在大量重复进行同一试验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记做P (A )=mn.一般地,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.2. 频率与概率的关系概率是频率的稳定值,而频率是概率的近似值. 【即学即练】(小组讨论,老师点评)某篮球队教练记录该队一名主力前锋练习罚篮的结果如下: (2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,估计这次他能罚中的概率.【解】(1)表格中从左往右依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802教学反思(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率为0.8.探究点二 列表法或树状图法求概率【问题2】小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚均匀的硬币,若两枚硬币都正面朝上,则小明获胜;若都反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?活动2(学生互动,教师点评)让学生每人抛掷硬币(课前准备好)20次,并记录每次的试验结果,通过观察自己的结果说明游戏是否公平.5个学生为一个小组,把5个人的试验结果数据汇总,得到小组试验数据100次,依次累计各组的试验数据,得到试验200次、300次、400次、500次…时的试验结果,全班一起填写上表.通过做试验让学生思考从试验中有哪些发现. (学生总结,教师点评) 从试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【合作探究】议一议:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?问题1:上述问题中一次试验涉及几个因素?你是用什么方法不重复、不遗漏地列出所有可能结果的?先让学生讨论,然后找学生代表叙述自己的解答过程,最后教师给出标准答案.总共有 4 种结果,每种结果出现的可能性相同.其中, 小明获胜的结果有 1 种:(正,正).所以小明获胜的概率是14.教学反思小颖获胜的结果有 1 种:(反,反).所以小颖获胜的概率是14.小凡获胜的结果有 2 种:(正,反),(反,正).所以小凡获胜的概率是24=12. 因此,这个游戏对三人是不公平的. 问题2:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便?(学生总结,教师点评)当试验包含两步时,列表和画树状图都可以,当试验包含三步或三步以上时,画树状图比较方便.典例讲解(学生交流,老师点评)例1 如图,甲为三等分数字转盘,乙为四等分数字转盘.同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.【解】列表如下:乙甲 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4) 3(3,1) (3,2) (3,3) (3,4)由表格可知,一共有12种等可能的结果.其中两个转盘指针指向的数字均为奇数的有4种,故P (均为奇数)=412=13. 【总结】1.列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.2.当一次试验要涉及两个以上的元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.例2 准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值? (2)两张牌的牌面数字之和等于3的概率是多少?【探索思路】 (引发学生思考)一张牌有几种结果?一次试验涉及几个元素? 【解】通过画树状图的方法表示出所有可能的结果:教学反思(1)由树状图可知,两张牌的牌面数字之和可能是2,3,4. (2)总共有4种等可能的结果,两张牌的牌面数字之和为3的结果有2种,因此P (两张牌的牌面数字之和等于3)=24=12.【题后总结】在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性相等,那么我们可以利用树状图或表格不重复、不遗漏地列出所有可能的结果,从而求出某些事件发生的概率.【即学即练】 【互动】(小组讨论)经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A.19B.16C.13D.12由表格知,一共有9种等可能的情况,其中两辆汽车经过这个十字路口全部继续直行的有一种,所以两辆汽车经过这个十字路口全部继续直行的概率是19.【答案】A课堂练习1.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展抽奖活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:教学反思A.当n很大时,指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2 000次,指针落在“文具盒”区域的次数大约有600次D.如果转动转盘10次,一定有3次获得文具盒2.两个正四面体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.383.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B.12C.13D.144.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.13C.23D.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是( )A.12B.13C.14D.16参考答案1.D【解析】A.由题意知A选项不符合题意;由A可知,转动转盘一次,获得铅笔的概率大约是0.70,故B选项不符合题意;C.指针落在“文具盒”区域的概率大约为0.30,转动转盘2 000次,指针落在“文具盒”区域的次数大约有2 000×0.3=600(次),故C选项不符合题意;D.随机事件,结果不确定,故D选项符合题意.2.A【解析】同时投掷两个正四面体骰子,有(1,1) , (1,2) , (1,3) , (1,4) , (2,1) , (2,2) , (2,3) , (2,4) , (3,1) , (3,2) ,(3,3) , (3,4) , (4,1) , (4,2) , (4,3),(4,4)共16种结果,点数之和等于5的有(1,4) , (2,3) , (3,2) , (4,1)共4种情况,所以P(点数之和等于5)=416=14.3.D【解析】画树状图如图所示.∴P(两次都是正面朝上)=1 4 .4.B【解析】随机从1,2,-3中抽取两个数相乘,积的结果共有1×2=2,1×(-3)= -3,2×(-3)=-6三种,所以积为正数的概率是1 3 .5.D【解析】画树状图,如图所示.教学反思由图可知共有6种等可能结果,其中标号相同的只有1种,所以两球标号恰好相同的概率是1 6 .课堂小结(学生总结,老师点评)一、频率与概率的关系概率是频率的稳定值,而频率是概率的近似值.二、用列表法或树状图法求概率(1)列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.(3)当一次试验要涉及两个以上元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.布置作业教材第147页练习题,第153页习题25.2第3,4题.板书设计课题25.2 随机事件的概率2 频率与概率【问题1】一、频率与概率的关系例1【问题2】二、用列表法或树状图法求概率例2教学反思。
九年级数学上册第25章随机事件的概率2频率与概率说课稿新版华东师大版

九年级数学上册新版华东师大版:频率与概率说课稿一、教材与目标教材分析为了帮助学生更好的认识随机现象,通过一个涉及两步实验的事件作为课堂试验活动,让学生逐步计算一个随机事件发生的频率,由大量重复试验的结果观察其中的规律性,并利用类比的方法归纳出大量重复试验的频率趋近于理论概率这一规律性,为以后利用试验或模拟试验的方法估计一些复杂的随机事件发生的概率起到承前启后的作用。
目标知识技能目标:1.了解运用列表法和树状图法理论分析随机事件的概率.2.理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.过程与方法目标:经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.情感态度与价值观目标:①培养学生实事求是的科学态度,发展学生合作交流的意识和能力;②体会到根据实际情境设计出合理的模拟试验来研究问题的思想概念,积极参与数学活动.通过实验提高学生学习数学的兴趣;③提高自身的数学交流水平,增强与人合作的精神和解决实际问题的能力,发展学生的辩证思维能力。
教学重点和难点教学重点:频率与概率的理解和应用.教学难点:利用频率估计概率的理解.二、学情与教法学情分析在七年级的学习中,学生通过丰富的实际问题认识到概率是刻画不确定现象的数学模型,学习一些计算概率的方法,通过大量试验对结果做出估计,从而作出合理的决策。
通过八年级的学习学生经历了对数据的收集、整理、分析的过程,了解总体、个体、样本,掌握了频数、频率、频数分布直方图等相关知识。
教法分析情境法:通过游戏来组织学生进行有效的小组讨论;探究法:引导学生对实验的数据收集、整理、分析、研究;类比法:通过共性的分析,抽象出频率与概率的关系;讨论法:利用具体实例促进学生对频率与概率关系的理解。
三、教学程序(一)情境导入,初步认识问题:要想知道一个鱼缸里有12条鱼,只要数一数就可以了,但要估计一个鱼塘里有多少条鱼,该怎么办?【教学说明】先前我们学习了用分析的方法求随机事件的概率,那么这里的问题情境中,很容易让学生想到这个事件的结果不能分析出来,而且每种结果出现的可能性也不一定是相同的,从而引发学生的求知:对这类事件的概率该怎样求解呢?引入课题.(二)思考探究,获取新知问题1:怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?【分析】列表法树状图法思考:理论分析与重复试验得到的结果是否是一致的?问题2:见课本P142问题3学生用自制的转盘做试验,并完成课本P143表25.2.4和图25.2.3.拓展延伸:课本P143“思考”【教学说明】让学生通过试验的方法来预测随机事件的概率.问:你能用理论分析的方法来预测两个转盘指针停在蓝色区域的概率吗?归纳:P(小转盘指针停在蓝色区域)=1 4P(大转盘指针停在蓝色区域)=1 4思考1:从重复试验结果中你得出了哪些结论?对以上这些问题,既可以通过分析用计算的方法预测概率,也可以通过重复试验用频率来估计概率.思考2:是不是所有的问题都可以这样呢?问题3:将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.【分析】由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的值,因此只能靠重复试验来帮忙.【教学说明】让学生分成几个小组,每小组10人,每人试验50次,每个小组数据累加起来,并作好每个小组的实验记录.归纳:通过试验发现,当试验进行到720次后,所得的频率值就在46%上下浮动,我们可以取46%作为这个事件发生概率的估计值,即P(钉尖触地)≈46%.(三)运用新知,深化理解1.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有______张.2.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.【答案】1.9 2.48【教学说明】可让学生自主完成,分小组展示,教师点评.四、课堂小结:你能说说通过本节课的学习,你收获了什么?你能说说频率与概率之间的关系吗??。
九年级数学上册 25.2 随机事件的概率(1)教案 (新版)华东师大版

25.2随机事件的概率(1)教学目标:1、经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。
2、通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。
3、通过动手实验和课堂交流,进一步培养收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神。
教学重点、难点:教学重点:通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。
教学难点:实验1与实验2的操作过程。
课型:新授课教法:引导发现法教学准备:课前指导。
1.请你回忆。
(频数、频率、统计图表的设计。
)2.实验方法和步骤的指导。
(每人准备两枚硬币,一个计算器。
)3.学生分工合作的指导。
(设计好统计图表。
)4.学生实验态度的教育。
教学过程:(一)提出问题1.在硬币还未抛出前,猜想当硬币抛出后是正面朝上,还是反面朝上?为什么?假如你已经抛掷了1000次,你能否预测到第l001次抛掷的结果?2.假如你已经抛掷了400次,你能否猜测出“出现正面”的频数是多少?频率是多少?800次呢?随着我们抛掷一枚硬币的次数逐渐增多,你猜想有什么规律?3.当我们抛掷两枚硬币时,猜一猜当抛掷次数很多以后,“出现正面”和“出现一正一反”这两个不确定事件的频率是多少?是否比较稳定?4.假如你在抛硬币的过程中,硬币不见了,你该怎么办?找一枚图钉代替呢?还是再找另外一枚硬币代替?(二)学生猜想,并归纳猜想结论。
学生先自己思考猜想,然后讨论交流继续猜想。
教师汇总并板书学生猜想的各种结果。
(三)实验验证。
1.实验1。
同桌一组,一个抛掷,一个记录数据。
要求将实验结果填人下列统计表,并绘制折线图。
2.实验2。
四人一组,一人抛掷,一人记录出现两个正面的数据,一人记录出现一正一反的数据,一人将实验结果填人课本的表格中,最后绘制折线图。
3.教师再利用计算机课件演示抛掷一枚、两枚硬币的全过程,以增加实验时的抛掷次数。
华师大版数学九年级上册《25.2 随机事件的概率》说课稿

华师大版数学九年级上册《25.2 随机事件的概率》说课稿一. 教材分析华师大版数学九年级上册《25.2 随机事件的概率》这一节的内容,是在学生已经掌握了概率的基本概念和等可能性原理的基础上进行讲解的。
本节内容主要向学生介绍随机事件的概率,以及如何通过实验来估计事件的概率。
教材通过具体的例子,引导学生理解概率的意义,并学会如何计算简单事件的概率。
同时,本节内容还涉及到互斥事件和独立事件的概率计算,为学生以后学习更复杂的概率问题打下基础。
二. 学情分析在进入九年级的学生中,大部分学生已经对概率有了初步的认识,知道概率是衡量事件发生可能性大小的量。
然而,对于如何通过实验来估计概率,以及如何计算复杂事件的概率,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过实验和计算来深入理解概率的内涵。
三. 说教学目标1.知识与技能目标:使学生理解随机事件的概率的意义,学会计算简单事件的概率,并掌握互斥事件和独立事件的概率计算方法。
2.过程与方法目标:通过实验和计算,培养学生估计和判断事件概率的能力,提高学生的逻辑思维和解决问题的能力。
3.情感态度与价值观目标:激发学生对概率学科的兴趣,培养学生在实际生活中运用概率知识解决问题的意识。
四. 说教学重难点1.教学重点:随机事件的概率的意义,简单事件的概率计算,互斥事件和独立事件的概率计算。
2.教学难点:如何引导学生理解概率的内涵,以及如何计算复杂事件的概率。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生通过实验、观察和计算来理解概率的内涵。
2.教学手段:利用多媒体课件、实物模型和数学软件,辅助学生直观地理解概率概念,提高教学效果。
六. 说教学过程1.导入新课:通过抛硬币实验,引导学生思考硬币正反面出现的概率,激发学生的学习兴趣。
2.讲解概念:讲解随机事件的概率的意义,以及如何计算简单事件的概率。
华师大版数学九年级上册《25.2 随机事件的概率》说课稿2

华师大版数学九年级上册《25.2 随机事件的概率》说课稿2一. 教材分析华师大版数学九年级上册《25.2 随机事件的概率》是学生在学习了概率的基本概念和等可能事件的概率之后,进一步深入研究随机事件的概率。
本节课的主要内容有:必然事件的概率、不可能事件的概率、随机事件的概率,以及如何利用概率来描述和判断随机事件的性质。
教材通过丰富的例题和习题,帮助学生巩固随机事件的概率知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对概率的基本概念和等可能事件的概率已有了一定的了解。
但是,对于随机事件的概率,学生可能还存在一定的困惑,不易理解。
因此,在教学过程中,教师需要关注学生的认知水平,通过生动的实例和贴近生活的问题,激发学生的学习兴趣,引导学生理解和掌握随机事件的概率。
三. 说教学目标1.知识与技能目标:使学生理解必然事件、不可能事件、随机事件的概念,掌握随机事件的概率计算方法。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生学习概率的兴趣,体验数学在生活中的应用,培养学生的数学素养。
四. 说教学重难点1.教学重点:必然事件、不可能事件、随机事件的概念,随机事件的概率计算方法。
2.教学难点:随机事件的概率的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过一个简单的实例,引出必然事件、不可能事件、随机事件的概念,激发学生的学习兴趣。
2.自主学习:学生通过阅读教材,了解必然事件、不可能事件、随机事件的定义,学会判断各类事件。
3.合作交流:学生分组讨论,总结必然事件、不可能事件、随机事件的性质,分享学习心得。
4.案例分析:分析具体案例,引导学生运用随机事件的概率知识解决问题。
华师大版数学九年级上册《25.2 随机事件的概率》教学设计

华师大版数学九年级上册《25.2 随机事件的概率》教学设计一. 教材分析《25.2 随机事件的概率》是华师大版数学九年级上册的一部分,主要介绍了随机事件的概率及其计算方法。
本节课的内容是学生学习概率的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
教材通过具体的案例和练习题,帮助学生理解和掌握概率的基本概念和计算方法。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于事件的分类和条件概率有一定的了解。
但是,对于随机事件的概率计算方法和更复杂事件的概率计算仍然存在一定的困难。
因此,在教学过程中需要注重学生的参与和实践,通过具体的例子和练习题,帮助学生理解和掌握概率的计算方法。
三. 教学目标1.了解随机事件的定义和特点,能够正确判断一个事件是否为随机事件。
2.掌握必然事件、不可能事件和随机事件的概念,能够区分不同类型的事件。
3.学会使用频率来估计事件的概率,并能够计算简单事件的概率。
4.能够应用概率的基本性质和计算方法,解决实际问题。
四. 教学重难点1.随机事件的定义和特点,以及与必然事件和不可能事件的区分。
2.频率与概率的关系,以及如何利用频率来估计概率。
3.简单事件的概率计算方法,包括互斥事件和独立事件的概率计算。
五. 教学方法1.讲授法:通过讲解和解释随机事件的定义和概率的计算方法,帮助学生理解和掌握相关概念。
2.案例分析法:通过具体的案例和例子,让学生亲身体验和观察事件的随机性,加深对随机事件的理解。
3.练习法:通过布置练习题和解答疑问,帮助学生巩固所学知识和提高解题能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,包括教材内容的展示、案例的分析、练习题的呈现等。
2.案例材料:准备一些具体的案例和例子,用于讲解和分析随机事件的概率。
3.练习题:准备一些练习题,包括简单事件的概率计算和实际问题的解决。
七. 教学过程1.导入(5分钟)通过一个简单的抽奖游戏,引起学生的兴趣,引入随机事件的定义和概率的概念。
新华师大版九年级上册初中数学 25-2-2 频率与概率 教学课件

“兵”字面朝上的次数 14 18 38 47 52 66 78 88
“兵”字面朝上的频率 0.70 0.45 0.63 0.59 0.52 0.55 0.56 0.55
对一般的随机事件在做大量重复试验时,随着试验次 数的增加,一个事件出现的频率,总在一个固定数的附近 摆动,显示出一定的稳定性,因此,我们可以通过大量的 重复试验,用一个随机事件发生的频率去估计它的概率.
新课讲解
为什么要用频率估计概率?虽然之前我们学过用列举法确 切地计算出随机事件的概率,但由于列举法受各种结果出现的 可能性相等的限制,有些事件的概率并不能用列举法求出.例如: 抛掷一枚图钉,估计“钉尖朝上”的概率,这时我们就可以通过 大量重复试验估计它们的概率.
8 47 235 369 662 1335 3203 6335 8073 12628
成活的频率
m n
0.8
0.94
0.870
0.923
0.883
0.890
0.915
0.905
0.897
0.902
新课讲解
由上表可以发现,幼树移植成活的频率在 0.9 左右摆 动,并且随着移植棵数越来越大,这种规律愈加明显.
新课讲解
练一练
一粒木质中国象棋“兵”,它的正面雕刻一个“兵”字,它的反面是平 的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵” 字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某试验小 组做了棋子下掷的试验,试验数据如下表:
实验次数
20 40 60 80 100 120 140 160
稳定于某个常数b,则该事件发生
的概率P(A)= __b__.
新课讲解
频率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率与概率
一、教学内容解析
本节是从统计试验结果的角度去研究概率,即通过频率研究概率。
教材在讨论完设置的掷硬币试验后,归纳得出用频率估计概率的方法,此方法可以看成概率的第二种定义------统计定义,用频率估计概率将不受试验结果个数有限和等可能条件的限制,因此适用范围比用概率的古典定义更广。
教材设置了一个投币实验,一方面让学生亲自动手试验获得数据,另一方面给出历史上投币实验的数据,为学生发现规律提供帮助,通过亲手试验和历史数据,学生能够用自己在统计中学过的频率知识来研究投掷一枚硬币时“正面向上”的频率的大小,大量试验得出的稳定性数据0.5和我们用列举法求出的概率是同一个数值,从另外一个方面佐证了只要试验重复次数足够多,可以用频率去估计概率。
于是教材给出了概率的统计定义,这将有利于学生从整体上更好的把握概率的内涵,与前节学习的概率的古典定义达到统一。
二、教学目标解析
根据学生已有的认知结构和生活经验,制定以下教学目标:
1.从频率稳定性的角度了解概率的意义;
【设计意图】让学生感知在试验过程中频数的发生是一个随机事件,用质地均匀的硬币投掷又是等可能事件,计算出的频率只能作为概率发生的估计值。
2.经历试验、统计整理、分析、归纳、确认等数学活动进而了解并感受概率意义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界,进一步发展学生合作交流的意识和能力;
【设计意图】让学生经历、感受数学是过程这一重大意义,把学生置于整个活动过程中,亲身体验频率的统计过程,深刻理解用频率估计概率的内涵,并在活动中进一步发展学生合作交流的意识和能力。
3.通过对问题的分析,理解用频率估计概率的方法,理解概率的思想,会用试验方法估计一些复杂的随机事件发生的概率。
根据本节课的地位和作用以及教学目标的要求,把概率的统计定义的得出与理解作为本节的重点,收集数据、分析折线图、辩证理解频率与概率的关系作为难点。
三、教学问题诊断分析
1.教学中应注意让学生逐步理解概率的内涵,概率是针对大量重复试验而言,大量重复试验反映的规律并非在每一次试验中一定反映出来。
学生操作加上历史统计也使学生容易接受试验中出现的频率偏离概率的现象。
2.课堂上充分调动学生参与的积极性是教师应特别注意的问题,因此,要组织好学生试验必须合理安排小组人数并做好分工,教师巡回参与指导学生活动。
3.注意新旧知识的联系。
本节课是在学了概率古典定义及求法基础上学习的,试验中用到了大量的统计方法,图表统计法,折线图等等。
四、教法学法分析
为了将学生从繁琐的数字计算和画统计图表中解脱出来,将精力放在对概念的理解和突出思想方法上,特作以下准备:
1.准备计算器,解决数字计算问题,多媒体投影历史投币统计;
2.数据统计整理表和折线图表为学生准备好。
本节课运用合作交流启发探究法,运用多媒体辅助教学,促进学生自主学习,优化课堂结构,提高课堂效率。
五、教学流程安排
六、教学过程设计
一、情境导入,初步认识
问题:要想知道一个鱼缸里有12条鱼,只要数一数就可以了,但要估计一个鱼塘里有多少条鱼,该怎么办?
【教学说明】先前我们学习了用分析的方法求随机事件的概率,那么这里的问题情境中,很容易让学生想到这个事件的结果不能分析出来,而且每种结果出现的可能性也不一定是相同的,从而引发学生的求知:对这类事件的概率该怎样求解呢?引入课题.
二、思考探究,获取新知
问题1:怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?
【分析】
列表法
树状图法
思考:理论分析与重复试验得到的结果是否是一致的?
问题2:见课本P142问题3
学生用自制的转盘做试验,并完成课本P143表25.2.4和图25.2.3.
拓展延伸:课本P143“思考”
【教学说明】让学生通过试验的方法来预测随机事件的概率.
问:你能用理论分析的方法来预测两个转盘指针停在蓝色区域的概率吗?
归纳:P(小转盘指针停在蓝色区域)=1 4
P(大转盘指针停在蓝色区域)=1 4
思考1:从重复试验结果中你得出了哪些结论?
对以上这些问题,既可以通过分析用计算的方法预测概率,也可以通过重复试验用频率来估计概率.
思考2:是不是所有的问题都可以这样呢?
问题3:将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.
【分析】由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的值,因此只能靠重复试验来帮忙.
【教学说明】让学生分成几个小组,每小组10人,每人试验50次,每个小组数据累加起来,并作好每个小组的实验记录.
归纳:通过试验发现,当试验进行到720次后,所得的频率值就在46%上下浮动,我们可以取46%作为这个事件发生概率的估计值,即P(钉尖触地)≈46%.
三、运用新知,深化理解
1.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有______张.
2.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上述数据,小亮可估计口袋中大约有______个黑球.
【答案】1.9 2.48
【教学说明】可让学生自主完成,分小组展示,教师点评.
【设计意图】通过几个练习,进一步巩固用频率估计概率的方法,突出重点;实例让学生理解数学来源于生法又服务于生活。
(五)归纳小结深化反思
本节课你有哪些收获?(在学生充分交流后从知识和方法两个角度归纳)
【设计意图】通过梳理知识,概念进一步清晰,本节课的内容得到巩固和发展,培养学生良好的评价和反思意识,使他们在数学活动中获得成功的体验。
(六)布置作业
1.布置作业:从教材相应练习和“习题25.2”中选取.
2.完成练习册中本课时练习.。