高中数学 轨迹方程教学案 新人教A版选修2

合集下载

高中数学轨迹与方程教案

高中数学轨迹与方程教案

高中数学轨迹与方程教案
教学目标:通过本节课的学习,学生将能够理解轨迹与方程的概念,掌握二维平面上各种图形的轨迹和相应的方程,并能够应用这些知识解决实际问题。

教学重点:轨迹与方程的概念、各种图形的轨迹及相应的方程。

教学难点:如何确定各种图形的轨迹方程。

教学准备:教科研教材《数学》必修一,多媒体设备,教学PPT。

教学过程:
一、导入
通过展示一些常见的平面图形及其方程,引导学生思考图形与方程之间的关系,并提出本节课的学习目标。

二、讲解
1. 轨迹和方程的概念:通过具体例子引导学生理解轨迹和方程的含义,区分轨迹与方程的关系。

2. 直线的轨迹与方程:讲解直线的一般方程及斜率截距式,并通过实例展示直线在平面上的轨迹及对应的方程。

3. 圆的轨迹与方程:讲解圆的标准方程及参数方程,并通过实例展示圆在平面上的轨迹及对应的方程。

4. 抛物线、椭圆、双曲线等图形的轨迹与方程:介绍其他二次曲线的标准方程,并通过实例展示不同曲线的轨迹及对应的方程。

三、练习
布置一些相关的数学问题,让学生在课堂上或课后完成,巩固所学知识。

四、实践
通过实际案例,引导学生运用所学知识,解决实际问题,培养学生的数学建模能力。

五、总结
对本节课的内容进行总结,并回顾学生掌握的重点知识,强化学生记忆。

六、作业
布置相关的作业,巩固学生所学知识。

教学反思:
本节课主要围绕轨迹与方程展开,通过讲解、练习和实践等环节,帮助学生深入理解各种图形的轨迹和相应的方程。

在教学中,要注意引导学生探究问题、独立思考,激发学生学习兴趣,提高学生的学习效果。

高中轨迹问题教案模板设计

高中轨迹问题教案模板设计

课时:2课时年级:高中学科:数学教学目标:1. 理解轨迹问题的概念,掌握解决轨迹问题的方法。

2. 培养学生的逻辑思维能力和空间想象能力。

3. 提高学生运用数学知识解决实际问题的能力。

教学重点:1. 轨迹问题的概念和性质。

2. 解决轨迹问题的方法。

教学难点:1. 轨迹问题的概念理解。

2. 解决轨迹问题的方法和技巧。

教学准备:1. 教学课件。

2. 相关习题。

教学过程:第一课时一、导入1. 回顾初中阶段学习的轨迹问题,引导学生思考高中阶段轨迹问题的特点。

2. 提出本节课的学习目标。

二、新课讲解1. 介绍轨迹问题的概念和性质,通过实例讲解轨迹问题的应用。

2. 分析解决轨迹问题的方法,包括:(1)利用几何知识解决轨迹问题;(2)利用解析几何知识解决轨迹问题;(3)利用向量知识解决轨迹问题。

三、课堂练习1. 学生独立完成教材中的例题,教师巡视指导。

2. 学生互相讨论,共同解决问题。

四、课堂小结1. 总结本节课所学内容,强调轨迹问题的概念、性质和解决方法。

2. 提出课后作业。

第二课时一、复习导入1. 回顾上一节课所学内容,引导学生思考如何运用所学知识解决实际问题。

2. 提出本节课的学习目标。

二、新课讲解1. 分析解决轨迹问题的实例,引导学生掌握解决轨迹问题的技巧。

2. 讲解解决轨迹问题的步骤,包括:(1)分析问题,确定解题思路;(2)利用相关数学知识解决问题;(3)检验答案的正确性。

三、课堂练习1. 学生独立完成教材中的习题,教师巡视指导。

2. 学生互相讨论,共同解决问题。

四、课堂小结1. 总结本节课所学内容,强调解决轨迹问题的方法和步骤。

2. 提出课后作业。

教学反思:1. 本节课通过讲解轨迹问题的概念、性质和解决方法,使学生掌握了解决轨迹问题的基本技能。

2. 在课堂练习中,学生能够运用所学知识解决实际问题,提高了学生的逻辑思维能力和空间想象能力。

3. 在今后的教学中,要注重培养学生的实际应用能力,提高学生的数学素养。

高中数学人教A版必修二《与圆有关的轨迹方程 》专题汇编

高中数学人教A版必修二《与圆有关的轨迹方程 》专题汇编

与圆有关的轨迹方程一.定义法判断动点轨迹满足某种曲线的定义,找出相关量求出标准方程1.已知动点P 到定点)2,1(的距离为2,则动点P 的轨迹方程为 .2.已知点)0,4(-A 与点)0,4(B ,若动点P 满足PB PA ⊥,则点P 的轨迹方程为 .二.相关点法当动点)(y x ,与已知曲线上一点),(00y x 存在某种关系时,可以用含x 的式子表示0x ,用含y 的式子表示0y ,然后将含y x ,的坐标代入已知曲线方程,化简即可1.动点A 在圆422=+y x 上移动,它与定点)0,4(B 连线的中点P 的轨迹方程为 .2.已知定点)0,1(N 与圆:O 222=+y x ,且点P 为圆O 上一动点,若动点M 满足PN MN 2=,则点M 的轨迹方程为 .三.直接法设动点坐标为)(y x ,,利用已知条件,找出y x ,的关系式(距离公式,勾股定理,斜率关系等等) 1.阿波罗尼斯圆:平面内到两定点距离之比为常数)1,0(≠>λλλ的点的轨迹是圆(1)已知两定点)0,1(),0,2(B A -,若动点P 满足PB PA 2=,则点P 的轨迹方程为(2)已知两定点)0,4(),0,1(B A ,若动点P 满足PB PA 21=,则PB PA +的最小值为 (3)若平面内两定点A,B 间的距离为2,动点P 满足2=PB PA ,则22PB PA +的最小值为( ) A.22436- B.22448- C.236 D.224 2.已知)0,5(),0,1(B A -,若动点P 满足2022=+PB PA ,则P 的轨迹方程为 .3.已知圆422=+y x ,过)0,4(A 作圆的割线ABC ,则弦BC 中点的轨迹方程是( )A.4)2(22=+-y xB.)10(4)2(22<≤=+-x y xC.4)1(22=+-y xD.)10(4)1(22<≤=+-x y x四.综合习题1.自圆外一点P 作圆122=+y x 的两条切线PM ,PN (M ,N 为切点),若∠MPN =90°,则动点P 的轨迹方程是 .2.设R m ∈,过定点A 的动直线0=+my x 和过定点B 的动直线03=+--m y mx 交于点),(y x P . 则动点P 的轨迹方程是 ,PB PA ⋅的最大值为 .3.已知点)2,2(P ,圆08:22=-+y y x C ,过点P 的动直线l 与圆C 交于B A ,两点,则线段AB 的中点M 的轨迹方程为 .4.过动点M 作圆:1)2()2(22=-+-y x 的切线MN ,其中N 为切点,若|MN |=|MO |(O 为坐标原点),则M 的轨迹方程为 ,MN 的最小值为 .5.已知定点)1,1(M ,Q P ,为圆422=+y x 上两个动点且QM PM ⊥,则PQ 中点N 的轨迹方程为 ,MN 的最大值为 .6.已知点)0,1(),0,1(m B m A +-,若圆03188:22=+--+y x y x C 上存在一点P ,使得PB PA ⊥,则实数m 的最大值是 .7.已知圆5)2(:22=++y x C ,直线R m m y mx l ∈=++-,021:.(1)求证:对R m ∈,直线l 与圆C 总有两个不同的交点A ,B ;(2)求弦AB 的中点M 的轨迹方程.8.已知圆422=+y x 上一定点)1,1(),0,2(B A 为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若︒=∠90PBQ ,四边形PBQR 为矩形,求点R 的轨迹方程.答案一.1.4)2()1(22=-+-y x 2.1622=+y x二.1.1)2(22=+-y x 2.8)1(22=++y x三.1.(1)4)2(22=+-y x (2)3 (3)A 2.1)2(22=+-y x 3.B 四.1.222=+y x 2.25)23()21(22=-+-y x ,53.2)3()1(22=-+-y x4.0744=-+y x ,8275.23)21()21(22=-+-y x ,226+ 6.6 7.(1)证明r d < (2)41)21()2(22=-++y x8.(1)1)1(22=+-y x (2)622=+y x。

人教A版高中数学选修2-1《2.2椭圆》复习教案

人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。

高中数学_轨迹方程的求法教学设计学情分析教材分析课后反思

高中数学_轨迹方程的求法教学设计学情分析教材分析课后反思

轨迹方程的求法考纲点击1.了解方程的曲线与曲线的方程的对应关系.2.了解解析几何的基本思想和利用坐标法研究几何问题的基本方法.3.能够根据所给条件选择适当的方法求曲线的轨迹方程.考点梳理1.求动点的轨迹方程的一般步骤:2.求动点轨迹方程的基本方法有:诊断自测1.判断正误(请在括号中打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( )(2)方程x2+xy=x的曲线是一个点和一条直线.( )(3)到两条互相垂直的直线距离相等的点的轨迹方程是x2=y2.( )(4)方程y=x与x=y2表示同一曲线.( ) 2、已知点A(-2,0),B(3,0),动点P(x,y)满足PA·PB=x2,则点P的轨迹是()(A)圆(B)椭圆(C)双曲线(D)抛物线3.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( )A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 4.已知△ABC的顶点B(0,0),C(5,0),AB边上的中线长|CD|=3,则顶点A的轨迹方程为________.5.已知⊙O方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB中点P 的轨迹方程为__________.小结:典型例题:例题:已知点P的坐标(2,4),过点P的直线PA与x轴交于点A,过点P且与直线PA垂直的直线PB 与y 轴交于点B.设点M 是线段AB 的中点,求点M 的轨迹方程.能力提升1:已知圆O 1: (x -2)2+y 2=4,动圆M 与圆O 1外切,且与y 轴相切,求动圆圆心M 的轨迹方程.2. 已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,点P 为椭圆C 上的动点,求△PF1F2的重心G的轨迹方程.3.已知点P在直线x=2上移动,直线l通过原点且和OP垂直,通过点A(1,0)及点P 的直线m和直线相交于Q,求点Q的轨迹方程.学情分析学生在新课时普遍对轨迹方程问题感到抽象难理解,基础不扎实,甚至认为内容太难不重要不重视,没有认识到这是高考必考内容,是高考热点之一。

人教版高中数学选修2-1《轨迹方程的求法》

人教版高中数学选修2-1《轨迹方程的求法》

∵PM、PN 是圆 O1、圆 O2 的切线, ∴△PO1M 和△PO2N 是直角三角形. ∵|PM|= |PN|,∴|PM|2=2|PN|2. ∵由两圆的半径均为 1, ∴|PO1|2-1=2(|PO2|2-1). 设 P(x,y).
关键: 找等量关系
∴(x+2)2+y2-1=2[(x-2)2+y2-1],整理,得(x-6)2+y2=33. 故点 P 的轨迹方程为(x-6)2+y2=33.
代入法
(相关点法)
当所求动点的运动很明显地依赖于一已知曲线上 的动点的运动时,可利用代入法,其关键是找出两 动点的坐标的关系,这要充分利用题中的几何条件. 如果轨迹动点P(x,y)的坐标之间的关系不易找 到,也没有相关点可用时,可先考虑将x、y用一 个或几个参数来表示,消去参数得轨迹方程.参数 法中常选角、斜率等为参数.
易漏掉x≠-2的情 形!

x2 2 y 1 【2017 课标 II, 理】 设 O 为坐标原点, 动点 M 在椭圆 C:2
上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 NP 2 NM 。 (1) 求点 P 的轨迹方程;

参数法 ——若动点P (x,y)的横、纵坐标之间 的关系不易找到,则可借助中间变量(参数) 来表示x,y,然后消去参数就得到动点P (x,y) 的轨迹方程
参数法
高考要求
求曲线的轨迹方程是解析几何的基本问题 之一 求符合某种条件的动点的轨迹方程,其 实质就是利用题设中的几何条件,用“坐标化” 将其转化为寻求变量间的关系 。 这类问题除 了考查考生对圆锥曲线的定义,性质等基础知 识的掌握,还充分考查了各种数学思想方法及 一定的推理能力和运算能力,因此这类问题成 为高考命题的热点!

2019-2020年高中数学 轨迹方程的探求教案 新人教A版选修1

2019-2020年高中数学 轨迹方程的探求教案 新人教A版选修1

2019-2020年高中数学 轨迹方程的探求教案 新人教A 版选修1教学目标:1、知识与技能:求轨迹方程的两种基本方法:直接法、定义法;2、过程与方法:体会求轨迹方程的基本方法与过程;3、情感态度与价值观:培养学生推理化简应用定义的能力。

教学重点:两种求轨迹方程的方法与步骤。

教学难点:定义法求轨迹方程中动点所满足的条件的寻找. 一、 预学检测:1、 动点的轨迹方程即为动点的 横纵坐标 之间的关系。

例如:动点P(x,y)在运动过程中满足横纵坐标互为倒数,则动点P 的轨迹方程为.2、 几种圆锥曲线的定义:椭圆定义:平面内到两定点的距离之和为定值的点的轨迹。

双曲线定义:平面内到两定点的距离之差的绝对值为定值的点的轨迹。

抛物线定义:平面内到定点的距离等于到定直线(F 不在上)的距离的点的轨迹。

3、 求动点轨迹方程的基本步骤:(5步)①建立恰当的坐标系;②设动点;③写出限制条件;④代入坐标运算;;⑤化简得到方程(把不符合要求的点去除)。

二、 新知探究: 1、 自主探究例1、已知的两个顶点A 、B 的坐标分别为(-6,0),(6,0),边BC 、AC 所在直线的斜率之积为,求动点C 的轨迹方程。

y解题小结:1为动点的坐标运算即可。

2、直接法求轨迹方程的基本步骤:“建设限代化” 3、注意把不满足条件的点去除。

讨论:如果把题中改成m (),其轨迹方程如何?安表示什么曲线? 设置意图:能过让学生自主讨论加强几种曲线的联系,同时强化分类讨论思想,为后面例2作简单的准备。

2、 小组合作探究例2、圆的半径为6,是异于圆心且不在圆上的点,A 是圆上的任意一点,线段的垂直平分线和直线相交于P ,当点A 在圆上运动时,讨论点P 的轨迹方程。

探究1、点与圆的位置关系如何? 探究2、垂直平分线上的点有何性质?探究3、动点P(x,y)满足什么关系?讨论轨迹。

探究4、如何建立恰当的坐标系求P 的轨迹方程。

设置意图:通过对位置的不同进行讨论,从而得到不同的曲线,配合动画演示让学生认识更深刻。

2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2

2021_2022高中数学第二章圆锥曲线与方程1曲线与方程2求曲线的方程3课件新人教A版选修2
第二章 圆锥曲线与方程
2.1 曲线与方程
2.1.2 求曲线的方程
【学习要求】 1.掌握求轨迹方程时建立坐标系的一般方法,熟悉求曲线方程
的四个步骤以及利用方程研究曲线五个方面的性质. 2.掌握求轨迹方程的几种常用方法. 【学法指导】
通过建立直角坐标系得到曲线的方程,从曲线方程研究曲线的 性质和位置关系,进一步感受坐标法的作用和数形结合思想.
因为曲线在 x 轴的上方,所以 y>0. 虽然原点 O 的坐标(0,0)是这个方程的解,但不属于已知曲线, 所以曲线的方程应是 y=18x2 (x≠0). 小结 (1)求曲线方程时,建立的坐标系不同,得到的方程也 不同.
(2)求曲线轨迹方程时,一定要注意检验方程的解与曲线上点 的坐标的对应关系,对于坐标适合方程但又不在曲线上的点 应注意剔除.
例 2 讨论方程 y2=1-x2x (x≥0)的曲线性质,并画出图形. 解 (1)范围:∵y2≥0,又 x2≥0,∴1-x>0. 解得 x<1,∴0≤x<1. 又当 x=0 时,y=0,∴曲线过原点. 当 x→1 时,y2→+∞,∴y2≥0. 综上可知,曲线分布在两平行直线 x=0 和 x=1 之间.
当堂检测
1.在△ABC 中,若 B、C 的坐标分别是(-2,0)、(2,0),BC
边上的中线的长度为 5,则 A 点的轨迹方程是 ( D )
AHale Waihona Puke x2+y2=5B.x2+y2=25
C.x2+y2=5 (y≠0) D.x2+y2=25 (y≠0)
解析 BC 的中点为原点,BC 边上的中线长为 5,即 OA =5.设 A(x,y),则有 x2+y2=25 (y≠0).
知识要点
1.解析几何研究的主要问题: (1)根据已知条件,求出__表__示___曲__线__的__方__程____; (2)通过曲线的方程,研究_曲__线__的___性__质______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轨迹方程的求法(高二数学)
一、知识目标:
1、掌握轨迹方程的求法包括:直接法、定义法、代入法(相关点法)、参数法
2、掌握求轨迹方程的步骤
3、注意求轨迹方程的完备性和纯粹性
题型一 直接法
【例1】已知圆22
:1C x y +=和点(2,0)Q ,动点M 到圆C 的切线长与||MQ 的比等于常数(0)λλ>,求动点M 的轨迹方程,并说明它表示什么曲线?
练习 :已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为1/2的轨迹方程。

题型二 代入法(相关点法)
【例2】已知点P 是圆x2+y2=16上的一个动点,点A 是x 轴上的定点,坐标为(12,0).当点P 在圆上运动时,求线段PA 的中点M 的轨迹方程。

练习:三角形ABC 的两个顶点A ,B 的坐标分别是A (0,0),B (6,0)顶点C 在曲线y=x2+3上运动,求三角形ABC 的重心G 的轨迹方程。

题型三 定义法
【例3】一条曲线在x 轴上方,它上面的每一个点到点A(0,2)的距离减去它到x 轴的距离的差都是2,求
这条曲线的方程。

练习:已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点
Q 的轨迹是( )
A.圆
B.椭圆
C.双曲线的一支
D.抛物线
题型四 参数法
【例4】求经过抛物线y 2=4x 的焦点的弦中点轨迹方程
练习:过点P (2,4)作两条互相垂直的直线l 1,l 2, l 1交x 轴于A 点,l 2交y 轴于点B ,求线段AB 的中
点M 的轨迹方程。

三、巩固与检测:
1、与两点)0,3(),0,3( 距离的平方和等于38的点的轨迹方程是 ( )
()A 1022=-y x ()B 1022=+y x
()C 3822=+y x ()D 3822=-y x 2、与圆2240x y x +-=外切,又与y 轴相切的圆的圆心的轨迹方程是 ( )
()A 28y x = ()B 28(0)y x x =>和0y = ()C 28y x =(0)x > ()D 28(0)y x x =>和0(0)y x =<
3、P 是椭圆5
92
2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹方程为: ( )
A 、159422=+y x
B 、154922=+y x
C 、12092
2=+y x D 、5
3622y x +=1 4、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( )
A 、双曲线
B 、双曲线左支
C 、一条射线
D 、双曲线右支
5、已知定点(1,1)A 和直线:20l x y +-=,那么到定点A 的距离和到定直线l 距离相等的点的轨迹为
A.椭圆
B.双曲线
C.抛物线
D.直线
6、已知(0,7),(0,7),(12,2)A B C -,以C 为一个焦点作过A B 、的椭圆,椭圆的另一个焦点F 的轨迹方程
是 A.22
1(1)48x y y -=≤- B.221(1)48x y y -=≥ C.22148x y -= D.2
2148x y -=- 7、自圆外一点P 作圆221x y +=的两条切线PM PN 、。

若2MPN π∠=
,则动点P 的轨迹方程是 A.224x y += B.222x y += C.2214x y += D.2
212
x y += 8、12F F 、是椭圆的两个焦点,A 是椭圆上任一点,从任一焦点向12F AF ∠的外角平分线作垂线,垂足为P ,则P 点的轨迹是( )
A.椭圆
B.双曲线
C.圆
D.抛物线
9、P 在以F 1,F 2为焦点的双曲线19
162=-y x 上运动,则ΔF 1F 2P 的重心G 的轨迹方程 是 .
10、已知⎪⎭⎫ ⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝
⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为
11、求与两定圆x 2+y 2=1,x 2+y 2-8x -33=0都外切的动圆圆心的轨迹方程____________
12、过抛物线24y x =的顶点O 作两条互相垂直的直线分别交抛物线于A B 、两点,求线段AB 的中点P 的
轨迹方程。

相关文档
最新文档