定积分的换元法和分部积分法

合集下载

换元积分与分部积分法

换元积分与分部积分法
3 3 4
dt . 12
思考题解答
计算中第二步是错误的.
x sec t
x 2 1 tan t tan t .
2 3 t , , tan t 0, 3 4
正确解法是
2
2
dx x x2 1
3 4 3
x sec t

3 4
2 3
解 原式 1
2
偶函数
奇函数
40
1
2 2 x 1 x (1 1 x ) dx 4 dx 2 2 0 1 1 x 1 (1 x )
2
40 (1 1 x )dx 4 40
2
1
1
1 x 2 dx
4 .
单位圆的面积
x 3 sin6 x 如: 4 dx 2 5 x 2x 7
1 sec t tan tdt sec t tan t
2
dt . 12
练习题
一、填空题:
1、 sin( x )dx ___________________; 3 3
第三节 定积分的换元法与 分部积分法
• 一、换元积分法
• 二、分部积分法
一、换元公式
定理 假设
(1) f ( x ) 在[a , b] 上连续;
( 2)(t )在[, ]连续且单调
(3 )当t 在区间[ , ] 上变化时, x ( t ) 的值 在[a , b]上变化,且 ( ) a 、 ( ) b ,
1
( 4)
0
1
xarctanx 1 x
4
2
dx
x 0 1 t 0
4

第三节定积分的换元积分法与分部积分法

第三节定积分的换元积分法与分部积分法
1
1 0


0
1
(1 t )dt e t dt
2 0
1 0 0
1
1 3 t t e t 3 1

1 e. 3
12
二.定积分的分部积分法
设函数u(x)、v(x)在区间[a , b]上具有连续导数, 则有 定积分的分部积分公式
a udv uv a a vdu
sinx 0 2 arctan
/2


2
19
2.
设f(x)是以T为周期的周期函数,且可积,则对任
一实数a ,有
a T

0 a
a T a
f ( x )dx f ( x )dx
0
T a T
T
证 由定积分性质3,有

a
f ( x )dx f ( x )dx f ( x )dx
1/ 2 2 2

2/2
dx
于是

1 2
2 2
dx x2
2
cos t dt 2 / 6 si n t cos t 1 x2
/4
/4 /6

/4
/6
csc tdt cot t
3 1
10
例7 求

2 2
dx x x2 1
解 设 x se ct 0 t ,则 dx sec t tan tdt 2
3e 1 2(e 1 1) 2 5e 1
16
三.定积分的几个常用公式
1. 证明:设 f ( x ) 在对称区间[ a , a ]上连续,且有
① f ( x ) 为偶函数,则

§3.3定积分换元法

§3.3定积分换元法

π 2
0
sin n xdx = − ∫
π 2
0
sin n −1 xd (cos x )
π 2 0
= − sin n −1 x cos x
[
= (n − 1) ∫
π 2 0 π 2
]
π 2 0
+∫
cos xd (sin n −1 x )
cos 2 x sin n − 2 xdx
= (n − 1) ∫
0
8.已知 g ( x ) = ∫ t f ′( x − t )dt ,求 g′( x ) 。
0
x
g( x ) = ∫ t f ′( x − t )dt
0
x 0
x
令x−t=u
=
− ∫ ( x − u ) f ′(u )du
x
0
= ∫ ( x − u ) f ′(u )du = x
x
∫0 f ′(u )du − ∫0 uf ′(u )du
a a ∫ 0 f(− x) dx
0
f(x) dx =
+
a ∫0
f(x) dx = ∫ [ f(x) + f(− x)] dx.
0
a
续上
∴∫
a
−a
f(x) dx = ∫ [f(x) + f( − x)] dx ,
0
a
(2)∵ f ( x ) 为偶函数,即 f (− x ) = f ( x ) ,
∴∫
π 2 sin 2 t − 1 dt π sin t 6
6 cos t dt = π cos t sin t 2

6 cos t dt π cos t ⋅ sin t 2

定积分的换元法和分布积分法

定积分的换元法和分布积分法

x2 1
x
2
dx
1
40
x2(1 1 x2 ) 1 (1 x2 ) dx
1
40 (1
1
x2
)dx
4
4 1 0
1 x2dx
单位圆的面积
4 .
例 7 若 f ( x)在[0,1]上连续,证明
(1) 2 f (sin x)dx 2 f (cos x)dx ;
0
0
(2)
xf (sin x)dx
1
2 0
arcsin
xdx
x
arcsin
x
1 2
0
1
2 0
1
1
1 2
2 6 20
1 d(1 x2 ) 1 x2
xdx 1 x2
12
1
1 x2
xf (sin x)dx
f (sin x)dx.
0
20
0
1
x
sin cos
x
2
x
dx
2
0
1
sin x cos2
x
dx
2
0
1
1 cos 2
x
d
(cos
x)
2
arctan(cos
x)0
( ) 2 . 2 44 4
二、分部积分公式
设函数u( x)、v( x)在区间a,b上具有连续
必象计算不定积分那样再要把(t ) 变换成原 变量 x 的函数,而只要把新变量t 的上、下限 分别代入(t ) 然后相减就行了.
例1 计算 2 cos5 x sin xdx. 0
解 令 t cos x, dt sin xdx,
x t 0,

-定积分的换元法与分部积分法

-定积分的换元法与分部积分法
2
x t 0, 2
返回
微积分
第三章 一元函数积分学
2 f (sin x)dx
0


0
2
f
sin
2

t
dt

3
2 arcsin(
ln x)
e4 e

. 6
返回
微积分
第三章 一元函数积分学
例4
a
计算
0 x
1
dx.
a2 x2
(a 0)
解 令 x a sin t, dx a cos tdt,
x a t , x 0 t 0,
2

原式 2
a cos t
2

2 cos5 x sin xdx 0
x 0 t 1,
0 t 5dt t 6 1 1 .
1
60 6
返回
微积分
第三章 一元函数积分学
例2

计算
sin3 x sin5 xdx.
0
3
解 f ( x) sin3 x sin5 x cos x sin x2
微积分
第三章 一元函数积分学
第七节 定积分的换元法与分部积分法
一、定积分的换元法 二、定积分的分部积分法 三、小结
返回
微积分
第三章 一元函数积分学
一、定积分的换元法
定理 假设
(1) f ( x)在[a, b]上连续;
(2)函数 x (t ) 在[ , ]上是单值的且有连续
导数;
(3)当t 在区间[ , ]上变化时, x (t ) 的值 在[a,b]上变化,且 ( ) a 、 ( ) b,

定积分换元法

定积分换元法
t x x
x
x
t
x
f (t )( x − t )dt.
t
证明 :
∫0 [∫0 f (u)du]dt = t ⋅ ∫0 f (u)du 0 − ∫0 t ⋅d[∫0 f (u)du]
=x
x
t
∫0 f (u )du − ∫0 tf (t )dt x x = x ∫ f (t )dt − ∫ tf (t )dt 0 0
7 5 3 1 π 35 = 4⋅ ⋅ ⋅ ⋅ ⋅ = π. 8 6 4 2 2 64
例 周期函数的积分性质 6.求下列定积分: 若 30 π f ( x )是以 T为周期的周期函数 , 则
f( (2) 10(1) sin nx dx x ) dx = π
n

n
∫a ∫
a +T
∫0 f ( x)dx;
1

1

1 3 − x4 1 1 2 1 1 − x4 =− x f ′( x)dx = − x e dx = e d (− x 4 ) 0 2 0 4 0



1 − x 4 1 1 −1 = e = (e − 1). 0 4 4
例 14.设f ( x)连续, 证明 :
∫0 [∫0 f (u )du ]dt = ∫0
f ( − x ) g ( x) dx
a
∴∫
=
a −a
f ( x) g ( x)dx = ∫ f (− x) g ( x)dx + ∫ f ( x) g ( x)dx
0 0
a
∫ 0 [ f ( x) + f (− x)]g ( x)dx =∫ 0 Ag ( x)dx =A∫ 0 g ( x)dx.

定积分的换元法和分部积分法教学课件ppt

定积分的换元法和分部积分法教学课件ppt
定积分的换元法和分部积 分法教学课件ppt
xx年xx月xx日
目录
• 定积分的换元法 • 定积分的分部积分法 • 定积分的几何意义 • 定积分的物理应用 • 定积分的经济应用 • 定积分的优化方法
01
定积分的换元法
换元法的定义与性质
换元法的定义
将一个定积分中的被积函数或积分区间变换 成另一个函数或区间,以求得定积分的值。
THANKS
谢谢您的观看
总结词
功率的概念、能量转换的效率、机械能与热能的转换
详细描述
首先介绍功率的概念,然后通过分析能量转换的效率 和机械能与热能的转换关系,说明功率在不同能量转 换中的重要作用。同时,还介绍如何利用功率公式求 解机械能与热能转换等问题。
05
定积分的经济应用
需求价格弹性
需求价格弹性定义
需求价格弹性是衡量商品需求量 对价格变动敏感程度的指标,用 需求量变动百分比与价格变动百 分比的比值来表示。
成本函数表示企业在一定时期内生产一定数量产品所需投入的成本的函数关系。
收益函数与成本函数的关系
收益函数和成本函数之间存在一定的关系,当销售量增加时,收益增加,但成本也会增加,因此需要找到一个最优的生产 量和销售量组合,使得企业获得最大利润。
利润函数与最优生产量
利润函数定义
利润函数表示企业在一定时期内销售产品 所获得的收益减去生产成本的函数关系。
换元法应用
将复杂的积分区间变换成简单的积分 区间,简化计算。
将非标准形式的积分转换成标准形式的积 分,以便使用积分的性质和公式进行计算 。
将难以求导的被积函数变换成容易 求导的函数,以便使用微积分基本 定理进行计算。
02
定积分的分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法

定积分的换元积分法与分部积分法教学目的:掌握定积分换元积分法与分部积分法 难 点:定积分换元条件的掌握 重 点:换元积分法与分部积分法由牛顿-莱布尼茨公式可知,定积分的计算归结为求被积函数的原函数.在上一章中,我们已知道许多函数的原函数需要用换元法或分部积分法求得,因此,换元积分法与分部积分法对于定积分的计算也是非常重要的.1.定积分换元法 定理 假设(1) 函数)(x f 在区间],[b a 上连续;(2) 函数)(t x ϕ=在区间],[βα上有连续且不变号的导数;(3) 当t 在],[βα变化时,)(t x ϕ=的值在],[b a 上变化,且b a ==)(,)(βϕαϕ, 则有[]dt t t f dx x f ba⎰⎰'=βαϕϕ)()()(. (1)本定理证明从略.在应用时必须注意变换)(t x ϕ=应满足定理的条件,在改变积分变量的同时相应改变积分限,然后对新变量积分.例1 计算⎰-211dx xx . 解 令t x =-1,则tdt dx t x 2,12=+=.当1=x 时,0=t ;当2=x 时,1=t .于是⎰⎰⎰⎪⎭⎫ ⎝⎛+-=⋅+=-102102211112211dt t tdt t t dx x x ⎪⎭⎫⎝⎛-=-=412)arctan (210πt t .例2 计算⎰-adx x a 022)0(>a .解 令t a x sin =,则tdt a dx cos =.当0=x 时,0=t ;当a x =时,2π=t .故⎰-adx x a 022dt t a t a ⎰⋅=20cos cos πdt t a )2cos 1(2202+=⎰π2022sin 212π⎥⎦⎤⎢⎣⎡+=t t a42aπ=.显然,这个定积分的值就是圆222a y x =+在第一象限那部分的面积(图5-8).例3 计算⎰205sin cos πxdx x .解法一 令x t cos =,则xdx dt sin -=. 当0=x 时,1=t ;当2π=x 时,0=t ,于是6161sin cos 01650125=-=-=⎰⎰t dt t xdx x π. 解法二 也可以不明显地写出新变量t ,这样定积分的上、下限也不要改变.即x d x xdx x cos cos sin cos 205205⎰⎰-=ππ61610cos 61206=⎪⎭⎫ ⎝⎛--=-=πx .此例看出:定积分换元公式主要适用于第二类换元法,利用凑微分法换元不需要变换上、下限.例4 计算dx x ⎰-π0sin 1.解dx x ⎰-πsin 1⎰-=π2cos 2sindx xx 注去绝对值时注意符号.=⎰⎰-+-πππ220)2cos 2(sin )2sin 2(cos dx xx dx x x=222(sin cos )2(cos sin )2222x x x xπππ+--=)12(4-.例5 计算⎰+π2sin 3sin dx xx .解 设x t cos =,则当0=x 时,1=t ;当π=x 时,1-=t .⎰+π2sin 3sin dx xx =⎰⎰---=--1111224141dt tdt t11arcsin23t π-==.例6 设)(x f 在],[a a -上连续,证明: (1) 若)(x f 为奇函数,则0)(=⎰-aa dx x f ;(2) 若)(x f 为偶函数,则dx x f dx x f aa a)(2)(0⎰⎰=-.证 由于dx x f dx x f dx x f aaaa)()()(0⎰⎰⎰+=--,对上式右端第一个积分作变换t x -=,有dt t f dt t f dx x f aaa)()()(00-=--=⎰⎰⎰-dx x f a)(0-=⎰.故dx x f x f dx x f aaa)]()([)(0+-=⎰⎰-.(1) 当)(x f 为奇函数时,)()(x f x f -=-,故00)(0==⎰⎰-dx dx x f aaa.(2) 当)(x f 为偶函数时,)()(x f x f =-,故dx x f dx x f dx x f aaaa)(2)(2)(0⎰⎰⎰==-.利用例6的结论能很方便地求出一些定积分的值. 例如0sin 6=⎰-xdx x ππ.⎰⎰---+=-+1122112)424()4(dx x x dx x x 80411=+=⎰-dx .2.定积分的分部积分法设函数)(x u 与)(x v 均在区间],[b a 上有连续的导数,由微分法则vdu udv uv d +=)(,可得vdu uv d udv -=)(.等式两边同时在区间],[b a 上积分,有vdu uv udv baba ba⎰⎰-=)(. (2)公式(2)称为定积分的分部积分公式,其中a 与b 是自变量x 的下限与上限. 例7 计算xdx eln 1⎰.解 令dx dv x u ==,ln ,则x v xdxdu ==,.故 xdx x x x xdx e ee⋅-=⎰⎰111]ln [ln 1)1()0(=---=e e .例8 计算xdx x 3cos 0⎰π.解x xd xdx x 3sin 313cos 00⎰⎰=ππ⎥⎦⎤⎢⎣⎡-=⎰xdx x x 3sin 3sin 3100ππ⎥⎦⎤⎢⎣⎡+=π03cos 31031x 92-=. 例9 计算⎰+42cos 1πdx xx.解⎰+42cos 1πdx x x =⎰⎰=4042tan 21cos 2ππx xd dx x x=)tan tan (214040⎰-ππxdx x x =)cos ln 4(2140ππx +=2ln 418-π. 例10 计算⎰403sec πxdx .解⎰⎰⎰=⋅=40402403tan sec sec sec sec πππx xd xdx x xdxxdx x x x x tan sec tan tan sec 4040⋅-=⎰⎰ππxdx x sec )1(sec 2240--=⎰π⎰⎰+-=40403sec sec 2ππxdx xdx40403)tan ln(sec sec 2ππx x xdx ++-=⎰)12ln(sec 2403++-=⎰πxdx .即 )12ln(2sec 2403++=⎰πxdx 注移项得.故 )12ln(2122sec 43++=⎰πxdx . 例11 计算dx e x ⎰10.解 先用换元法,令t x =,则tdt dx t x 2,2==. 当0=x 时,0=t ;当1=x 时,1=t . 于是dt te dx e t x⎰⎰=112.再用分部积分法,得dx e x ⎰111122()t t t tde t e e dt ==-⎰⎰2)]1([2=--=e e .小结:1.定积分换元积分定理:假设 (1) 函数)(x f 在区间],[b a 上连续;(2) 函数)(t x ϕ=在区间],[βα上有连续且不变号的导数;(3) 当t 在],[βα变化时,)(t x ϕ=的值在],[b a 上变化,且b a ==)(,)(βϕαϕ. 则有[]dt t t f dx x f ba⎰⎰'=βαϕϕ)()()(.2.定积分分部积分法:设函数)(x u 与)(x v 均在区间],[b a 上有连续的导数,则有vdu uv udv baba ba⎰⎰-=)(.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分的换元法和分部积分法
文章标题:深入探讨定积分的换元法和分部积分法
在高等数学中,定积分的换元法和分部积分法是两种重要的积分求解
方法,它们在求解复杂积分问题时起着至关重要的作用。

通过这篇文章,我们将从简到繁,由浅入深地探讨定积分的换元法和分部积分法,以便读者能更加全面、深刻地理解这两种方法。

1. 定积分的换元法
在定积分的换元法中,我们通过引入一个新的变量来简化被积函数,
从而更容易求解定积分。

在求解具体的定积分时,我们常常会遇到被
积函数与变量之间的复杂关系,利用换元法可以将原积分转化为一个
简单的形式,然后通过简单的积分求解方法来得到最终的结果。

举例来说,当被积函数为sin(x^2)时,我们可以通过令u=x^2来进行换元,将原积分化为sin(u)的形式,从而更容易求解出积分的结果。

2. 定积分的分部积分法
与换元法类似,分部积分法也是在求解定积分时经常使用的方法之一。

通过分部积分法,我们可以将原积分中的乘积形式进行分解,然后转
化为一个更容易求解的形式。

在分部积分法中,我们通常选择一个函
数作为u,选择另一个函数的微分作为dv,然后通过积分公式将原积
分转化为u*v的形式,最终求解出积分的结果。

举例来说,当被积函数为x*cos(x)时,我们可以通过选择u=x和
dv=cos(x)dx来进行分部积分,将原积分化为x*sin(x)-∫(sin(x))dx的形式,从而更容易求解出积分的结果。

通过以上简单的介绍,我们可以看到定积分的换元法和分部积分法在简化复杂积分问题时起着至关重要的作用。

通过这两种方法,我们可以将原积分转化为更容易求解的形式,从而更加灵活地解决数学中的积分难题。

总结回顾:
在本文中,我们从简到繁,由浅入深地探讨了定积分的换元法和分部积分法。

通过具体的例子,我们展示了这两种方法在求解复杂积分问题时的重要作用。

我们希望读者通过本文的介绍,能更加全面、深刻地理解定积分的换元法和分部积分法,并在实际的数学问题中灵活运用这两种方法。

个人观点和理解:
作为数学专业的学者,我个人深信定积分的换元法和分部积分法是数学中至关重要的方法之一。

在实际的数学研究和应用中,这两种方法不仅能帮助我们解决复杂的积分问题,还能促进数学领域的发展。

我鼓励学习数学的同仁们要深入理解定积分的换元法和分部积分法,以便更好地应用它们解决实际问题。

通过本文章的撰写,我希望读者能更加全面地了解定积分的换元法和分部积分法,并在数学求解过程中能灵活运用这两种方法。

也希望读者能对这两种方法有更深入的理解,从而扩展数学思维,提高数学解题能力。

我们将深入探讨定积分的换元法,通过一些具体的例子来展示其在实际问题中的应用。

当遇到被积函数为sqrt(1-x^2)时,我们可以通过令x=sin(u)来进行换元,将原积分转化为cos(u)的形式,从而更容易求解出积分的结果。

通过这种方法,我们可以看到换元法在简化复杂积分问题时的重要性和灵活性。

我们将继续深入探讨定积分的分部积分法,通过更多具体的例子来展示其在实际问题中的应用。

当遇到被积函数为x*sin(x)时,我们可以通过选择u=x和dv=sin(x)dx来进行分部积分,将原积分化为-
x*cos(x)+∫(cos(x))dx的形式,从而更容易求解出积分的结果。

通过这种方法,我们可以看到分部积分法在简化复杂积分问题时的重要性和灵活性。

我们还可以探讨定积分的换元法和分部积分法在实际科学领域中的应用。

在物理学和工程学中,经常会遇到复杂的积分问题,通过换元法和分部积分法,可以简化计算过程,从而更快地得到积分的结果。

这两种方法在实际科学研究和工程应用中也具有重要的价值和意义。

我们可以探讨定积分的换元法和分部积分法在数学教学中的重要性。

通过深入理解和灵活运用这两种方法,可以帮助学生更好地掌握积分的求解技巧,提高数学解题能力。

也可以激发学生对数学的兴趣,促进他们在数学领域的进一步学习和研究。

通过以上的探讨和展示,我们可以看到定积分的换元法和分部积分法在数学领域和实际应用中的重要性和广泛性。

我相信通过深入理解和灵活运用这两种方法,我们能更好地解决复杂的积分问题,促进数学领域的发展和应用。

希望本文的内容能够帮助读者更加全面、深刻地理解定积分的换元法和分部积分法,从而提高他们在数学求解过程中的灵活性和解题能力。

相关文档
最新文档