数学分析_考研资料

合集下载

北大数学分析考研用书推荐

北大数学分析考研用书推荐

北大数学分析考研用书推荐
以下是几本适合北大数学分析考研使用的教材推荐:
1. 《数学分析教程》(第二版)作者:卫京,庄加宁:这本教材内容丰富,结构严谨,覆盖了数学分析的基础知识和常用工具,适合考研使用。

2. 《数学分析习题与解答》作者:周民强:这本书以解题为主线,适合考研学生巩固分析知识和提高解题能力。

3. 《数学分析基础教程》作者:日本数学会:这本书由日本数学会编写,注重理论推导和证明方法的训练,适合对分析理论感兴趣的考生。

4. 《数学分析习题集》作者:罗穆桐:这本书是考研数学分析的经典习题集,包含大量习题和详细解答,适合考生进行大量练习和巩固知识。

5. 《数学分析教程与习题精解》作者:张福慧,杨昆:这本书内容系统全面,既包含了教程,也有配套的习题精解,适合考生系统学习和巩固知识。

需要注意的是,选择适合自己的教材是很重要的,可以根据个人的情况和学习风格选择合适的教材进行学习。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不一定连续D. f(x)在x=a处可微答案:A2. 极限lim(x→0)(sinx/x)的值为:A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-6x^2+11x-6的极值点为:A. 1B. 2C. 3D. 1和2答案:D4. 若函数f(x)在区间(a,b)上连续,则下列说法错误的是:A. f(x)在(a,b)上必有最大值B. f(x)在(a,b)上必有最小值C. f(x)在(a,b)上可以没有最大值D. f(x)在(a,b)上可以没有最小值答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2+3x+2,则f'(x)=_________。

答案:2x+32. 函数y=x^3-3x+1在x=1处的切线斜率为_________。

答案:13. 设函数f(x)=ln(x),则f'(x)=_________。

答案:1/x4. 若函数f(x)=x^2-4x+c在x=2处取得极小值,则c=_________。

答案:4三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:函数f(x)的导数为f'(x)=3x^2-12x+11。

令f'(x)>0,解得x<1或x>3;令f'(x)<0,解得1<x<3。

因此,函数f(x)在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。

2. 求极限lim(x→0)(x^2sinx/x^3)。

答案:lim(x→0)(x^2sinx/x^3) = lim(x→0)(sinx/x^2) = 0。

3. 证明函数f(x)=x^3+3x^2-9x+1在x=-3处取得极小值。

考研数学分析重要考点归纳

考研数学分析重要考点归纳

考研数学分析重要考点归纳1.1考点归纳一、数列极限1.定义设{an}是一个数列,,对∀ε>0,∃正整数N,当时,有,则称{an}收敛于a,则a称为数列的极限,记作.(1)无穷小数列:;(2)无穷大数列:;(3)发散数列:若极限不存在,则称为发散数列;(4)收敛⇔的任何子列都收敛.2.性质(1)唯一性收敛数列{an}只有一个极限.(2)有界性若{an}收敛,则∃正数M,对∀n∈N*有.(3)保号性若(或<0)则对或(),∃正数N,当n>N时有an>a′(或an<a′).(4)保不等式性收敛数列{an}与{bn}.若∃正数N0,当n>N0时有a n≤bn,则(5)夹逼性设{an},{bn}都收敛于a,{cn}满足:∃正数N0,当n>N0时有则{cn}收敛,且3.四则运算4.单调有界定理单调且有界的数列一定存在极限.5.柯西收敛准则{an}收敛⇔对∀ε>0,∃正整数N,当n,m>N时有二、函数1.函数三要素定义域值域对应法则2.性质(1)有界性若∃正数M,对∀x∈D有则称f在D上有界.(2)单调性①单调递增对∀x1,x2∈D.当x1<x2时,f(x1)<f(x2);②单调递减对∀x1,x2∈D.当x1<x2时,f(x1)>f(x2).(3)奇偶性D关于原点对称①奇函数f(-x)=-f(x),图像关于原点对称;②偶函数f(-x)=f(x),图像关于y轴对称.(4)周期性若∃T>0,对一切x∈D,x+T∈D,有f(x+T)=f(x),称T为函数f的周期,T的最小值称为最小正周期.3.分类(1)复合函数形如y=f(g(x)),u=g(x)的函数称为复合函数,对于每一个x,经过中间变量u,都得到唯一确定的y值,其中u=g(x)的值域不能超过y=f(u)的定义域.(2)反函数设函数f:D→f(D)是单射,则它存在逆映射,称此映射为函数f的反函数.注:互为反函数的两个函数的图像关于直线y=x对称.三、函数极限1.概念(1)函数f在点x0的极限f定义在U°(x0;δ')上,A为定数.对∀ε>0,若∃正数δ(<δ'),当0<|x -x0|<δ时有|f(x)-A|<ε,则称函数f在点x0的极限为A,记作(2)函数f在x趋于∞时的极限f定义在[a,+∞)上,A为定数.对∀ε>0,若∃正数N(≥a),使得当x>N 时有则称函数f在x趋于∞时的极限为A,记作(3)左极限f定义在[x0,x0+η)上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有则称A为f在点x0的左极限,记为(4)右极限f定义在(x0-η,x0]上,A为定数.对∀给定的ε>0,总∃δ>0,当时,有就称A为f在点x0的右极限,记为(5).2.性质(1)唯一性;(2)有界性;(3)保号性;(4)保不等式性;(5)夹逼性.注:函数极限性质同数列极限性质类似.3.归结原则f定义在上,存在⇔对任何含于且以x0为极限的数列,都存在且相等.4.单调有界定理f为定义在上的单调有界函数,则右极限存在.5.柯西准则f定义在上,存在⇔∀ε>0,∃正数,使得对,有6.两个重要极限7.无穷小量与无穷大量(1)无穷小①时的无穷小,得;②时的无穷小,得.(2)无穷小的性质若f(x)为无穷小量,g(x)为有界量,则它们的积f(x)g(x)也为无穷小量.(3)无穷大f(x)定义在U0(x0)上.对∀给定的正数M,总∃正数(或正数X),只要(或|x|>X),总有|f(x)|>M,则称f为当或()时的无穷大.8.相关无穷小的定义(1)高、低阶无穷小若,则称x→x0时f为g的高阶无穷小量(或称g为f的低阶无穷小量),记作(2)同阶无穷小f和g定义U0(x0)上,若∃正数K和L,满足则称f与g为当x→x0时的同阶无穷小量.(3)等价无穷小若,则称f与g是当x→x0时的等价无穷小量,记作注:常用的等价无穷小9.渐近线设曲线y=f(x)(1)斜渐近线y=kx+b(2)垂直渐近线若(或者左、右极限趋于无穷),则垂直渐近线为.(3)水平渐近线若(或者),则水平渐近线为y=b.四、函数的连续性1.概念(1)连续的定义f(x)定义在U(x0)上,若则f在点x0连续.2.性质(1)有界性;(2)保号性;(3)四则运算.3.间断点(1)定义函数f(x)在点x0处不连续,则称点x0为函数f(x)的不连续点或间断点.如果x0是函数f(x)的间断点,但左极限及右极限都存在,则x0称为函数f(x)的第一类间断点.不是第一类间断点的任何间断点,称为第二类间断点.(2)类型①第一类间断点a.可去间断点在间断点处函数左右极限相等.b.跳跃间断点在间断点处函数左右极限不相等.②第二类间断点a.无穷间断点在间断点处函数极限为无穷大(无穷小).b.振荡间断点在间断点处函数值在一个区间变化.4.定理(1)最值定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有最大值与最小值.(2)有界性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上有界.(3)介值性定理f为闭区间[a,b]上的连续函数,f(x)可以取介于最大值和最小值之间的任何值.(4)根的存在定理f为闭区间[a,b]上的连续函数,且f(a)·f(b)<0,则在(a,b)内至少有一点ξ,使得.5.一致连续(1)定义f定义在区间I上,如果对于∀给定的正数ε,总∃正数δ,使得对于区间I上的任意两点x1、x2,当时,有则称f在I上一致连续.(2)一致连续与连续的关系如果f(x)在区间I上一致连续,则f(x)在I上一定连续;当f(x)在区间I 上连续,f(x)在区间I上不一定一致连续.(3)一致连续性定理f为闭区间[a,b]上的连续函数,则f在[a,b]上一致连续.。

数学分析考研辅导班讲义1

数学分析考研辅导班讲义1

n
2n p
p
11 2n1 2n2

1 2n
p

1 2n1

1
1 2p
1

1 2
1 2n

1 n

故 0 , N 1 0 ,当 n N 时, 自然数 p ,由以上不等式知
an p an

1 n



故an 收敛. 定理 1.2.2 数列an 收敛 an 的任意两个子数列都收敛,且都收敛于同一

1
2 n2 n
n

1 n2 1

2 n2
2

n n2
n

1
2 n2 1
n

nn 1
2 n2 1

lim n n 1
n 2 n2 1

1 2
,故原极限

1 2
.
例 1.2.8 设 0 x1 1, xn1 xn 1 xn , n 1, 2, , 证 明 xn 收 敛 , 并 求
第 3 步 写出 u 在不同区间段上 x 所对应的变化区间;
第 4 步 将第 3 步中所得结果代入 y f (u) 中,便得 y f (g(x)) 的
表达式及相应 x 的变化区间 .
练习题
1

f
(x)

1, 0,
x 1 x 1

g(x)

2 x2,

2,
x 2 x 2
ab
b 0 不存在 b 0 不定 a 0 不存在 a 0 不定
不确定
lim an b n n

考研数学分析详解

考研数学分析详解

考研数学分析详解当然,有的同学不考数学。

不考数学的请跳过这部分。

考数学的请注意,数学对你来说是最重要的科目。

首先大家应该知道,统考的数学包括数学一、数学二、数学三,相同的是满分都是150分,不同的是难度和考试范围以及适用专业。

适用专业请大家参照2018年学术型研究生考试科目(参见附录6),这里就不再赘述了。

考试范围方面,数学一中,高等数学占56%,线性代数占22%,概率论与数理统计占22%;数学二中,高等数学占78%,线性代数占22%,概率论与数理统计不考;数学三中,高等数学(或微积分)占56%,线性代数占22%,概率论与数理统计占22%。

考试内容方面,因篇幅有限,具体的数学一、数学二、数学三大纲及考试内容请自行在网络上搜索。

这里仅介绍大纲中要求的章节范围。

数学一:①高等数学(函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其概率分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

数学二:①高等数学(函数、极限、连续、一元函数微积分学、多元函数微积分学、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型)。

数学三:①高等数学(这里请注意。

上面我为什么在说数学三的时候加了一个括号写上微积分呢?这个就跟我们要看的一些数学复习的经典教材有关了!数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。

而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);③概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

伍胜健《数学分析》(第1册)配套题库【考研真题+章节题库+模拟试题】【圣才出品】

伍胜健《数学分析》(第1册)配套题库【考研真题+章节题库+模拟试题】【圣才出品】

,使得
存在
,使得
。改变 n 的值,有
[北 取,
依次类推,有 且
而且满足
很明显,
为一个严格单调递减的数列,
3.设{xy}为所有 xy 乘积的集合,其中
,且 x≥0 及 y≥0.证明:
[武汉大学研]
证明:设



,可取
.且使


,∴存在
由③有

由②,④得证
4.设 解:当 当-1≤x<0 时,
.[同济大学研]
第1章 函 数
一、填空题 设 A.0 B.1 C. D. 【答案】B 【解析】
( ).[浙江大学研]
二、解答题
1.使用确界原理证明单调递减的有界数列必有极限。[天津大学研]
证明:确界原理,即有上界的非空集必有上确界,有下界的非空集必有下确界。
设 为单调递减且有界的数列,则由确界原理可知,
存在。下面证该下确界就是 的极限。
由下确界定义:
(1)对任意的 n,有
,当然
成立,这ε为任意小的正数。
(2)对上述任意的ε,存在 N,当 n>N 时,有
。又因为条件(1),所以
成立。
2.设 S 是非空集合,ξ=infS,试证明:若ξ∈S,则 S 中必存在一个严格单调递减的
,使得
京航空航天大学研]
证明:若ξ=infS,即(1)对任意的 x∈S,有 X≥ξ:(2)对任意的ε>0,存在

证明:
,并利用(1),求极限
证明:(1)(i)先设
,由①式,
.[中国人民大学研] ,存在 N>0,当 n>N 时有
特别取 n=N+1,N+2,……

数学分析(考研必看)

数学分析(考研必看)

数学分析第一章实数集与函数§1.实数一、 实数及其性质1. 实数的定义:实数,是有理数和无理数的总称。

2. 实数的六大性质:①(四则运算封闭性):实数集R 对加、减、乘、除(除数不为0)四则运算封闭,即任意两个实数的和、差、积、商(除数不为0)仍然是实数。

②(有序性):实数集是有序的,即任意两个实数a, b 必满足以下三种关系之一:a<b 、a=b 、a>b 。

③(传递性):实数的大小关系具有传递性,即若a>b, b>c 则a>c 。

④(阿基米德性):实数具有阿基米德性,即对任何a, b ∈R, 若b>a>0,则存在正整数na>b.⑤(稠密性):实数集R 具有稠密性,即任意两个不相等的实数之间必有另外一个实数,且既有有理数也有无理数。

⑥实数集R 与数轴上点一一对应。

二、 绝对值与不等式1. 实数绝对值的性质: ①0;00a a a a =-≥==当且仅当时有 ②-a a a ≤≤ ③;a h h a h a h h a h <<=>-<<≤<=>-≤≤ ④a b a b a b -≤±≤+三角不等式⑤ab a b = ⑥(0)a a b b b=≠ §2数集·确界原理一、 区间与邻域1. 有限区间:开区间:{}x a x b <<记作(),a b ;闭区间:{}x a x b ≤≤记作[],a b ;半开半闭区间:{}x a x b ≤<记作[),a b ,{}x a x b <≤记作(],a b无限区间:(]{},a x a -∞=≤,(){},a x x a -∞=≤,(){},a x x a +∞=>,(){},x x R -∞+∞=-∞<<+∞=2. 邻域:设a R ∈,0>,满足绝对值不等式x a -<的全体实数x 的集合称为点a 的邻域,记作();U a 或写作()U a ,即有(){}();,U a x x a a a =-<=-+。

数学分析考研试题及答案

数学分析考研试题及答案

数学分析考研试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪个不是有界函数?A. f(x) = sin(x)B. f(x) = e^xC. f(x) = x^2D. f(x) = 1/x2. 函数f(x) = x^3在区间(-∞, +∞)上是:A. 单调递增B. 单调递减C. 有增有减D. 常数函数3. 如果函数f(x)在点x=a处连续,那么:A. f(a)存在B. f(a) = 0C. lim(x->a) f(x) = f(a)D. lim(x->a) f(x) 不存在4. 定积分∫(0,1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 2/35. 函数序列fn(x) = x^n在[0, 1]上一致收敛的n的取值范围是:A. n = 1B. n > 1C. n < 1D. n = 26. 级数∑(1/n^2)是:A. 收敛的B. 发散的C. 条件收敛的D. 无界序列7. 如果函数f(x)在区间[a, b]上可积,那么:A. f(x)在[a, b]上连续B. f(x)在[a, b]上一定有界C. f(x)在[a, b]上单调递增D. f(x)在[a, b]上无界8. 函数f(x) = |x|在x=0处:A. 连续B. 可导C. 不连续D. 不可导9. 微分方程dy/dx + y = 0的通解是:A. y = Ce^(-x)B. y = Ce^xC. y = Csin(x)D. y = Ccos(x)10. 函数f(x) = e^x在x=0处的泰勒展开式是:A. f(x) = 1 + x + ...B. f(x) = x + ...C. f(x) = 1 + x^2 + ...D. f(x) = 1 + x^3 + ...二、填空题(每题4分,共20分)11. 极限lim(x->0) (sin(x)/x) 的值是 _______。

12. 函数f(x) = x^3 - 6x^2 + 11x - 6的拐点是 _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003南开大学年数学分析一、设),,(x y x y x f w-+=其中),,(z y x f 有二阶连续偏导数,求xy w二、设数列}{n a 非负单增且a a nn =∞→lim ,证明a a a a nn n n n n =+++∞→121][lim三、设⎩⎨⎧≤>+=0,00),1ln()(2x x x x x f α试确定α的取值范围,使f(x)分别满足: (1) 极限)(lim 0x f x +→存在 (2) f(x)在x=0连续(3) f(x)在x=0可导 四、设f(x)在R 连续,证明积分ydy xdx y x f l++⎰)(22与积分路径无关 四、设f(x)在[a,b]上可导,0)2(=+b a f 且M x f ≤')(,证明2)(4)(a b Mdx x f b a -≤⎰ 六、设}{n a 单减而且收敛于0。

∑n a n sin 发散(1) 证明∑收敛n an sin(2) 证明1l i m =∞→nn n v u 其中)s i ns i n (k ak k a u k n +=∑;)sin sin (k ak k ak v n -=∑七、设dx xxe t F tx sin )(1⎰∞+-= 证明 (1)dx xxe txsin 1⎰∞+-在),0[+∞一致收敛 (2))(t F 在),0[+∞连续八、命)}({x f n 是[a,b]上定义的函数列,满足 (1)对任意0x ],[b a ∈)}({0x f n 是一个有界数列 (2)对任意0>ε,存在一个εδδ<-<-∈>)()(,],[,,0y f x f n ,y x b a y x n n 有对一切自然数时且当求证存在一个子序列)}({x f kn在[a,b]上一致收敛中科院2006年数学分析试题1求a,b 使下列函数在x=0处可导:21ax b y x +≥⎧=⎨+⎩当x 0;当x<0.2 1110,,.1n n n a ∞∞==>+∑∑n n 1已知级数发散求证级数也发散a a 3 1(1).nx dx ≥-⎰m 设m,n 0为整数,求积分x 的值4 0().aaa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e5()[,]f x a b ''设函数在含有的某个开区间内二次可导且f (a)=f (b)=0,24(,)||()()|.()a b f b f a b a ξξ''∈)≥--则存在使得|f (6 122[,]222()[,],|()||'()|),1()()|'()|.2ba b abbaaf x a b f x f t dt f x dx b a f t dt ∈≤≤-⎰⎰⎰x 设实值函数及其一阶导数在区间上连续而且f(a)=0,则max72222n D C u ()C Du uds dxdy n u u ∂∂∂=+∂∂∂⎰⎰⎰ 设是平面区域的正向边界线的外法线,则8 设曲线2222x :1y a bΓ+=的周长和所围成的面积分别为L 和S ,还令2222(2)J b x xy a y ds Γ=++⎰ ,则22S LJ π=.9 1n 110(1)32n n -∞=--∑⎰3dx 计算积分的值,并证明它也等于数项级数的和。

1+x 10 33cos ,sin (0).x a t y a t a y x ==>=求曲线绕直线旋转所成的曲面的表面积北京大学20051.设x xx x x x f sin sin 1sin )(22--=,试求)(sup lim x f x +∞→和)(inf lim x f x +∞→.2. (1)设)(x f 在开区间),(b a 可微,且)(x f '在),(b a 有界。

证明)(x f 在),(b a 一致连续.(2) 设)(x f 在开区间),(b a )(+∞<<<-∞b a 可微且一致连续,试问)(x f '在),(b a 是否一定有界。

(若肯定回答,请证明;若否定回答,举例说明) 3.设)1(sin )(22+=x x f . (1)求)(x f 的麦克劳林展开式。

(2)求)0()(n f。

)3,2,1( =n4.试作出定义在2R 中的一个函数),(y x f ,使得它在原点处同时满足以下三个条件: (1)),(y x f 的两个偏导数都存在;(2)任何方向极限都存在;(3)原点不连续5.计算⎰Lds x 2.其中L 是球面1222=++z y x 与平面0=++z y x 的交线。

6.设函数列)}({x f n 满足下列条件:(1)n ∀,)(x f n 在],[b a 连续且有)()(1x f x f n n +≤(],[b a x ∈)(2))}({x f n 点点收敛于],[b a 上的连续函数)(x s证明:)}({x f n 在],[b a 上一致收敛于)(x s大连理工大学2004年.;}{cos }{.1发散列发散的定义,并证明数叙述数列n a n上连续。

在证明:,定义上连续,对在设],[)().(inf )(],[],[)(.2b a x m t f x m b a x b a x f xt a ≤≤=∈.0)(),(.)(lim )(lim ),-()(.3'=-∞∈==∞-→-∞→ξξf c A x f x f c x f c x x 使得求证:存在一点内可导,且在设.]1,0()(:)(lim ]1,0()(.4'230上一致连续在存在。

求证上连续,可导,并且在设x f x f x x f x +→.)1(,0)1(lim ,...2,1,0.5111收敛求证:,且有设∑∞=++∞→->=-=>n n n n nn n a c a a n n a∑∞=++12.21.6n n n 的和求级数.4)(10.21)(min ,0)1()0(]1,0[)(.7'']1,0[≥∈-===∈ξξf x f f f x f x 使得),,(证明:存在上二阶可导,且有在设⎰+∞+-+∞∈>0)(),0(sin ,0.82一致收敛关于广义积分证明:对于任意t tdx e x αα.],[))(),((,)(],[)(,)(],[)(],[],[),(.9上一致收敛在函数列求证:上一致收敛,且在函数列上一致收敛,且在上连续,函数列在设二元函数b a x x f F d x c b a x b x a b a x d c b a y x f n n n n n n n ψϕψψϕϕ=<=<=<=<=⨯⎰==∞→10).1()(lim 1]10[)(.10f dx x f x x x f n n 处连续,证明:上可积,且在,在设∑=⨯Ω≤Ω=31,33.1)(.11j i j i ij ij x x a a A 得体积,求是椭球体:是实对称正定矩阵,设∑∑===ni nj i j i ij nij A x x h x x a x h R n a 121,.1)(.)()(.12的最小特征值下的最小值是在条件函数证明:上的齐二次函数阶实对称方阵,定义为设为逆时针方向处看站在第一象限的交线和立方体为平面其中计算积分:Γ>++≤≤≤≤≤≤=++Γ-+-+-=⎰Γ23,0,0,023,)()()(I .13222222z y x a z a y a x z y x dz y x dy x z dx z y 上一致收敛。

在上一致收敛,求证:在收敛而级数在上可导,级数在假定函数],[],[)(],[],[,...)2,1)((.1411'01b a u b a x u b a x u b a n x u n n n n n n n ∑∑∑∞=∞=∞=∈=.)),0[()(.15余弦级数分别展开为正弦级数和将π∈=x x x f大连理工大学2005试题一、 计算题1、求极限:1222 (i),lim nn n n a a na a a n →∞→∞+++=其中2、求极限:21lim (1)xx x e x-→∞+3、证明区间(0,1)和(0,+∞)具有相同的势。

4、计算积分21Ddxdy y x+⎰⎰,其中D 是x=0,y=1,y=x 围成的区域 5、计算第二类曲线积分:22C ydx xdy I x y --=+⎰,22:21C x y +=方向为逆时针。

6、设a>0,b>0,证明:111b ba ab b ++⎛⎫⎛⎫≥ ⎪⎪+⎝⎭⎝⎭。

二、 设f(x)为[a,b]上的有界可测函数,且2[,]()0,a b f x dx =⎰证明:f(x)在[a,b]上几乎处处为0。

三、 设函数f(x)在开区间(0,+∞)内连续且有界,是讨论f(x)在(0,+∞)内的一致连续性。

四、设2,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩,讨论函数的连续性和可微性。

五、 设f(x)在(a,b )内二次可微,求证:2()(,)()2()()"()24a b b a a b f a f f b f ξξ+-∃∈--=,满足六、 f(x)在R 上二次可导,00"()0,,()0x R f x x R f x ∀∈>∃∈<,lim '()0,lim '()0x x f x f x αβ→-∞→+∞=<=>,证明:f(x)在R 上恰有两个零点。

七、 设函数f(x)和g(x)在[a,b]内可积,证明:对[a,b]内任意分割0111||0:...,,[,],0,1,2,....lim ()()()()n i i i i n bi i i ai a x x x b x x i f g x f x g x dxξηξη+-∆→=∆=<<<=∀∈=∆=∑⎰有证明:八、 求级数:0(1)31nn n ∞=-+∑九、 讨论函数项级数222222(1)1((1))n x n xn x n e n e +∞---=--∑在(0,1)和(1,+∞)的一致收敛性讨论:22222222(1)21((1))lim()n x n xn x n n x n e n e x n e +∞----→∞=--=∑十、 计算222x d y d zy d z d x z d x d y ∑++∑⎰⎰,其中为圆锥曲面222z x y =+被平面z=0,z=2所截部分的外侧。

相关文档
最新文档