数学专业经典书籍
这20本经典数学著作 ,值得对数学有兴趣的人一睹为快

1. 莫里斯·克莱因:《古今数学思想》全书共三册,是数学史的经典名著。
著作洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。
大量第一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是著名数学家的贡献,是全书的一大特色。
中国科学院院士李大潜这样评价:“本书通过对漫长而丰富多彩的数学历史的介绍,突出了古今数学思想及其发展脉络,抓住了核心和灵魂,对推动和吸引读者走近数学、品味数学、理解数学和热爱数学必将大有助益。
”2. 波利亚:《怎样解题:数学思维的新方法》这是国际著名数学家波利亚论述中学数学教学法的普及名著,对数学教育产生了深刻的影响。
波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题“作为培养学生数学才能和教会他们思考的一种手段和途径。
全书的核心是在分解解题思维过程中得到的一张“怎样解题”表。
作者在书中引导学生按照“表”中的问题和建议思考问题,探索解题途径,进而逐步掌握解题过程的一般规律。
书中还有一部“探索法小词典”,对解题过程中典型有用的智力活动做进一步解释。
3. 艾格纳(MartinAigner) & 齐格勒 :《数学天书中的证明》书中介绍了40个著名数学问题的极富创造性和独具匠心的证明。
其中有些证明不仅想法奇特、构思精巧,作为一个整体更是天衣无缝。
难怪,西方有些虔诚的数学家将这类杰作比喻为上帝的创造。
这不是一本教科书,也不是一本专著,而是一本开阔数学视野和提高数学修养的著作。
4. 西蒙·辛格:《费马大定理:一个困惑了世间智者358年的谜》生动的故事和流畅的语言使《费马大定理:一个困惑了世间智者358年的谜》形神兼备。
全书分两条主线,一条是历代数学家征服费马大定理的努力,另一条是费马大定理证明者怀尔斯的成长之路。
其间穿插各位数学家的轶事,精彩纷呈。
5. 高斯 :《算术探索 》《算术研究》是被誉为“数学王子”的德国大数学家高斯的第一部杰作,该书写于1797年,1801年正式出版,这是一部用拉丁文写成的巨著,是数论的最经典及最具权威性的著作。
高等数学书单

高等数学是大学数学的基础课程,对于理工科学生来说尤为重要。
以下是一些经典的高等数学书单,供大家参考:1. 《高等数学》(上、下册)- 同济大学数学系编著这是一本非常经典的高等数学教材,内容全面,讲解详细,适合初学者入门。
书中包含了微积分、解析几何、线性代数等多个方面的内容,是学习高等数学的必备教材。
2. 《数学分析》(上、下册)- 陈纪修编著这本书是一本更加深入的数学分析教材,内容更加抽象和严谨。
书中介绍了实数系统、极限、连续性、微分学、积分学等多个方面的内容,适合对数学有一定基础的学生进一步学习和提高。
3. 《高等代数与解析几何》- 王萼芳编著这本书是一本综合性的高等数学教材,内容包括线性代数、解析几何等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步提高。
4. 《微积分》(上、下册)- 斯图尔特编著这本书是一本国际知名的微积分教材,内容全面,讲解清晰。
书中包含了微积分的基本概念、定理和应用,适合对微积分有一定基础的学生进一步学习和提高。
5. 《概率论与数理统计》- 陈希孺编著这本书是一本关于概率论和数理统计的经典教材,内容涵盖了概率论和数理统计的基本概念、方法和应用。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
6. 《离散数学》- 耿素云编著这本书是一本关于离散数学的经典教材,内容包括集合论、图论、逻辑等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
7. 《数值分析》- 黄皮书编著这本书是一本关于数值分析的经典教材,内容包括数值逼近、数值解方程、数值积分等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
8. 《复变函数》- 阿姆斯特朗编著这本书是一本关于复变函数的经典教材,内容包括复数、解析函数、级数等多个方面。
书中讲解详细,例题丰富,适合对数学有一定基础的学生进一步学习和提高。
9. 《常微分方程》- 阿诺尔德编著这本书是一本关于常微分方程的经典教材,内容包括常微分方程的基本概念、解法和应用。
数学好书推荐3篇

数学好书推荐第一篇:数学好书推荐数学是现代科学的基础,也是人类思维的最高境界之一。
读好数学书不仅可以提高数学成绩,更重要的是可以拓宽数学思维,培养逻辑思考能力。
下面是我推荐的几本数学好书。
1.《高等数学》张宇版《高等数学》是数学学习的基础,张宇版本的《高等数学》更是备受好评。
它全面系统地介绍了高等数学的各个分支,包括微积分、数理方程、复变函数等。
书中的例题和习题数量很多,涵盖了各种难度和类型,算是一本非常全面的高等数学入门书。
2.《线性代数及其应用》吴文俊版线性代数在数学中的地位非常重要,它是计算机科学、物理学、工程学等多个领域的基础。
吴文俊版的《线性代数及其应用》是国内线性代数教材中的佼佼者,它从基本概念出发,全面介绍了线性方程组、行列式、向量空间等知识点,同时涉及了一些实际应用,语言简单易懂,适合初学者阅读。
3.《群论导论》 Dummit版群论是现代数学中的一个分支,它的研究对象是对称性。
《群论导论》是一本非常经典的群论教材,书中包含了群的基本概念、群同态、群作用等内容,对于想要深入学习数学的读者来说,这是一本非常有价值的书籍。
4.《微积分学原理》阿波斯特尔版阿波斯特尔的《微积分学原理》是一本非常经典的微积分教材,它全面深入地介绍了微积分的各种知识点,包括导数、积分、微积分应用等。
书中涉及的例子和习题很多,难度逐渐递增,非常适合自学。
以上是我个人推荐的数学好书,这些书籍不仅可以提高数学能力,还可以帮助读者拓宽数学思路,养成优秀的逻辑思考能力。
第二篇:如何正确选择数学好书选择一本好的数学书是学习数学的关键,因为它会为我们提供一个清晰的逻辑框架和深入的理解。
以下是我个人的一些建议,可以帮助你选择适合自己的数学好书。
1.明确学习目的学习数学有很多目的,有的人是为了高考,有的人是为了追求数学的美。
不同的目的需要选择不同的数学书。
如果你是初学者,可以选择一些入门级的数学教材,比如张宇的《高等数学》;如果你是想深入学习数学,可以选择一些经典著作,比如David Hilbert和Paul Bernays的《数学基础》。
高等数学经典教材推荐书目

高等数学经典教材推荐书目高等数学是大学数学的重要组成部分,涉及到微积分、线性代数等内容。
选择一本优秀的教材对学习者来说尤为重要,可以加深对数学概念的理解,提升解题能力。
本文将为大家推荐几本经典的高等数学教材,希望能对学习者选择合适的教材提供一些建议。
一、《高等数学(一)》—同济大学数学系同济大学数学系编写的《高等数学(一)》是一本备受推崇的经典教材。
该教材以严谨的逻辑结构和清晰的数学推导,深入浅出地讲解了微积分的基本概念和方法。
书中还融入了一些实际问题和例题,帮助学生将抽象的数学知识与实际应用相结合,加深理解。
二、《高等数学(二)》—北京大学出版社由北京大学出版社出版的《高等数学(二)》也是一本经典教材。
该教材内容全面,涵盖了高等数学的多个方面,如微积分的进阶内容、微分方程的基本理论等。
书中例题丰富,题型多样,既有基础题目又有较难的拓展题目,有助于提高学生的解题能力和思维能力。
三、《高等数学(下)》—清华大学出版社清华大学出版社出版的《高等数学(下)》是一本经典中的经典。
该教材在讲解微积分理论的同时,注重培养学生的数学思维和证明能力。
书中的习题分为基础题和拓展题两部分,涵盖了各个知识点,可以帮助学生系统地巩固所学内容。
四、《线性代数与解析几何》—高等教育出版社对于想要深入学习线性代数的学习者来说,推荐一本由高等教育出版社出版的《线性代数与解析几何》。
该教材以线性代数为主线,结合解析几何,系统地介绍了线性空间、线性变换、向量的内积与正交性等内容。
书中还有大量的例题和习题,帮助学生提高理论应用能力。
五、《数学分析》—外语教学与研究出版社《数学分析》是经典的高等数学教材之一,由外语教学与研究出版社出版。
该教材以数学分析为核心内容,涵盖了实数、连续函数、微分与积分等重要概念和理论。
书中注重数学定理的证明和推导过程,帮助学生建立起扎实的数学基础。
总结:以上所推荐的几本高等数学经典教材,对于学习者来说都是非常有价值的选择。
数学专业书单

数学专业书单数学专业是一门理论性较强的学科,学习数学需要掌握一定的基础知识和技巧。
下面是一份数学专业书单,帮助学生系统学习数学知识。
1.《数学分析》数学分析是数学专业的基础课程之一,它主要研究实数、函数、极限、连续性、微积分等概念和性质。
这本书以严谨的推导和证明,帮助学生深入理解数学分析的基本原理和方法。
2.《线性代数》线性代数是数学专业的另一个重要基础课程,它研究向量空间、线性变换、矩阵、特征值等概念和性质。
这本书介绍了线性代数的基本理论和应用,包括矩阵运算、线性方程组、特征值问题等。
3.《概率论与数理统计》概率论与数理统计是数学专业的一门重要课程,它研究随机事件的概率和随机变量的统计规律。
这本书介绍了概率论和数理统计的基本概念、定理和方法,包括概率、随机变量、概率分布、参数估计、假设检验等。
4.《常微分方程》常微分方程是数学专业的一门应用数学课程,它研究描述变化规律的微分方程解的存在性、唯一性和性质。
这本书介绍了常微分方程的基本理论和求解方法,包括一阶和高阶微分方程、常系数和变系数线性微分方程、常微分方程的数值解法等。
5.《数值分析》数值分析是数学专业的一门应用数学课程,它研究利用计算机进行数值计算和数值模拟的方法和技巧。
这本书介绍了数值分析的基本原理和常用算法,包括数值逼近、数值积分、数值代数方程的求解等。
6.《离散数学》离散数学是数学专业的一门基础课程,它研究离散结构和离散对象的性质和关系。
这本书介绍了离散数学的基本概念和方法,包括集合论、图论、布尔代数、逻辑推理等。
7.《数学建模》数学建模是数学专业的一门应用数学课程,它研究利用数学方法解决实际问题的建模和求解技巧。
这本书介绍了数学建模的基本原理和方法,包括问题分析、模型构建、模型求解和模型评价等。
8.《实变函数》实变函数是数学专业的一门高级课程,它研究实数轴上的函数的性质和变化规律。
这本书介绍了实变函数的基本概念和性质,包括连续性、可微性、积分等。
关于数学的有意思的书

关于数学的有意思的书数学是一门充满魅力和趣味性的学科,它不仅能帮助我们解决现实生活中的问题,还能培养我们的逻辑思维和分析能力。
在数学的世界里,有许多有意思的书籍,它们以不同的方式展示了数学的美妙之处。
下面我将介绍几本我认为有意思的数学书籍,并对其进行简要解释。
1.《数学之美》这本书由吴军所著,以通俗易懂的方式介绍了数学在现实生活中的应用。
它通过一系列的案例和故事,向读者展示了数学在互联网、搜索引擎、推荐系统等领域的重要作用。
本书将抽象的数学概念与实际问题相结合,让读者更好地理解数学的价值和意义。
2.《数学女孩》这是一本儿童数学启蒙书,作者是日本数学家小林美智子。
书中通过生动有趣的故事,讲述了一个叫小林美智子的女孩如何运用数学知识解决各种问题。
这本书不仅能够培养孩子们对数学的兴趣,还能够让他们学会用数学的思维方式来思考和解决问题。
3.《费马大定理》这本书由西蒙·辛格所著,讲述了数学家安德鲁·怀尔斯如何证明了费马大定理。
费马大定理是数学史上最著名的未解之谜之一,它曾经困扰了数学家们几百年之久。
本书通过讲述怀尔斯的故事,向读者展示了数学家们在追求真理的道路上的坚持和智慧。
同时,作者还介绍了一些数学的基本概念和方法,使读者更好地理解费马大定理的背后。
4.《数学之园》这是一本由吴国盛编著的数学科普读物,以寓言的方式展示了数学的基本原理和方法。
书中通过一个虚构的园子,将数学的概念和问题融入到故事中,让读者在阅读的过程中感受到数学的趣味和美妙。
这本书不仅适合数学专业的学生阅读,也适合对数学感兴趣的非专业人士阅读。
5.《思考的乐趣》这是一本由罗杰·彭罗斯所著的数学启蒙书,通过一系列有趣的问题和思考,培养读者的数学思维和解决问题的能力。
书中的问题涉及到数学的各个领域,从几何到代数,从概率到数论,内容丰富多样。
通过解答这些问题,读者不仅能够学到具体的数学知识,还能够培养逻辑思维和分析问题的能力。
数学经典著作

数学经典著作数学经典著作是数学领域中具有重要影响力和较高学术价值的作品。
以下是10本经典著作的简要介绍。
1.《几何原本》《几何原本》是古希腊数学家欧几里得所著的几何学著作,是几何学的经典之作。
该著作以严谨的证明方法和逻辑结构,系统地阐述了几何学的基本概念、原理和定理,为后世几何学的发展奠定了基础。
2.《数学原理》《数学原理》是英国数学家伯特兰·罗素和阿尔弗雷德·诺思怀特·怀特海合著的数学哲学巨著。
该著作尝试通过逻辑学的方法推导出数学的基本原理,并对数学的基础进行了严格的形式化,对数学基础研究产生了重要影响。
3.《算术》《算术》是古希腊数学家尤克里德所著的一本数学著作,是古代最重要的算术教材之一。
该著作系统地阐述了算术的基本概念、运算规则和应用问题,对后世数学教育产生了深远影响。
4.《微积分原理》《微积分原理》是数学家亚历山大·格罗滕迪克所著的一本微积分教材,是微积分学的经典教材之一。
该著作详细阐述了微积分的基本概念、理论和技巧,为微积分学的发展奠定了基础。
5.《代数学引论》《代数学引论》是法国数学家约瑟夫·迪德罗所著的一本代数学教材,是代数学的经典著作之一。
该著作系统地介绍了代数学的基本概念和理论,包括线性代数、群论、环论等内容,对代数学的研究和教学起到了重要作用。
6.《数论导论》《数论导论》是数学家阿德里安-马里·勒让德所著的一本数论教材,是数论学的经典之作。
该著作详细阐述了数论的基本概念、定理和方法,包括素数分布、模运算、二次剩余等内容,为数论研究提供了重要的参考。
7.《概率论与数理统计导论》《概率论与数理统计导论》是数学家约翰·克拉默所著的一本概率论和数理统计教材,是概率论和数理统计学的经典教材之一。
该著作系统地阐述了概率论和数理统计学的基本原理、方法和应用,对概率论和数理统计学的发展产生了重要影响。
8.《数学分析引论》《数学分析引论》是法国数学家雅克·迪迪埃所著的一本数学分析教材,是数学分析学的经典教材之一。
数学必读10本经典著作

数学必读10本经典著作1、王尔德《金字塔原理》:它以有趣的证明方法深入浅出地介绍了数学的核心原理,启发着现代数学思想。
2、华罗庚《数学分析原理》:作为应用数学发展史上的代表作,数学分析原理以清晰深入的思想框架来详细讨论数学分析,考虑函数在极限、连续性等数学概念方面的应用。
3、斯蒂芬·克莱因《线性代数-方程组与空间观念》:这本书探究到最基础的线性代数学科,如矩阵与行列式、向量空间和线性变换,并介绍互补性定理及其应用。
4、伯纳德·穆勒《抽象代数》:这本书是数学史上关于组合论的重要著作,介绍了群论中的概念及其应用,如有限群、有限域,以及环论的工具。
5、乔治·夏普《微积分的概念和原理》:全书分为三部分,介绍微积分的历史、三大概念:函数、变量和微分,以及定积分和曲线积分运算规则。
6、艾伦·默里《复变函数学》:它解释了复数构造的函数及其应用,特别是潜伏在复变函数和数论领域的有趣表现,构成了复数及其积分的重要基础。
7、威廉·希尔顿·汤普森《代数几何》:这本书是研究几何理论的核心文献,介绍了代数几何在各种几何体中的应用,如三角形、圆、曲线等等。
8、弗拉基米尔·高尔基《数学分析与文章》:这本书包含了数学史上最强大的数学思想,讨论了应用数学解决实际三维空间问题的方法,深入浅出地探索了单变量函数的连续性。
9、罗斯培根·萨瑟兰·特拉普《椭圆型微分方程》:从具体的偏微分方程的定义出发,讨论了椭圆型方程的解的性质及其关系,是一本实用性强的有关微分方程的经典著作。
10、詹姆斯·玛斯·布莱尔《几何学推理》:布莱尔探讨了几何推理概念及其在数学和科学研究中的作用,用新颖的思路分析和例子,打开了拓展几何学思想的新路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、“数学分析”“数学分析”是数学或计算专业最重要的一门课,而且是今后数学专业大部分课程的基础,经常从一个知识点就能引申出今后的一门课,同时它也是初学时比较难的一门课。
这里的“难”主要是指对数学分析思想和方法的不适应(高等数学上的方法与初等数学的方法有很大不同),其实随着学习的深入,适应了方法后,会感觉一点一点地容易起来,比如当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期(各个院校应该一样吧),学的时间也够长的~本课程主要讲的是以集合为基础而发展起来的变量和函数中的数学规律、分析与计算,是通往高等数学领域的基础工具之一。
这么多年来,国内外出现了很多非常优秀的教材和习题集以及辅导书,而且很多高校一直使用着。
【教材】国内比较好的有(仅列出主要的,排列不分先后,下同):1《数学分析》(共两册) 华东师范大学数学系编著这应该是师范类使用最多的书,课后习题编排的还不错,同时这也是考研用得比较多的一本书。
书的最后讲了一些流形上的微积分。
虽然是师范类的书,不过还是值得一看的。
2《数学分析新讲》(共三册) 张筑生著很好的书,内容和高度在国内算得上是比较突出的。
值得一提的是,张老师文笔清晰详细,证明深入浅出,通俗易懂。
这个对初学者来说非常有帮助。
本书同时也被公认为是一本具有新观点的书,主要体现在一些经典问题处理方法上与一般的书有所不同:本书比较强调一般化,融入了一些更高的观点,如泛函、点集拓扑等。
尤其精彩的是,这本书里面提供了一些问题讨论的专题附录,如Stolz定理、正交曲线坐标系中的场论计算、二项式级数在收敛区间端点的敛散情况、布劳威尔不动点定理、斯通-维尔斯特拉斯逼近定理及其证明,等等。
本书书在证明过程中通过技术化处理,降低了难度,容易被一般人理解。
遗憾的是书中没有课后习题,又由于书写的早,有的符号以现在的观点来看,不是很标准(按照张老师本人的说法,北大出版社找了家根本不懂怎么印数学书的印刷厂,所以版面不是很好看);另外感觉实数理论部分和含参数广义积分那章的内容写得不太全面。
不过整体上本书还是瑕不掩瑜的。
张老师多年来疾病缠身,写这本书也是呕心沥血,手稿前后写了差不多五遍。
像这样身患重病却为写书而兢兢业业地工作,其间所需要花费的精力可谓远非常人所能胜任的,以至于他在书的后记中也引了"都云作者痴,谁解其中味"这句曹雪芹自叹的话。
不愿看到的是,张老师最终因劳累和疾病于02年去世。
这也使得张老师重新修改此书的上述缺点,完善后再出新版的愿望成为不可能,这不能不说是这本书的遗憾。
3《数学分析》(共两册) 李成章,黄玉民编作者是南开大学数学系老师,本书也是“南开大学数学教学丛书”里的“数学分析”分册,其深度与《数学分析新讲》类似,每章中附有丰富的习题。
还好本书关于实数完备性那几个公理的关系写的比较全面,多元微积分学和含参数广义积分写的也相当详细(这也正好补上了《新讲》的不足^_^),不过感觉级数部分还是写得不是很详细。
书里面有一些提高性的内容,可以看看。
4《数学分析》(第3版) 欧阳光中,朱学炎,金福临,陈传璋著普通高等教育“十一五”国家级规划教材。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,据说是用物理的观点写的,而且有的地方确实如果不听老师讲,你不知道它在说什么。
虽然如此,许多大学都还是把它作为教材或研究生入学考试的指定用书。
可以说,它是一本优点与缺点一样突出的老教科书。
赞2010-8-25 20:00回复2楼5《数学分析》(共两册) 陈纪修,於崇华, 金路著考研常用指定教材。
6《数学分析教程》(共两册)常庚哲,史济怀著里面有插值与逼近初步内容,因此相对来说更适合信息与计算专业的学生。
7《数学分析》(共三册) 徐森林,金亚东,薛春华著感觉很清晰,不罗嗦。
另外,书的符号系统和版面相当不错。
8《高等数学引论》(共四卷) 华罗庚著别看是“引论”,以为讲的东西似乎不是什么重要的,其实这套书(也没有完成最初的计划)的原稿是六十年代初华先生在王元先生的辅助下对科大学生开课时的讲义。
那时候他们是一个教授负责一届学生的教学(另外两位负责过一届学生的是关肇直和吴文俊),所以华先生的这本书里面涉及有很多方面的知识的。
也是出于一种尝试吧,华先生这书里面有一些不属于传统教学内容的东西,还包括一些应用,可以一读。
作为教科书来说,内容多了,因此最好作为课外兴趣阅读。
其中前三卷(册)属于数学分析的所有内容,第四卷(册)主要介绍代数矩阵论的基本理论及其应用。
国外经典教材有:9《微积分学教程》(共三卷),《数学分析原理》(共两卷) 菲赫金哥尔茨著不用多说,几乎每个对数学稍微了解一些的人都知道它的大名。
书中很少涉及现在流行的集合论的观点,但对初学者而言毫无影响,甚至使一些概念更清晰了。
书的内容也相当的翔实,每本书很厚(因此也很贵,记得好像每本五十多RMB),字号又不大。
由于我们从小是学习欧美符号系统的,不习惯苏联的一套符号系统,看这本书还是很麻烦,并且还很贵,个人建议作为参考书来使用。
其实连作者本人(莫斯科大学的教授,门下弟子无数,包括后来得诺贝尔经济学奖的著名数学家Kantorovitch)都承认不太合适作为教材,为此他才给出了适合做教材的后一套书,这是一个精简的版本(有所补充的是在书的最后给出了一个后续课程的简介)。
毫无疑问,这套书代表了以古典的方式处理数学分析内容(指不引入实变,泛函的观念)的最高水平,考虑到在中国的印数就以十万计,可能在世界范围内也只有Goursat的书可以与之相比了.10《数学分析原理》Rudin著这本书很难,包括了基础拓扑结构,微分形式的积分等,而且作者假设很多东西你都可以看懂,所以写得很简洁,对于没有一定基础的大一新生来说,很难读懂书中所讲。
不过可以拿它来当一本不错的《数学分析》参考,也可作为数学分析的提高用书。
11《数学分析》(共两卷) 卓里奇著与常见的数学分析教科书相比,本书的内容比较新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微分几何等)的基本概念、思想和方法,有关应用的内容也更加贴近现代自然科学。
感觉还是喜欢9和10。
12《数学分析讲义》阿黑波夫,萨多夫尼奇,丘巴里阔夫著内容与传统教科书编排顺序不同,单本的,不厚,但内容能够满足传统教学需求。
书中附有用于讨论和示范性问题和习题。
13《数学分析》(共两卷) Zorich著经典英文数学教材系列之一,难度较大。
14《数学分析》Apostol(阿波斯托尔)著本书是一部现代数学名著,内容涵盖了初等微积分以及实变函数论和复变函数论等内容。
自20世纪70年代面世以来,该书一直受到西方学术界、教育界的广泛推崇,并被许多知名大学指定为教材。
15《微积分和数学分析引论》(共两卷)库朗,约翰著又一本美国的经典数学分析书,每卷都有几个分册,内容还是很丰富的。
有人认为书中的一些观点现在已经不流行了,但是从“数学分析”作为数学相关专业的一门基础课的方面来说,本书还是应该认真看看的。
2010-8-25 20:00回复3楼【习题集】16《吉米多维奇数学分析习题集》吉米多维奇著。
还没有做就早闻其名的书,一看之后,确实不负其名望。
应该说,这是本学分析的人都要做的习题集。
不过题目有几千道,而且其中计算题又占绝大多数,正好而且现在市面上有各种精选本,所以大家可以做一些精选本。
但大家千万要自己做,不要浮躁,不然你什么也学不到。
17《数学分析习题课教材》第一版或《数学分析解题指南》第2版林源渠, 方企勤著两本书一样的。
第一版网上有电子版。
后一本书在每一节中,设有内容提要、典型例题分析,以及供学生自己做的练习题等部分,书末附有答案,对证明题的大部分给出了提示或解答。
本书许多题给出了多种多样解法,某些解法是吸取学生试卷中的想法演变而得的,特别是毕业于北京大学数学系的、国内外知名的当今青年数学家们在学生阶段的习题课上和各种测验中表现出来的睿智给本书增添了不可多得的精彩。
本书的另外一大特色是:辅导怎样“答”题的同时,还通过“敲条件,举反例”等方式引导学生如何“问”问题,就是如何给自己“提问题”。
18《数学分析中的典型问题与方法》第2版裴礼文著据说本书是为数学系考研量身订做的书。
书中搜集了不少考研和竞赛试题,题型丰富、知识面广、难度较大,因此对思维要求较高,适合报考偏重理论的学校(如北大、南开等等)的同学使用。
第二版有1000多页,比之第一版,更新了一些试题,提示也更详细了。
总的来说,性价比非常高。
19《数学分析习题集》林源渠,方企勤等这本书和16的两本成成一套。
算是很老的书。
【辅导书】20《数学分析八讲》辛钦著大师著作,多的不说,值得看!21《数学分析:定理·问题·方法》胡适耕,姚云飞著强烈推荐这本既可作为教材又可作为辅导书的好书。
本书的重点放在特别富有启发性的问题与方法上:结合800多道例题来说明节前的概要总结所指出的方法和技巧,你能从中学到很多。
22《数学分析原理与方法》胡适耕,张显文著模式跟上一本书一样,看问题很独到。
同样既可作为教材又可作为辅导书。
很喜欢老胡的风格。
23《数学分析的理论、方法与技巧》邓乐斌编重点推荐。
24《在南开大学的演讲·微积分》陈省身著很早的东西了~ 网上下载得到,不过以上那个名字我也不太确定,反正有好几种叫法。
据说好像网络上流传的版本少了一些内容?不知道少的是不是陈老的《微分几何讲义》。
25《数学分析内容、方法与技巧》孙清华, 孙昊著还行,该说到的题型都说到了。
26《数学分析习题课讲义》(上下两册)谢惠民等编这是一位学长的评价:这本书有些相见恨晚的感觉,其难度与于裴礼文的书相当,甚至过之,而且习题很有代表性。
它适合那些挑战北大、南开等名校的考生,就08年北大数分试题难度看,不超过此书的课后习题。
本书对于诸位数分高手也是个强有力的挑战!当然,这本书也有点“问题”。
那就是课后习题没答案,只有提示(部分习题)。
【提高】27《数学分析的方法及例题选讲:分析学的思想、方法与技巧》徐利治著能学到不少通常辅导书上没有的好方法的书。
这本书里面涵盖了少量非数学分析的内容,如不等式、组合学等。
并且内容比较深刻,都是分析学里面一些基本问题的深入探讨,每个问题都是定理的形式陈列的,不过没有详细地证明。
2010-8-25 20:00回复4楼顺便提一下,徐教授的书,大多比较好,像《组合学讲义》就不错,书中是用现代集合的观点来写的。
28《数学分析中的问题和定理》G.Polya(波利亚),G.Szego(舍贵)著该书的内容非常丰富,在学习数学分析的阶段,可看第一卷的前面一半,后面就全是复变的东西了。
在历史上,这是一套曾经使好几代数学家都受益匪浅的经典著作。
这套书的另一个好处就是题目难归难,后面还是有答案或提示的.29《数学分析问题研究与评注》汪林等编著这本书很老了,可以到图书馆借。