钢结构之受弯构件的强度

合集下载

钢结构受弯构件的计算

钢结构受弯构件的计算

钢结构受弯构件的计算1.受弯构件的力学模型受弯构件通常由横截面为直角梁的矩形或者工字形钢材组成。

其在受力时,会形成弯曲形状,上部为受压区,下部为受拉区。

为了进行计算,需要将受弯构件简化为力学模型,通常采用简支梁或者悬臂梁。

2.受弯构件的受力分析受弯构件在受力时,上部会形成压应力,下部会形成拉应力。

首先需要根据施加载荷的形式和大小,进行受力分析。

常见的施加载荷有集中力、均布力、温度应变和装配应变等。

3.弯矩计算弯矩是受弯构件设计中的重要参数,用于反映材料的抗弯性能。

弯矩的计算可以通过力学平衡方程和构件截面的几何特性来进行。

对于简单的受弯构件,可以根据荷载和材料性能直接计算得到弯矩值。

对于复杂的受弯构件,需要使用力学原理和数值计算方法。

4.应力计算受弯构件在承受弯矩时,会产生应力,应力的计算是结构设计中的关键环节。

主要有弯曲应力、剪应力和轴向应力。

弯曲应力是受弯构件中最主要的应力,可以通过受弯构件的弯曲截面惯性矩和截面模量来计算。

5.抗弯设计在进行抗弯设计时,需要根据弯矩和应力的计算结果,选择合适的钢材型号和截面尺寸。

一般来说,抗弯设计要满足两个条件:第一是满足弯矩设计要求,即受弯构件在设计工况下的弯矩不超过其抗弯强度;第二是满足截面抗弯设计要求,即受弯构件的截面要满足平衡力矩和压应力的要求。

6.构件验算和优化设计抗弯设计完成后,需要进行构件验算,即检查所设计的构件是否满足强度和稳定性要求。

如果验算结果不符合要求,则需要进行优化设计,重新选择钢材型号和截面尺寸,或者改变结构形式。

综上所述,钢结构受弯构件的计算涉及受力分析、弯矩计算、应力计算、抗弯设计和构件验算等多个方面。

通过合理的计算和设计,可以确保钢结构受弯构件的安全可靠性。

建筑结构18钢结构受弯构件

建筑结构18钢结构受弯构件

M cr k
EI yGIt l1
影响梁整体稳定的因素:
①提高梁的侧向抗弯刚度EIy和抗扭刚度GIt可增
强梁抵抗弯扭变形的能力,能提高梁的整体稳 定承载能力。
②减小梁受压翼缘自由长度l1可减小弯扭变形,
能提高梁的整体稳定承载能力。
③系数k反映了荷载种类、分布及作用点位置对 临界弯矩Mcr的影响。
《规范》规定可不计算梁整体稳定性的情况: 1.有铺板(各种钢筋混凝土板和钢板)密铺在梁
的受压翼缘上并与其牢固相连、能阻止梁受压 翼缘的侧向位移时。
2.工字形截面简支梁受压翼缘的自由长度l1与其 宽度b1之比不超过规定的数值。
当不符合上列情况之一时,在最大刚度主平面 内受弯的构件,其整体稳定性应按式计算:
简单梁格
普通梁格
复杂梁格
本章讲述内容 通过实例讨论总结 梁的强度、刚度和稳定性。 梁的承载能力极限状态包括强度和稳定两
方面。稳定又包括整体稳定和局部稳定。 梁的正常使用极限状态是控制梁在横向荷
载作用下的最大挠度。
18.2 梁的强度、刚度和整体稳定
18.2.1 梁的强度
考虑内容:抗弯强度、抗剪强度、局部承压、 折算应力的计算。
0
a1 a
a
a1+a+2.5hy a+5hy
计算公式:
c

F twlz

f
腹板计算高度h0的确定:对轧制型钢梁,
为腹板与上、下翼缘相接处两内弧起点间的
距离;对焊接组合梁,为腹板高度
(四) 折算应力 计算范围: 在组合梁腹板计算高度边缘处,
若同时受有较大的正应力、剪应力和局部压应 力,或同时受有较大的正应力和剪应力(如连 续梁支座处或梁的翼缘截面改变处等)。

第4章结构构件的强度刚度稳定性

第4章结构构件的强度刚度稳定性
查P52表4-4
2、许用应力
查P12表2-2, 得:
查P45表3-11载荷组合B得:安全系数n=1.34
3、稳定性校核
由于 ,故只需按 计算整体稳定性
查P50表4-2截面属于b类,查P228附表4-2得
所以构件整体稳定性满足要求。
4.2
主要承受横向载荷的构件称为受弯构件,实腹式受弯构件简称梁,格构式受弯构件简称桁架。桁架将在后续介绍,本节仅介绍实腹受弯构件的强度、刚度及整体稳定性。
(4-2)
式中: —构件的计算长度,mm;
—许用长细比,《起重机设计规范》GB/T3811-2008规定结构构件容许长细比见表4-1;
—构件截面的最小回转半径,mm。
(4-3)
式中: —构件毛截面面积,mm2;
-构件截面惯性矩,mm4;
表4-1结构构件容许长细比
构件名称
受拉构件
受压构件
主要承载结构件
5
缀条
-缀条所在平面和x-x轴的夹角
注:1、斜腹杆与构件轴线间的倾角应保持在400~700范围内。
2、缀板组合构件的单肢长细比 不应大于40。
例题4-1
已知如图4-6所示工字形截面轴心压杆,翼缘:2-200×10 ,腹板:1-180×6,杆长 ,两端铰支,按载荷组合B求得构件轴心压力 ,钢材为Q235B钢,焊条为E43型,试验算构件强度、刚度及整体稳定性。
(2)
在起重机械结构中,理想构件是不存在的,构件或多或少存在初始缺陷。如:初变形(包括初弯曲和初扭曲)、初偏心(压力作用点与截面型心存在偏离的情况)等等。这些因素,都使轴心压杆在载荷一开始作用时就发生弯曲,不存在由直线平衡到曲线平衡的分歧点。实际轴心压杆的工作情况犹如小偏心受压构件,其临界力要比理想轴心压杆低(图4-4),当压力不断增加时,压杆的变形也不断增加,直至破坏。载荷和挠度的关系曲线,由稳定平衡的上升和不稳定平衡的下降段组成。在上升段OA,增加载荷才能使挠度加大,内外力处于平衡状态;而在下降阶段AB,由于截面上塑性的发展,挠度不断增加,为了保持内外力的平衡,必须减小载荷。因此,上升阶段是稳定的,下降阶段是不稳定的,上升和下降阶段的分界点A,就是压杆的临界点,所对应的载荷也是压杆稳定的极限承载力 (即压溃力)。

受弯构件

受弯构件

型钢梁
实腹式截面梁
按截面构成方式分
焊接组合截面梁
空腹式截面梁 组合梁
由若干钢板或钢板与型钢连接而成。它 截面布置灵活,可根据工程的各种需要 布置成工字形和箱形截面,多用于荷载 较大、跨度较大的场合。
3
钢结构原理与设计
图4.1 工作平台梁格
1-主梁 2-次梁 3-面板 4-柱 5-支撑
4
钢结构原理与设计
M x Wnx
a
M x f yWnx
a
σ
fy
fy
fy
M xp f yW pnx
M xp f y S1nx S2nx f yWpnx
式中: S1nx、S2nx 分别为中和轴以上、以下截面对中 和轴的面积矩; Wpnx 截面对中和轴的塑性抵抗矩。
(4-2) 5 2) (
16
钢结构原理与设计
2) 梁的抗剪强度 剪应力的计算公式:
VS fv It w
(4.6)
式中:V ——计算截面的剪力; S ——计算剪应力处以上毛截面对中和轴的面积矩; I ——毛截面惯性矩;
17
钢结构原理与设计
3) 梁的局部承压强度
图4.6 梁局部承压应力
18
钢结构原理与设计
式中:F ——集中荷载,动力荷载需考虑动力系数; ψ ——集中荷载增大系数,重级工作制吊车梁ψ=1.35; Lz ——集中荷载在腹板计算高度上边缘的假定腹板长度,按下式计算: Lz=a+2hy a ——集中荷载沿梁跨度方向的支承长度,吊车梁可取a为50mm; hy ——自吊车梁轨顶或其它梁顶面至腹板计算高度上边缘的距离
t1
ho
t1
b
20
钢结构原理与设计

HN450X200X9X14受弯构件强度计算

HN450X200X9X14受弯构件强度计算

受弯构件强度计算项目名称_____________日期_____________设计者_____________校对者_____________一、示意图二、依据规范《钢结构设计规范》(GB 50017-2003)三、计算信息1.荷载信息弯矩:M x = 149.00 kN-M;M y = 0.00 kN-M;剪力:V = 88.00 kN;集中荷载:F = 80.00 kN;集中荷载增大系数:Ψ = 1.35;集中荷载假定分布长度:lz = 80.00 mm;局部压应力位置:跨中2.计算参数截面类型:HN450X200b截面开孔:无3.材料信息钢材等级:Q235;钢材强度:f = 215 N/mm2;fv = 125 N/mm2;4.截面塑性发展系数γx = 1.05;γy = 1.20;四、应力验算1.截面特性计算中和轴和面积矩 Sx0 = 810744.50mm3;净截面惯性矩:Inx0 = Ix0-∑(Aki*yj2) = 337000000.00 - 0.00 = 337000000.00 mm4;Iny0 = Iy0-∑(Aki*xi2) = 18700000.00 - 0.00 = 18700000.00 mm4;2.受弯强度验算Mx/(γx*Wnx)+ My/(γx*Wny)≤f (4.1.1)截面应力最大值到截面形心的距离:x = 100.00 ,y = 225.00Wnx = Inx0/y = 3.37×108/225.00 = 1.50×106mm3Wny = Iny0/x = 1.87×107/100.00 = 187000.00mm3σ= Mx/(γx·Wnx)+My/(γy·Wny)= 1.49×108/(1.05×1.50×106)+0.00/(1.20×187000.00)= 94.744 N/mm2≤ f = 215N/mm2,满足受弯强度要求。

钢结构第五章受弯构件

钢结构第五章受弯构件
螺栓连接
适用于可拆卸的结构和临时性连接,具有施工方便、质量易于保证等优 点;但用钢量较大,且需要定期紧固。
03
铆钉连接
适用于承受动力荷载的结构,具有传力可靠、韧性和塑性好等优点;但
铆接工艺复杂、劳动强度高、用钢量也较大。
节点类型及其适用范围
刚接节点
能传递弯矩和剪力,适用 于固定支座和连续梁等需 要传递弯矩的结构。
03
受弯构件截面设计与优化
截面形状选择原则
01
02
03
符合受力要求
根据受弯构件所受荷载类 型、大小及分布情况,选 择能够有效承受弯矩和剪 力的截面形状。
便于加工制作
考虑现有加工设备和技术 水平,选择易于加工成型 的截面形状。
经济性
在满足受力要求和加工制 作的前提下,尽量选择材 料用量少、成本低的截面 形状。
连接固定
采用合适的连接方式将构件与基础或相邻构 件连接固定,确保稳定性和安全性。
验收标准和方法
验收标准
构件的尺寸偏差、形位公差、表面质量等应符合相关标准和 设计要求。
验收方法
采用测量工具对构件的尺寸、形位等进行测量,目视检查表 面质量,查阅相关质量证明文件等。对于不合格的构件,应 及时进行整改或返工处理,直至符合要求为止。
节点法
对于超静定结构,通过选取节点建立平衡方程,进 而求解内力的方法。
力矩分配法
适用于连续梁和无侧移刚架等结构,通过力矩分配 系数求解内力的方法。
剪力、弯矩图绘制
80%
剪力图的绘制
根据截面法或节点法求得的剪力 值,在构件上按比例绘制剪力图 。
100%
弯矩图的绘制
根据截面法或节点法求得的弯矩 值,在构件上按比例绘制弯矩图 。

钢结构课件第六章-受弯构件

钢结构课件第六章-受弯构件

钢结构设计原理
Design Principles of Steel Stru内力较大时,需采用组合梁。常用的形式为由三块钢板焊成的 工字形截面。组合梁的截面选择设计包括:确定截面高度、腹板尺 寸和翼缘尺寸。
1)截面高度
最大高度hmax建筑高度; 最小高度hmin刚度要求,根据容许挠度查表;
双轴对称工字型截面简支梁的弯扭屈曲系数k
钢结构设计原理
Design Principles of Steel Structure
第六章 受弯构件 2、单轴对称工字型截面简支梁纯弯作用下的整体稳定
2 EI y
l
2
采用能量法可求出在不同荷载种类和作用位置情况下的梁的临界弯矩为:
M cr 1 I GIt l 2 ) 2a 3 By ( 2 a 3 By )2 (1 2 Iy EI
(6.24)
式中:β1、 β2和β3:和荷载类型有关的系数
a:荷载作用点至剪心s的距离,荷载在剪心以下时为正,反之为负; By:截面不对称修正系数
1 By 2I x

A
y( x 2 y 2 )dA y0
y0:剪力中心与截面形心的距离
钢结构设计原理
Design Principles of Steel Structure
Mxy Mx f x I x xWx
钢结构设计原理 Design Principles of Steel Structure
(6.1)
Mx——梁截面内绕x轴的最大弯矩设计值;Wnx——截面对x轴的净截面模量; x——截面对x轴的有限塑性发展系数;f ——钢材抗弯设计强度 ;
第六章 受弯构件
截面的强度 截面强度破坏

钢结构第五章

钢结构第五章

悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大 挠度分别为
17
v 1 pkl3 l 8 EIx
v 1 pkl2 l 3 EIx
式中
v —— 梁的最大挠度。 qk —— 均布荷载标准值。 pk —— 各个集中荷载标准值之和。 l —— 梁的跨度。 E —— 钢材的弹性模量(E 2.06105 N m2 )。 Ix —— 梁的毛截面惯性矩。
第5章 受 弯 构 件
1
5.1 受弯构件的可能破坏形式和影响因素
在荷载作用下,受弯构件可能发生多种形式的破坏,主要 有强度破坏、刚度破坏、整体失稳破坏及局部失稳破坏四 种。所以,钢结构受弯构件除要保证截面的抗弯强度、抗 剪强度外还要保证构件的整体稳定性和受压翼缘板件的局 部稳定要求。对不利用腹板屈曲后强度的构件还要满足腹 板局部稳定要求。这些都属于构件设计的第一极限状态问 题,即承载力极限状态问题。此外受弯构件还要有足够的 刚度,以保证构件的变形不影响正常的使用要求,这属于 构件设计的第二极限状态问题,即正常使用极限状态问题。
22
自由扭转的特点是:
(1)
沿杆件全长扭矩
MZ 相等,单位长度的扭转角
d dz
相等,
并在各截面内引起相同的扭转切应力分布。
(2) 纵向纤维扭转后成为略为倾斜的螺旋线, 较小时近似于 直线,其长度没有改变,因而截面上不产生正应力。
(3) 对一般的截面(圆形、圆管形截面和某些特殊截面例外) 情况,截面将发生翘曲,即原为平面的横截面不再保持平 面而成为凹凸不平的截面。
(4) 与纵向纤维长度不变相适应,沿杆件全长各截面将有不 完全相同的翘曲情况。
23
2. 约束扭转
当受扭构件不满足自由扭转的两个条件时,将会产生约束扭 转。以下图所示工字形截面的悬臂构件为例加以说明。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

受弯构件的强度、整体稳定和局部稳定计算钢梁的设计应进行强度、整体稳定、局部稳定和刚度四个方面的计算。

一、强度和刚度计算1.强度计算强度包括抗弯强度、抗剪强度、局部承压强度和折算应力。

(1) 抗弯强度荷载不断增加时正应力的发展过程分为三个阶段,以双轴对称工字形截面为例说明如下:图1 梁正应力的分布1)弹性工作阶段 荷载较小时,截面上各点的弯曲应力均小于屈服点y f ,荷载继续增加,直至边缘纤维应力达到y f (图1b )。

2)弹塑性工作阶段荷载继续增加,截面上、下各有一个高度为a 的区域,其应力σ为屈服应力y f 。

截面的中间部分区域仍保持弹性(图1c ),此时梁处于弹塑性工作阶段。

3)塑性工作阶段 当荷载再继续增加,梁截面的塑性区便不断向内发展,弹性核心不断变小。

当弹性核心完全消失(图1d )时,荷载不再增加,而变形却继续发展,形成“塑性铰”,梁的承载能力达到极限。

计算抗弯强度时,需要计算疲劳的梁,常采用弹性设计。

若按截面形成塑性铰进行设计,可能使梁产生的挠度过大。

因此规范规定有限制地利用塑性。

梁的抗弯强度按下列公式计算: 单向弯曲时f W M nxx x≤=γσ(1)双向弯曲时f W M W M nyy y nx x x≤+=γγσ(2)式中 M x 、M y —绕x 轴和y 轴的弯矩(对工字形和H 形截面,x 轴为强轴,y 轴为弱轴);W nx 、W ny —梁对x 轴和y 轴的净截面模量;y x γγ,—截面塑性发展系数,对工字形截面,20.1,05.1==y x γγ;对箱形截面,05.1==y x γγ;f —钢材的抗弯强度设计值。

当梁受压翼缘的外伸宽度b 与其厚度t 之比大于y f /23513 ,但不超过y f /23515时,取0.1=x γ。

需要计算疲劳的梁,宜取0.1==y x γγ。

(2)抗剪强度主平面受弯的实腹梁,以截面上的最大剪应力达到钢材的抗剪屈服点为承载力极限状态。

v wf It VS≤=τ (3)式中 V —计算截面沿腹板平面作用的剪力设计值;S —中和轴以上毛截面对中和轴的面积矩; I —毛截面惯性矩; t w —腹板厚度;f v —钢材的抗剪强度设计值。

当抗剪强度不满足设计要求时,常采用加大腹板厚度的办法来增大梁的抗剪强度。

型钢腹板较厚,一般均能满足上式要求,因此只在剪力最大截面处有较大削弱时,才需进行剪应力的计算。

(3)局部承压强度图2局部压应力当梁的翼缘受有沿腹板平面作用的固定集中荷载且该荷载处又未设置支承加劲肋,或受有移动的集中荷载时,应验算腹板计算高度边缘的局部承压强度。

假定集中荷载从作用处以1∶2.5(在h y 高度范围)和1∶1(在h R 高度范围)扩散,均匀分布于腹板计算高度边缘。

梁的局部承压强度可按下式计算f l t Fzw c ≤=ψσ(4)式中 F —集中荷载,对动力荷载应考虑动力系数;ψ—集中荷载增大系数:对重级工作制吊车轮压,ψ=1.35;对其他荷载,ψ=1.0;z l —集中荷载在腹板计算高度边缘的假定分布长度,其计算方法如下跨中集中荷载 z l =a +5h y +2h R 梁端支反力 z l =a +2.5h y +a 1a —集中荷载沿梁跨度方向的支承长度,对吊车轮压可取为50mm ; h y —自梁承载的边缘到腹板计算高度边缘的距离; h R —轨道的高度,计算处无轨道时h R =0;a 1—梁端到支座板外边缘的距离,按实际取,但不得大于2.5h y 。

当计算不能满足式(4)时,在固定集中荷载处,应设置支承加劲肋予以加强,并对支承加劲肋进行计算。

对移动集中荷载,则应加大腹板厚度。

(4)折算应力在组合梁的腹板计算高度边缘处,当同时受有较大的正应力σ、剪应力τ和局部压应力σc 时,或同时受有较大的正应力σ和剪应力τ时,应按下式验算该处的折算应力f c c 12223βτσσσσ≤+-+(5)式中 c στσ,,——腹板计算高度边缘同一点上的弯曲正应力、剪应力和局部压应力。

τ按式(3)计算,c σ按式(4)计算, σ按下式计算nxI My=σ (6)nx I —净截面惯性矩;y —计算点至中和轴的距离;c σσ,均以拉应力为正值,压应力为负值;1β—折算应力的强度设计值增大系数。

当c σσ,异号时,取1β=1.2;当c σσ,同号或cσ=0取1β=1.1。

2.刚度刚度验算即为梁的挠度验算。

按下式验算梁的刚度][v v ≤(7)式中 v —荷载标准值作用下梁的最大挠度;[v ]—梁的容许挠度值,规范规定的容许挠度值。

二、整体稳定1. 整体失稳现象如图3所示的工字形截面梁,荷载作用在最大刚度平面内,当荷载较小时,仅在弯矩作用平面内弯曲,当荷载增大到某一数值后,梁在弯矩作用平面内弯曲的同时,将突然发生侧向弯曲和扭转,并丧失继续承载的能力,这种现象称为梁的弯扭屈曲或整体失稳。

图3 梁的整体失稳2. 整体稳定系数梁的整体稳定临界应力为cr σ,梁的整体稳定应满足下式f f f W M σb Ryy cr R cr x x ϕγσγσ==≤=式中 b ϕ—梁的整体稳定系数ycrb f σϕ=(8)规范规定等截面焊接工字形和轧制H 型钢简支梁的整体稳定系数ϕb 应按下式计算 ϕb =βbyby x y f h t W Ah 235])4.4(1[4320212ηλλ++⋅ (9) 式中 βb ──梁整体稳定的等效弯矩系数;λy ──梁在侧向支承点间对截面弱轴y -y 的长细比;A ──梁毛截面面积; h ──梁截面的全高; t 1──受压翼缘厚度。

ηb ──截面不对称影响系数: 对双轴对称截面 ηb =0 对单轴对称工字形截面加强受压翼缘 ηb =0.8(2αb -1) 加强受拉翼缘 ηb =2αb -1αb =211I I I +──I 1和I 2分别为受压翼缘和受拉翼缘对y 轴的惯性矩。

当b ϕ大于0.6时,梁己进入非弹性工作阶段,必须对b ϕ进行修正。

当按式(9)确定的bϕ>0.6时,用下式求得的b ϕ´代替b ϕ进行梁的整体稳定计算b ϕ´=1.07-bϕ282.0 (10) 但b ϕ不得大于1.0 3.整体稳定的计算 整体稳定计算公式f W M xb x≤ϕ (11)式中 M x —绕强轴作用的最大弯矩;W x —按受压纤维确定的梁毛截面模量;b ϕ—梁的整体稳定系数。

当梁的整体稳定承载力不足时,可采用加大梁的截面尺寸或增加侧向支撑的办法予以解决,前一种办法中以增大受压翼缘的宽度最有效。

三、局部稳定和腹板加劲肋设计组合梁一般由翼缘和腹板焊接而成,如果采用的板件宽(高)而薄,板中压应力或剪应力达到某数值后,腹板或受压翼缘有可能偏离其平面位置,出现波形凸曲,这种现象称为梁局部失稳。

热轧型钢板件宽厚比较小,能满足局部稳定要求,不需要计算。

图4 梁局部失稳1.受压翼缘的局部稳定一般采用限制宽厚比的办法保证梁受压翼缘板的稳定性。

工字形截面梁,由腹板局部稳定临界应力y cr f ≥σ得yf t b 23513≤ (12)当按弹性设计,b /t 值可放宽为yf t b 23515≤ (13)箱形梁翼缘板在两腹板之间的部分,由y cr f ≥σ得yf t b 23540≤ (14)2.腹板的局部稳定对于直接承受动力荷载的或其他不考虑屈曲后强度的组合梁,以腹板的屈曲为承载能力的极限状态。

对于承受静力荷载和间接承受动力荷载的组合梁,允许腹板在构件整体失稳之前屈曲,并利用其屈曲后强度。

图5腹板加劲肋的配置(1) 腹板配置加劲肋的原则为了提高腹板的稳定性,可增加腹板的厚度,也可设置加劲肋,设置加劲肋更经济。

对于由剪应力和局部压应力引起的受剪屈曲,应设置横向加劲肋,对于由弯曲应力引起的受弯屈曲,应设置纵向加劲肋,局部压应力很大的梁,必要时尚宜在受压区配置短加劲肋。

组合梁腹板配置加劲肋的规定: 1)当h 0/t w ≤80yf /235时,对有局部压应力(σc ≠0)的梁,应按构造配置横向加劲肋;但对无局部压应力(σc =0)的梁,可不配置加劲肋。

2)当h 0/t w >80y f /235时,应配置横向加劲肋。

其中,当h 0/t w >170y f /235(受压翼缘扭转受到约束)或h 0/t w >150y f /235(受压翼缘扭转未受到约束时),或按计算需要时,应在弯曲应力较大区格的受压区增加配置纵向加劲肋。

局部压应力很大的梁,必要时尚宜在受压区配置短加劲肋。

任何情况下,h 0/t w 均不应超过250y f /235。

此处h 0为腹板的计算高度(对单轴对称梁,当确定是否要配置纵向加劲肋时,h 0应取为腹板受压区高度h c 的2倍),t w 为腹板的厚度。

3)梁的支座处和上翼缘受有较大固定集中荷载处,宜设置支承加劲肋。

(2)临界应力的计算 1)弯曲临界应力用于抗弯计算腹板的通用高厚比当梁受压翼缘扭转受到约束时235177/2y wc b f t h =λ (15a )当梁受压翼缘扭转未受到约束时235153/2y w c b f t h =λ (15b )根据通用高厚比b λ的范围不同,弯曲临界应力的计算公式如下:当85.0b ≤λ时 f =cr σ (16a ) 当25.185.0b ≤<λ时 ()[]f 85.075.01b cr --=λσ (16b )当25.1b >λ时 2b cr /1.1λσf = (16c )式中 f —钢材的抗弯强度设计值。

式(16)的三个公式分别属于塑性、弹塑性和弹性范围。

2)剪切临界应力用于抗剪计算腹板的通用高厚比为23541/y sw0s f k th =λ (17)根据通用高厚比s λ的范围不同,剪切临界应力的计算公式如下:当8.0s ≤λ时 v cr f =τ (18a ) 当2.18.0s ≤<λ时 []v s cr )8.0(59.01f --=λτ (18b ) 当2.1s >λ时2s v cr /1.1λf =τ (18c )式中 v f —钢材的抗剪切强度设计值。

3)局部压力作用下的临界应力用于腹板抗局部压力作用时的通用高厚比为 当5.1/5.00≤≤h a 时 235)/83.1(4.139.1028/y 30w0c f h a t h -+=λ (19a )当0.2/5.10≤<h a 时 235/59.1828/y 0w0c f h a t h -=λ (19b )根据通用高厚比c λ的范围不同,计算临界应力r c c,σ的公式如下:当9.0c ≤λ时 f =cr c,σ (20a ) 当2.19.0c ≤<λ时 []f )9.0(79.01c cr c,--=λσ (21b ) 当2.1c >λ时2c cr c,/1.1λσf = (21c )(3) 腹板局部稳定的计算 1) 配置横向加劲肋的腹板仅配置横向加劲肋的腹板,其各区格的局部稳定应按下式计算 crc c cr cr ,22)()(σσττσσ++≤1 (22) 2) 同时配置横向加劲肋和纵向加劲肋的腹板同时配置横向加劲肋和纵向加劲肋的腹板,一般纵向加劲肋设置在距离板上边缘1/4~1/5高度处,把腹板划分为上、下两个区格。

相关文档
最新文档