有理数 相反数 绝对值 知识点总结及针对性练习
绝对值及有理数的大小比较知识点解读与提高

绝对值及有理数的大小比较(基础)要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|.(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是 正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立. 4. 求商法:设a 、b 为任意正数,若,则;若,则;若,则;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.类型一、绝对值的概念1.求下列各数的绝对值.,-0.3,0, 1ab>a b >1a b =a b =1a b<a b <112-132⎛⎫-- ⎪⎝⎭两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号 正数大于负数 -数为0 正数与0:正数大于0 负数与0:负数小于01.借助数轴理解绝对值的概念,知道|a|的绝对值的含义;2.会求一个数的绝对值,并会用绝对值比较有理数的大小;3.通过应用绝对值解决实际问题,体会,-0.3,0,在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解.解:方法1:因为到原点距离是个单位长度,所以.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0.因为到原点的距离是个单位长度,所以.方法2:因为,所以.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0因为,所以.已知一个数的绝对值等于2009,则这个数是________.若一个数的绝对值是正数,则此数有两个,且互为相反数.2009或-2009.根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【变式1】已知一个数的绝对值是4,则这个数是.±4.【变式2】如果|x|=2,那么x=______ ;如果|-x|=2,那么x=______.如果|x-2|=1,那么x=;如果|x|>3,那么x的范围是.;;1或3;或.类型二、绝对值非负性的应用. 若|x﹣2|与|y+3|互为相反数,则x+y= .112132⎛⎫-- ⎪⎝⎭112-112111122-=132⎛⎫-- ⎪⎝⎭132113322⎛⎫--=⎪⎝⎭1102-<111111222⎛⎫-=--=⎪⎝⎭1302⎛⎫-->⎪⎝⎭113322⎛⎫--=⎪⎝⎭2-2+或2-2+或x>3x<-3求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.由|a|≥0即绝对值的非负性可知,|x﹣2|≥0,|y+3|≥0,而它们的和为0.所以|x﹣2|=0,|y+3|=0.由此算出结果.-1.∵|x﹣2|与|y+3|互为相反数,∴|x﹣2|+|y+3|=0,∴x﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.类型三、有理数的大小比较.比较大小:﹣(﹣1.8)(填“>”、“<”或“=”).先化简,再比较大小,即可解答.<.解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8,∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<.【变式】比大小:______; -|-3.2|______-(+3.2);0.0001______-1000; -1.38______-1.384;-π______-3.14.>;=;>;>;<.【巩固练习】一、选择题1.-3的绝对值是().A. 3 B.-3 C. D.2.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数.3.下列各式错误的是( ).A.B.C. D.653-763-1313-115533+=|8.1|8.1-=2233-=-1122--=-若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则:a=b=…=m=0.本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.4.已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q5.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a|>|b|C .-a <-bD .-a <|b|6.若|a | + a =0,则a 是( ).A. 正数B. 负数C.正数或0D.负数或0二、填空题7.若m ,n 互为相反数,则| m |________| n |;| m |=| n |,则m ,n 的关系是________. 8.已知| x |=2,| y |=5,且x >y ,则x =________,y =________. 9.满足3.5≤| x | <6的x 的整数值是___________.10.在﹣2.1,﹣2,0,1这四个数中,最小的数是 .11.数a 在数轴上的位置如图所示.则|a-2|= .12.已知,则x 的取值范围是________.三、解答题13.若有理数x 、y 满足|x|=5,|y|=2,且|x+y|=x+y ,求x ﹣y 的值.14.若|a+1.2|+|b ﹣1|=0,那么a+(﹣1)+(﹣1.8)+b 等于多少?15.比较3a-2与2a+1的大小.【答案与解析】 一、选择题 1.【答案】A2.【答案】B【解析】A 错误,因为两个数的绝对值相等,这两个数可能互为相反数;B 正确;C 错误,因为0的绝对值是0,而0不是正数;D 错误,因为一个数的绝对值是它本身的数除了正数还有0.3.【答案】C【解析】因为一个数的绝对值是非负数,不可能是负数.所以C 是错误的.4.【答案】D【解析】解:∵点Q 到原点的距离最远,∴点Q 的绝对值最大. 故选:D .5.【答案】B【解析】离原点越远的数的绝对值越大.6. 【答案】D【解析】若a 为正数,则不满足|a| + a =0;若a 为负数,则满足|a| + a =0;若a 为0,也满足|a| + a =0. 所以a ≤0,即a 为负数或0.二、填空题7. 【答案】=;m=±n【解析】若m ,n 互为相反数,则它们到原点的距离相等,即绝对值相等;但反过来m ,n 绝对值相等,则它们相等或互为相反数.8. 【答案】 ±2,-54334x x -=-【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x >y ,所以x=±2,y=-59. 【答案】±4, ±5【解析】画出数轴,从数轴上可以看出:在原点右侧,有4,5满足到原点的距离大于等于3.5,且小于6;在原点左侧有-4,-5满足到原点的距离大于等于3.5,且小于6.10.【答案】﹣2.1.【解析】根据有理数比较大小的方法,可得﹣2.1<﹣2<0<1. 11.【答案】a-2【解析】由图可知:a≥2,所以|a-2|=a-2. 12.【答案】≤【解析】将看成整体,即,则≤0,故≤0,≤. 三、解答题 13.【解析】 ∵|x|=5, ∴x=±5, 又|y|=2, ∴y=±2,又∵|x+y|=x+y , ∴x+y≥0, ∴x=5,y=±2,当x=5,y=2时,x ﹣y=5﹣2=3,当x=5,y=﹣2时,x ﹣y=5﹣(﹣2)=7.14.【解析】解:∵|a+1.2|+|b ﹣1|=0,∴a+1.2=0,b ﹣1=0, ∴a=﹣1.2,b=1,∴a+(﹣1)+(﹣1.8)+b=﹣3.15.【解析】解:(3a-2)-(2a+1)=3a-2-2a-1=a-3 当a>3时,3a-2>2a+1; 当a=3时,3a-2=2a+1; 当a<3时,3a-2<2a+1.绝对值及有理数的大小比较(提高)要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|.(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是x 3443x -a a a =-a 43x -x 341.借助数轴理解绝对值的概念,知道|a|的绝对值的含义;2.会求一个数的绝对值,并会用绝对值比较有理数的大小;3.理解并会熟练运用绝对值的非负性进正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小.如:a与b在数轴上的位置如图所示,则a<b.2.2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3.作差法:设a、b为任意数,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,a<b;反之成立.4.求商法:设a、b为任意正数,若,则;若,则;若,则;反之也成立.若a、b为任意负数,则与上述结论相反.5.倒数比较法:如果两个数都大于零,那么倒数大的反而小.类型一、绝对值的概念. 如果|x|=6,|y|=4,且x<y.试求x、y的值.6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.解:因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【变式】下列说法正确的是()A. 一个数的绝对值一定比0大B. 一个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. 最小的正整数是1D.类型二、含有字母的绝对值的化简.若﹣1<x<4,则|x+1|﹣|x﹣4|= .根据绝对值的性质:当a是正有理数时,a的绝对值是1ab>a b>1ab=a b=1ab<a b<两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号正数大于负数-数为0正数与0:正数大于0负数与0:负数小于0已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a,可得|x+1|=x+1,|x﹣4|=﹣x+4,然后再合并同类项即可.2x﹣3.解:原式=x+1﹣(﹣x+4),=x+1+x﹣4,=2x﹣3.【变式】已知有理数a,b,c在数轴上对应的点的位置如图所示:化简:解:由图所示,可得.∴ ,,,∵.∴ 原式.类型三、绝对值非负性的应用.已知a、b为有理数,且满足:,则a=_______,b=________.由,,,可得∴【变式】已知b为正整数,且a、b满足,求的值.【答案】解:由题意得∴所以,类型四、有理数的大小比较.比较下列每组数的大小:(1)-(-5)与-|-5|; (2)-(+3)与0;(2)与; (4)与.(3)30a c->122ba=45-34--π-| 3.14|--此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x﹣4的正负性.由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.解:(1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:.这是两个负数比较大小,因为,,且.所以.(4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【巩固练习】一、选择题1.以下选项中比|﹣|小的数是()A.1 B.2 C. D.2.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是().A.①② B.②③ C.③④ D.②④3.满足|x|=-x的数有( ).A.1个 B.2个 C.3个 D.无数个4.若|x﹣5|=5﹣x,下列不等式成立的是()A. x﹣5>0B. x﹣5<0C. x﹣5≥0D. x﹣5≤06.a、b为有理数,且a>0、b<0,|b|>a,则a、b、-a、-b的大小顺序是( ).A.b<-a<a<-b B.-a<b<a<-bB. C.-b<a<-a<b D.-a<a<-b<b6.下列推理:①若a=b,则|a|=|b|;②若|a|=|b|,则a=b;③若a≠b,则|a|≠|b|;④若|a|≠|b|,则a≠b.其中正确的个数为( ).A.4个 B.3个 C.2个 D.1个二、填空题7.数轴上离原点的距离小于3.5的整数点的个数为,距离原点等于3.5的点的个数为,则.7.如果|a﹣2|+|b+1|=0,那么a+b等于.9.若a>3,则|6﹣2a|= (用含a的代数式表示).10.绝对值不大于11的整数有个.11.式子|2x-1|+2取最小值时,x等于.12.若,则 0;若≥,则.3344--=-44165520-==33154420-==16152020>4354-<--mn3____m n-=1aa=-a a a a 在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的三、解答题13.若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.14.如图,数轴上的三点A、B、C分别表示有理数a、b、c.则:a﹣b 0,a+c 0,b﹣c 0.(用<或>或=号填空)你能把|a﹣b|﹣|a+c|+|b﹣c|化简吗?能的话,求出最后结果.15.阅读下面的材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣,当A、B两点中有一点在原点时,不妨设点A在原点,如图1-1-1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时:①如图1-1-2,点A、B都在原点的右边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;②如图1-1-3,点A、B都在原点的左边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;③如图1-1-4,点A、B在原点的两边:∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.回答下列问题:①数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;②数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为__________.③当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是______________.【答案与解析】一、选择题1.【答案】D【解析】解:∵|﹣|=,A、1>,故本选项错误;B、2>,故本选项错误;C、=,故本选项错误;D、﹣<,故本选项正确;故选D.2.【答案】C【解析】先化简在判断,①+(+1)=1,-(-1)=1,不是相反数的关系;②-(+1)=-1,+(-1)=-1,不是相反数的关系;③+(+1)=1,-(+1)=-1,是相反数的关系;④+(-1)=-1,-(-1)=1,是相反数的关系,所以③④中的两个数是相反数的关系,所以答案为:C3.【答案】D【解析】x为负数或零时都能满足|x|=-x,故有无数个.4.【答案】D.5.【答案】A【解析】画数轴,数形结合.6.【答案】C【解析】①正确;②错误,如|-2|=|2|,但是-2≠2;③错误,如-2≠2,但是|-2|=|2|;④正确.故选C.二、填空题7.【答案】1【解析】由题意可知:,所以8.【答案】1【解析】解:由题意得,a﹣2=0,b+1=0,解得,a=2,b=﹣1,则a+b=1,故答案为:1.9.【答案】2a-610.【答案】23【解析】要注意考虑负数.绝对值不大于11的数有:-11 、-10……0 、1 ……11共23个.11.【答案】【解析】因为|2x-1|≥0,所以当2x-1=0,即x=时,|2x-1|取到最小值0,同时|2x-1|+2也取到最小值2.12.【答案】<;任意数三、解答题13.【解析】解:因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.14.【解析】解:由数轴得,a﹣b<0,a+c<0,b﹣c<0,∴|a﹣b|﹣|a+c|+|b﹣c|=﹣(a﹣b)﹣[﹣(a+c)]+[﹣(b﹣c)]=﹣a+b+a+c﹣b+c=2c.15.【解析】解:①∣2-5∣=3,∣-2-(-5)∣=3,∣1-(-3)∣=4.②∣AB∣=∣x-(-1)∣=∣x+1∣.∵∣AB∣=2,∴∣x+1∣=2,∴x+1=2或-2,∴x=1或-3.③令x+1=0,x-2=0,则x=-1,x=2.将-1、2在数轴上表示出来,如图1-1-5,则-1、2将数轴分为三部分x<-1、-1≤x≤2、x>2.当x<-1时,∣x+1∣+∣x-2∣=-(x+1)+〔-(x-2)〕=-2x+1>3;当-1≤x≤2时,∣x+1∣+∣x-2∣=x+1+2-x=3;当x>2时,∣x+1∣+∣x-2∣=x+1+x-2=2x-1>3.∴∣x+1∣+∣x-2∣的最小值是3,相应的x 的取值范围是-1≤x≤2.7,2m n==27321m n-=-⨯=1212。
相反数、绝对值及比较大小复习知识点

绝对值及有理数大小比较和相反数知识点一:数轴上表示数a 的点与原点的 叫数a 的绝对值,记作 。
如-2到原点的距离是 ,所以-2的绝对值是 ,即|-2|= 。
知识点二:一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 。
即:如果a > 0,那么|a |= ;如果a =0,那么|a |= ;如果a < 0,那么|a |= 。
(注意:由于0的绝对值是0,既可以看作是0本身,也可以看作是0的相反数,所以绝对值是这个数本身的数包括 和 (即非负数);绝对值是这个数的相反数的数包括 和 (即非正数))例题1:|-6|= ;|7|= ;|0|= .任意有理数的绝对值一定是 数,即|a | 0(即非负性)。
例题2:|-5|= ;|5|= 。
互为相反数的两个数的绝对值 ;一个数的绝对值等于正数,这样的数应该有两个,它们互为相反数。
例题3:已知|a |=4,|b |=2,且a>b ,求a 、b 的值。
解:因为|a |=4,|b |=2,所以a =±4,b=±2,但a > b,所以a=4, b=±2.《绝对值的非负性、双值性都是保证做题全面的关键》知识点三:有理数比较大小:方法一:数轴直观法——数轴左边的数小于数轴右边的数。
方法二:法则——两个负数相比较,绝对值大的反而小。
正数大于0,0大于负数,正数大于负数。
例题6:比较-65和-76的大小: 解:因为|-65|=65=4235,|-76|=76=4236,而4235<4236,所以-65>-76。
(依据“两个负数相比较,绝对值大的反而小”法则)知识点四:只有符号不同的两个数叫互为相反数,它们位于原点 ,且到原点的距离 。
求相反数的方法是在数(正负数均可)前面加个“-”号即可。
多重符号化简的方法:只看“-”号的个数,偶数个结果为正,奇数个结果为负。
正号可以省略。
例题7:化简:-⎥⎦⎤⎢⎣⎡+-)31( 解:原式=+(+31)=31 例题8:-(-3)的相反数是 。
绝对值知识点及练习

绝对值知识点及练习1、定义:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|,读作“绝对值a”。
(2)代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.实数a的绝对值是:|a|①a为正数时,|a|=a(不变)②a为0时,|a|=0③a为负数时,|a|= -a(为a的绝对值)任何数的绝对值都大于或等于0,因为距离没有负的。
2、实数的绝对值具有以下性质:(1)|a|大于等于0(实数的绝对值是非负实数);(2)|-a|=|a|(互为相反数的两实数绝对值相等);(3)-|a|小于等于a小于等于|a|;(4)|a|>b可以推出a<-b或a>b,a<-b或a>b可以推出|a|>b;(5)|a·b|=|a|·|b|;(6)|a|/|b|=|a/b|(b≠0);(7)|a+b|小于等于|a|+|b|,当且仅当a、b同号时,等式成立;(8)|a-b|大于等于||a|-|b||,当且仅当a、b同号时,等式成立;(9)a属于R时,|a|的平方等于|a|的平方。
特别提醒:(1)绝对值具有非负性,即|a|≥0;(2)绝对值相等的两个数,它们相等或互为相反数;(3)0是绝对值最小的有理数。
3、利用绝对值比较大小(1)利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.比较的具体步骤:①先求两个负数的绝对值;②比较绝对值的大小;③根据“两个负数,绝对值大的反而小”作出判断.(2)几个有理数的大小比较①同号两数,可以根据它们的绝对值来比较:a.两个正数,绝对值大的数较大;b.两个负数,绝对值大的反而小.②多个有理数的大小比较,需要先将它们按照正数、0、负数分类比较,然后利用各数的绝对值或借助于数轴来进一步比较.4、利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题,主要有以下两类:(1)判断物体或产品质量的好坏可以用绝对值判断物体或产品偏离标准的程度,绝对值越小,越接近标准,质量就越好.方法:①求每个数的绝对值;②比较所求绝对值的大小;③根据“绝对值越小,越接近标准”作出判断.(2)利用绝对值求距离路程问题中,当出现用“+”、“-”号表示的带方向的路程,求最后的总路程时,实际上就是求绝对值的和.方法:①求每个数的绝对值;②求所有数的绝对值的和;③写出答案.5、去绝对值符号的几种常用方法:(1)利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或(2)利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
(完整版)绝对值有理数比较大小知识点及习题

第三讲:绝对值、有理数比较大小1、 绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)2、 一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;3、 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 4、0a 1a a>⇔= ; 0a 1a a <⇔-=;5、 有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
即左边的数小于右边的数;(①正数大于0,0大于负数,正数大于负数;②两个负数,其绝对值大的反而小;)一、填空题1、一个正数的绝对值是____,一个负数的绝对值是____,0的绝对值是___2、绝对值小于3的整数有___个,它们是________。
3、用“>”或“<”号填空。
-3__-4, -(-4)__-|-5|, -65__-76 4、若a +|a |=0,则a __0,若a -|a |=0,则a __0。
5、已知|a |=73,|b |=209,且b < a ,则a =___,b =___。
6、若|a -2|+|b +1|=0,则a +b =___。
7、绝对值最小的有理数是___,绝对值等于它本身的数是______,绝对值等于它的相反数的数是______。
8、绝对值小于2的整数有___个,绝对值不大于3的非负整数是_______。
9、一个数的倒数的绝对值是21,则这个数是____。
10、-31的相反数是___,-31的绝对值是___,-31的倒数是___。
11、有理数m ,n 在数轴上的位置如图,二、选择题1、-|-2|的倒数是( )A 、2B 、21C 、-21 D 、-2 2、若|a |=-a ,则a 一定是( )A 、正数B 、负数C 、非正数D 、非负数3、代数式|x -2|+3的最小值是( )A 、0B 、2C 、3D 、54、若|a |=|b |,则a 与b 的关系是( )A 、a =bB 、a =-bC 、a =b 或a =-bD 、不能确定5、下面说法中正确的有( )个①互为相反数的两个数的绝对值相等;②一个数的绝对值是一个正数;③一个数的绝对值的相反数一定是负数;④只有负数的绝对值是它的相反数。
人教版七年级数学上册第一章知识点总结及阶梯练习

第一章一、知识点回顾正整数整数0有理数负整数正分数一一对应于原点实数分数数轴正方向负分数数轴上的点单位长度无理数相反数:只有符号不同的两个数叫做互为相反数。
(数轴上关于原点对称)绝对值正数本身正数>0 >负数(距离)负数相反数数的比较0 0 两个负数,绝对值大的反而小1. 有理数加法法则有理数加法运算总是涉及两个方面:一方面是确定结果的符号,另一方面是求结果的绝对值。
法则:(一)同号两数相加,取相同的符号,并把绝对值相加。
(二)异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值。
(三)一个数同0相加,仍得这个数。
2. 有理数减法法则法则:减去一个数,等于加上这个数的相反数。
注:在运用减法法则时,注意两个符号的变化,一是运算符号,减号变成加号,二是性质符号,减数变成它的相反数。
3. 有理数加法的运算律(1)满足交换律;(2)满足结合律。
4. 有理数的加减混合运算加减混合运算可以通过减法法则,将减法化加法,统一为加法运算。
步骤:①减法化加法②省略加号和括号③运用加法法则,加法运算律进行简便运算。
5. 有理数的乘法法则法则:(1)两数相乘,同号为正,异号得负,并把绝对值相乘。
(2)任何数同0相乘,积仍是0。
(3)多个有理数相乘的法则:当因数都不为0时,积的符号由负因数的个数决定,当负因数有偶数个时,积为正,当负因数有奇数个时,积为负,并把绝对值相乘,有一个因数为0时,积就为0。
6. 倒数若两个有理数的乘积为1,那么我们称其中一个数是另一个数的倒数,也称它们互为倒数。
7. 有理数除法法则法则一:(1)两数相除,同号为正,异号为负,并把绝对值相除。
(2)零除以任何一个不为零的数仍是零。
法则二:除以一个不为零的数等于乘以这个数的倒数。
8. 乘法运算律(1)满足乘法交换律(2)满足乘法结合律(3)满足乘法分配律9. 有理数的加减乘除混合运算按先乘除后加减的运算顺序,利用乘法和加法的运算律进行计算。
班课讲义有理数(二)绝对值相反数和比较大小

标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。
6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。
3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。
理解:代数定义:只有符号不同的两个数互为相反数。
0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。
0的相反数是0。
说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。
“0的相反数是0”是相反数定义的一部分。
这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
另外,“0的相反数是0”也是相反数定义的一部分。
关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。
关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
有理数的概念知识点归纳及练习题

有理数的概念知识梳理有理数的概念一、目标认知学习目标:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量;掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小;掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义;重点:有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:绝对值的概念及求法,尤其是用字母表示的时候的意义;运用数轴理解绝对值的几何意义;有理数比较大小的方法的掌握;二、知识要点梳理知识点一:负数的引入要点诠释:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数;用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负;知识点二:正数和负数的概念要点诠释:1 像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大;2 像-3、-1.5、、-584等在正数前面加“-”读作负号的数,叫做负数;负数比0小;3 零既不是正数也不是负数,零是正数和负数的分界;注意:1为了强调,正数前面有时也可以加上“+”读作正号,例如:3、1.5、也可以写作+3、+1.5、+ ;2对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数;例如:-a一定是负数吗答案是不一定;因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了此时-a是正数;知识点三:有理数的有关概念要点诠释:1、有理数:整数和分数统称为有理数;注:1有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数;但是本节中的分数不包括分母是1的分数;2因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,所以我们把有限小数和无限循环小数都看作分数;3“0”即不是正数,也不是负数,但“0”是整数;2、整数包括正整数、零、负整数;例如:1、2、3、0、-1、-2、-3等等;3、分数包括正分数和负分数,例如:、、0.6、-、-、-0.6等等;知识点四:有理数的分类要点诠释:1、按整数、分数的关系分类:2、按正数、负数与0的关系分类:注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数也叫做自然数,负整数和0统称为非正整数;如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a 0表明a是非负数;a 0表明a是非正数;知识点五:数轴的概念要点诠释:规定了原点、正方向和单位长度的直线叫做数轴数轴的定义包含三层含义:1数轴是一条直线,可以向两端无限延伸;2数轴有三要素——原点、正方向、单位长度,三者缺一不可;3原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的通常取向右为正方向;知识点六:数轴的画法要点诠释:1、画一条直线一般画成水平的直线;2、在直线上选取一点为原点,并用这点表示零在原点下面标上“0”;3、确定正方向一般规定向右为正,用箭头表示出来;4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……注:1原点的位置、单位长度的大小可根据实际情况适当选取;2确定单位长度时,根据实际情况,有时也可以每隔两个或更多的单位长度取一点,从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;知识点七:数轴上的点与有理数的关系所有的有理数都可以用数轴上的点表示出来,反过来,不能说数轴上所有的点都表示有理数;要点诠释:正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示;知识点八:利用数轴比较有理数的大小要点诠释:在数轴上表示的两个数,右边的数总比左边的数大;正数都大于0;负数都小于0;正数大于一切负数;知识点九:相反数的概念1、相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数;2、相反数的代数定义:只有符号不同的两个数除了符号不同以外完全相同,我们说其中一个是另一个的相反数,0的相反数是0;要点诠释:1“只”字是说仅仅是符号不同,其它部分完全相同;2相反数是数,不是量;3相反数是成对出现的;知识点十:相反数的表示方法要点诠释:一般地,数a的相反数是-a;这里a表示任意的一个数,可以是正数、负数、或者0;知识点十一:多重符号的化简把多重符号化成单一符号,如果是正号,则可以省略不写,实际上,多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,如-{---4}=4 ;若“-”个数为奇数个时,化简结果为负,如-{+--4}=-4 ;要点诠释:1、在一个数的前面添上一个“+”号,仍然与原数相同,如+5=5,+-5=-5;2、在一个数的前面添上一个“-”号,就成为原数的相反数;如--3就是-3的相反数,因此,--3=3;知识点十二:绝对值的概念要点诠释:1、绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作“ ”2、绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;即知识点十三:两个负数大小的比较要点诠释:因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数的左边,所以,两个负数,绝对值大的反而小;比较两个负数大小的方法是:一、先分别求出这两个负数的绝对值;二、比较这两个绝对值的大小;三、根据“两个负数,绝对值大的反而小”做出正确的判断;知识点十四:有理数大小的比较法则要点诠释:正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小;三、规律方法指导有理数与小学所学的数,主要区别在于负数;有理数可以用数轴上的点来表示,任何一个有理数都能在数轴上找到表示它的位置,而是唯一确定的点;数轴上的点可以表示三类数;在数轴上表示零的点称做原点,以这个点为界,正有理数正整数、正分数用原点右边的点来表示;负有理数负整数、负分数用原点左边的点来表示,这就说明,数轴是有方向的;由于数轴规定了方向,因而在数轴上排列着的数就是有顺序的;从左到右一个数比一个数大;即数轴上表示的数,右边的总比左边的大;在数轴上,原点左、右两边距离原点等远的点所表示的有理数,它们只有符号不同,这样的一对数称为互为相反数;如果数轴上的点只考虑它到原点的距离,而不考虑它的正、负方向的数,则表示这个有理数的绝对值;经典例题透析类型一:有理数分类的问题例1:请把下列各数填入它所属于的集合的大括号里;1, 0.0708, -700, -3.88, 0,3.14159265, , .正整数集合:{ …} 负整数集合:{ …}整数集合:{ …}正分数集合:{ …}负分数集合:{ …}分数集合:{ …}思路点拨:这种关于有理数的分类问题,关键是要掌握各种数的概念;小学时所学的自然数就是正整数和零,进入中学,出现了负整数,而整数的范围就扩大到了正整数、零和负整数;有限小数和无限循环小数都可以写成分数的形式,因此,它们都是分数;解析:正整数:1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265, ;负分数:-3.88, ;分数:0.0708,3.14159265, ,-3.88,总结升华:有理数包括整数和分数,分数包含有限小数和无限循环小数,但须注意的是,不是所有的小数都是分数,比如π等;所以,我们也不能说小学学过的所有数都是有理数,还有一部分数不是有理数,那么这部分数我们将在今后学习研究;举一反三:变式1在数-100, 70.8, -7, π, -3.8, 0, , , 中,不是分数的是___________________;不是小数的是_____________;不是有理数的是______________;变式2下列四种说法,正确的是 .A所有的正数都是整数B不是正数的数一定是负数C正有理数包括整数和分数 D0不是最小的有理数类型二:正负数的概念例2:若把向北走7km记为-7km,则+10km表示的含义是A.向北走10kmB.向西走10kmC.向东走10kmD.向南走10km思路点拨:“正”和“负”相对,-7km表示向北走7km,则+10km表示向南走10 km.答案:D总结升华:在一对具有相反意义的量中,若先规定一个为正,则另一个就用负表示;若先规定一个为负,则另一个就用正表示;举一反三:变式1如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ . 2若购进50本书,用-50本表示,则盈利30元如何表示类型三:与数轴相关的问题例3: 数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.思路点拨:到原点的距离等于5.5 的点既可以在原点左边,也可以在原点右边,因此这样的点有两个;解析:5.5或-5.5总结升华:与数轴相关的问题还有数轴的画法以及借助数轴来比较有理数的大小;例4:如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为 _________.思路点拨:数轴上的点表示的数右边的比左边的大;因此,被污染的部分的数大于-1.3,小于2.6,再考虑这一范围内的整数即可;解析:-1,0,1,2总结升华:利用数轴解决问题是数形结合数学思想的的一个重要应用,要能由“形”看出“量”的一些关系;举一反三:变式1实数在数轴上表示如图所示,则下列结论错误的是A. B. C. D.变式2一个点从数轴的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,则终点表示的数是______.变式3数轴上点A对应的数为-3,那么与A相距1个长度的点B所对应的数是_________.类型四:与相反数相关的问题例5:1 的相反数是_________,-3与_________互为相反数2 的相反数是________, 的相反数是________,的相反数是________.30的相反数是_________.4已知那么的相反数是________.已知 ,则a的相反数是________.思路点拨:1代数意义:只有符号不同的两个数互为相反数,特别地,O的相反数是0.相反数必须成对出现,不能单独存在.例如+5和-5互为相反数,或者说+5是-5的相反数,-5是+5的相反数,而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如+3与-3互为相反数,而+3与-2虽然符号不同,但它们不是相反数.2几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.3求任意一个数的相反数,只要在这个数的前面添上“一”号即可.一般地,数a的相反数是-a;这里以a表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意-a 不一定是负数.注意:当a>O时,-a<0正数的相反数是负数;当a=O时,-a=O0的相反数是0;当a<0时, a>O 负数的相反数是正数.4互为相反数的两个数的和为零,即若a与b互为相反数,则a+b=0,反之,若a+b=O,则a与b 互为相反数.5多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号.解析:1 ,3; 2m,--m+1,-m+1; 3 0 4 -9, 9总结升华:求相反数时,要紧紧抓住“只有符号不同”这一条件,即“符号不同而数字相同”的两个数;举一反三:变式11 一个数的相反数的倒数是-4,这个数是__________.2 如果与-3互为相反数,那么等于A. 3B. -3C.D.类型五:与绝对值相关的问题例6:的绝对值是________.思路点拨:1取绝对值也是一种运算,这个运算符号是“ ”,求一个数的绝对值,就是根据性质去掉绝对值符号.2绝对值具有非负性,取绝对值的结果总是正数或0.3任何一个有理数都是由两部分组成:符号和它的绝对值,如:-5,符号是负号,绝对值是5.解析:总结升华:绝对值符号具有括号的功能,根据绝对值的意义去掉绝对值符号即可举一反三:变式1已知∣x∣=4,∣y∣=6,求代数式∣x+y∣的值.有理数的概念课后练习一、选择题:1.若一个数的绝对值大于零,这个数一定是A正数 B任意有理数 C非零数 D负数2.在有理数中,下面说法正确的是A有最小的数 B有最大的数C没有最小的数,也没有最大的数 D以上答案都不对3.下面四句话中错误的是A负分数一定是负有理数 B分数中除正分数就是负分数Ca的相反数是-a D有理数中除了正数就是负数4.下列说法正确的是A带有“-”的数是负数 B任何数的绝对值都是正C任何负数都小于它的相反数D一个数的相反数一定是负数5.一个数的绝对值一定是A正数B负数C非正数D非负数6.有理数a,b,c在数轴上的位置如图,下列结论错误的是Ac<b<a Ba-b>0Cb<0,c<0 Dc>b7、下列说法中,正确的是A、一个数不是正数就是负数;B、正有理数和负有理数组成全体有理数;C、零是最小的有理数;D、零既不是正数,也不是负数,但零是整数8、下列说法中,正确的是A、非负有理数就是正有理数;B、零表示没有,不是有理数;C、正整数和负整数统称为整数;D、整数和分数统称为有理数9、下面两个数互为相反数的是A、12和0.2 B、13和-0.333 C、-2.75和324 D、9和--910、一个数的绝对值大于它本身,那么这个数是A、正有理数B、负有理数C、零D、不可能11、a是一个有理数,那么-aA、负数;B、正数;C、零;D、以上都可能;12、已知数轴上表示-2和-101的两个点分别为A,B,那么A,B两点间的距离等于A99 B100 C102 D10313、数轴上原点及左边的点表示的数是A、负数;B、正数;C、非负数;D、非正数;14、“互为相反数”是指A、一个正数,一个负数;B、一个数前面添加上“-”号所得的数;C、数轴上原点两旁的两个点所表示的两个数;D、只有符号不同的两个数,且0的相反数是0;15、如果a+b=0,那么一定有A、a=0且b=0 ;B、a=0或b=0 ;C、a、b异号;D、a、b互为相反数;16、以下四个推理中,正确的是A、如果|a|=|b|,那么a=b;B、如果|a|=b, 那么a=b;C、如果a=-b,那么|a|=|b|;D、如果|a|=b,那么a=-b;二.填空题:1.-2.5的相反数是______________,绝对值是______________;2.最小的正整数是____________,最大的负整数是____________,绝对值最小的数是____________;3.在有理数-3,0, , ,3.1416,--7, , 中,属于负数集的是________,属于正分数集的是______________,属于整数集的是______________4.|-7|=______________, | |=π;5.化简---2002= ____________,--3.14=____________, __________;6.a的相反数是-11,那么______________;若3是x的相反数,那么x=______________, 3×-x=__________;7.相反数大于-4的正整数是__________,绝对值不大于2的整数是__________8.一个数的绝对值与它的相反数相等,这个数为__________,一个数的相反数大于它的本身, 这个数为__________;9.若两个数的绝对值相等,这两个数可能是__________;10.若一个数的相反数不小于零,那么这个数为__________;10.若|-m|=--0.3,那么m=__________;11.在数轴上点B表示数-3,那么与B点相距4个单位长度的点表示的数是__________;12、仪表的指针顺时针方向旋转90°记作-90°,那么逆时针旋转180°应记作 .13、说明下面一段话的意义:汽车先前进+50米,再前进-30米,即 ;14、数轴上表示互为相反数的两个点之间的距离是6,则这两个数为__________15、简化下列各数的符号:1--5= 3---4=16、L市在冬季的某一天最高温度为4℃,最低温度为-1℃,这天温差是℃.17、如果|x|=3.5,那么x= ;如果|-x|=|-2 1|,那么x= 18、数轴上离开原点2个单位长度的点表示的数是____________19、绝对值最小的有理数是________;绝对值等于3的数是______;绝对值等于本身的数是_______;绝对值等于相反数的数是___________数;20、绝对值不大于3的非负整数有21、观察下面一列数,根据规律写出横线上的数,-11;21;-31;41;;;……;第2006个数是 ;三.解答题:1.把下列各数填在相应的大括号内:10,-0.082,-30 1/2,3.14,-2,0,-98,-3 1/2 –21/8,1,3/5整数集合: { }分数集合: { }正分数集合:{ }负分数集合:{ }非负数集合:{ }非正数集合:{ }2.把下列各数表示在数轴上,并比较他们5的大小;-3 , 1/2,0.,3,. -2.53、1写出绝对值大于3而小于8的所有有理数;4、计算:1|-15|-|-6| 2|0.24|+|-5.06|5已知|a|=3,|b|=2,求|a+b|的值;6、比较大小:114-15-;22(3--113-;3+-4.21 (4)3 --7.求下列各数的相反数和绝对值1102 20 314-43248.一个病人每天下午要测量一次血压,下表是该病人星期一至星期五血压变化情况,该病人上个星期日的血压为160单位,血压的变化与前一天比较:请算出星期五该病人的血压9、出租车司机小李某天下午运营全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,这天下午他的行车里程单位:千米如下:+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+61将最后一名乘客送到目的地时,小李距下午出车时的出发点多远2若汽车耗油量为3升/千米,这天下午小李共耗油多少升。
(完整版)有理数相反数绝对值知识点总结及针对性练习

板块一、正数、负数、有理数正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.针对性练习:⑴ 如果收入2000元,可以记作2000+元,那么支出5000元,记为 . ⑵ 高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶ 某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 .⑷向南走200-米,表示 .(5)珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为(6)饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL )”字样,请问“30mL ±” 是什么含义?质检局对该产品抽查5瓶,容量分别为603mL ,611mL ,589mL ,573mL ,627mL ,问抽查产品的容量是否合格?(7)下列个数中:1330.70125---,,,,,中负分数有 个;负整数有 个; 自然数有(8)下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数?4.5-,6,0,2.4,π,12-,0.313-,3.14,11- 属于负数的有:属于非正数的有:属于正分数的有:属于非负有理数的有:(9)下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等;④只有负数的绝对值等于它的相反数.A .0B .1C .2D .3(10) 若a -是负数,则a(11)下列说法正确的个数是( )①互为相反数的两个数一定是一正一负 ②0没有倒数③如果a 是有理数,那么a +一定是正数,a -一定是负数④一个数的相反数一定比原数小 ⑤a 一定不是负数⑥有最小的正数,没有最小的负数A .0个B .1个C .2个D .4个(12)下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数 D .绝对值相等的两个有理数相等板块二:数轴数轴:规定了原点、正方向和单位长度的直线.注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变. ⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:错例23 120 234有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数.注意:数轴上的点不都代表无理数,如π.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.(1) 如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.(2)数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .(3)如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( ) MA .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <(4)在数轴上,下面说法中不正确的是( ).A.两个正数,小的离原点近B.两个有理数,大数对应的点在右边C.两个负数,较大的数对应的点离原点近D.两个有理数,大的离原点较远(5)数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.(6)数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?(7)已知数轴上有A B,之间的距离为1,点A与原点O的距离为3,那么点B ,两点,A B所对应的数为板块三:相反数相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0.相反数的性质:⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0. 相反数必须成对出现,不能单独存在.例如5+和5-互为相反数,或者说5+是5-的相反数,5-是5+ 的相反数, 而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如3+与3-互为相反数,而3+与2-虽然符号不同,但它们不是相反数. ⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数,只要在这个数的前面添上“—”号即可.一般地,数a 的相反数是a -;这里以a 表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意a -不一定是负数.当0a >时,0a -<;当0a =时,0a -=;当0a <时,0a ->.⑷互为相反数的两个数的和为零,即若a 与b 互为相反数,则0a b +=,反之,若0a b +=,则a 与b 互为相反数.⑸多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉; 一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”(其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号).针对性例题⑴ 2010的相反数是A .2010B .20101 C .2010- D .20101- ⑵ 3的相反数是A . 3B . -3C . ±3D . 13(3)m -的相反数是 ,1m -+的相反数是 ,m n a b +-+的相反数是 .(4) 化简 -(-32)=________; +(+15)=_______; +[-(+1)]=________; -[-(-5)]=_________.(5) 若4x-5与3x-9互为相反数,则x=________.(6) 若-(b-2)是负数,则b-2________0.(7)如果0a <,化简下列各数的符号,并说出是正数还是负数⑴()a -+;⑵()a --;⑶[]()a -+-;⑷[]()a ---;⑸(){}a -+--⎡⎤⎣⎦(8)下列说法错误的是( )A .(3)+-与(3)--互为相反数B .(3)+-与(3)++互为相反数C .(3)+-与(3)-+互为相反数D .3-与(3)--互为相反数板块四:绝对值:(1)一个正数的绝对值是它本身。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块一、正数、负数、有理数正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.针对性练习:⑴ 如果收入2000元,可以记作2000+元,那么支出5000元,记为 . ⑵ 高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶ 某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 .⑷向南走200-米,表示 .(5)珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为(6)饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL )”字样,请问“30mL ±” 是什么含义?质检局对该产品抽查5瓶,容量分别为603mL ,611mL ,589mL ,573mL ,627mL ,问抽查产品的容量是否合格?(7)下列个数中:1330.70125---,,,,,中负分数有 个;负整数有 个; 自然数有(8)下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数?4.5-,6,0,2.4,π,12-,0.313-,3.14,11- 属于负数的有:属于非正数的有:属于正分数的有:属于非负有理数的有:(9)下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等;④只有负数的绝对值等于它的相反数.A .0B .1C .2D .3(10) 若a -是负数,则a(11)下列说法正确的个数是( )①互为相反数的两个数一定是一正一负 ②0没有倒数③如果a 是有理数,那么a +一定是正数,a -一定是负数④一个数的相反数一定比原数小 ⑤a 一定不是负数⑥有最小的正数,没有最小的负数A .0个B .1个C .2个D .4个(12)下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数 D .绝对值相等的两个有理数相等板块二:数轴数轴:规定了原点、正方向和单位长度的直线.注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变. ⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:错例23 120 234有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数.注意:数轴上的点不都代表无理数,如π.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.(1) 如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.(2)数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .(3)如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( ) MA .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <(4)在数轴上,下面说法中不正确的是( ).A.两个正数,小的离原点近B.两个有理数,大数对应的点在右边C.两个负数,较大的数对应的点离原点近D.两个有理数,大的离原点较远(5)数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.(6)数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?(7)已知数轴上有A B,之间的距离为1,点A与原点O的距离为3,那么点B ,两点,A B所对应的数为板块三:相反数相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0.相反数的性质:⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0. 相反数必须成对出现,不能单独存在.例如5+和5-互为相反数,或者说5+是5-的相反数,5-是5+ 的相反数, 而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如3+与3-互为相反数,而3+与2-虽然符号不同,但它们不是相反数. ⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数,只要在这个数的前面添上“—”号即可.一般地,数a 的相反数是a -;这里以a 表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意a -不一定是负数.当0a >时,0a -<;当0a =时,0a -=;当0a <时,0a ->.⑷互为相反数的两个数的和为零,即若a 与b 互为相反数,则0a b +=,反之,若0a b +=,则a 与b 互为相反数.⑸多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉; 一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”(其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号).针对性例题⑴ 2010的相反数是A .2010B .20101 C .2010- D .20101- ⑵ 3的相反数是A . 3B . -3C . ±3D . 13(3)m -的相反数是 ,1m -+的相反数是 ,m n a b +-+的相反数是 .(4) 化简 -(-32)=________; +(+15)=_______; +[-(+1)]=________; -[-(-5)]=_________.(5) 若4x-5与3x-9互为相反数,则x=________.(6) 若-(b-2)是负数,则b-2________0.(7)如果0a <,化简下列各数的符号,并说出是正数还是负数⑴()a -+;⑵()a --;⑶[]()a -+-;⑷[]()a ---;⑸(){}a -+--⎡⎤⎣⎦(8)下列说法错误的是( )A .(3)+-与(3)--互为相反数B .(3)+-与(3)++互为相反数C .(3)+-与(3)-+互为相反数D .3-与(3)--互为相反数板块四:绝对值:(1)一个正数的绝对值是它本身。
(2)一个负数的绝对值是它的相反数。
(3)0的绝对值是0。
因为正数可用a >0来表示,负数可用a <0来表示,所以上述三条可改写成:(1)如果a >0,那么|a |=a ,(2)如果a <0,那么|a |=-a ,(3)如果a =0,那么|a |=0.上面这几个式子可合并写成:a a a a a a =>=-<⎧⎨⎪⎩⎪()()()0000 由上面的几个式子可以看出,不论a 取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a 而言,总有:a ≥0这是一条非常重要的性质,这里的“非负”就是“不是负数”,而有可能是正数或者是0. 上面的这几个式子还告诉咱们怎样求一个数的绝对值:如果求一个正数的绝对值,根据法则,就直接写出结果即可.如果求一个负数的绝对值,根据法则,就需要找它的相反数.而就“0”而言,它的绝对值就是它本身.针对性练习:1.______7.3=-;______0=;______3.3=--;______75.0=+-.2.______31=+;______45=--;______32=-+. 3.______510=-+-;______36=-÷-;______5.55.6=---.4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.5.当a a -=时,0______a ;当0>a 时,______=a .6.绝对值等于4的数是______.7.在数轴上,绝对值为4,且在原点左边的点表示的有理数为__.8.如果3-=a ,则______=-a ,______=a .9、绝对值小于3.1的所有非负整数为 。
10、-5的相反数是______,-3的倒数的相反数是____________ 。
11、如果x 与2互为相反数,那么1x -等于( )A .1B .2-C .3D .3-12、若|8||5|0a b -+-=,则a b -的值是 。
13、y x y x >==,2,3,求x+y 的值。