有理数相反数绝对值知识点总结及针对性练习
相反数、绝对值及比较大小复习知识点

绝对值及有理数大小比较和相反数知识点一:数轴上表示数a 的点与原点的 叫数a 的绝对值,记作 。
如-2到原点的距离是 ,所以-2的绝对值是 ,即|-2|= 。
知识点二:一个正数的绝对值是 ;一个负数的绝对值是 ;0的绝对值是 。
即:如果a > 0,那么|a |= ;如果a =0,那么|a |= ;如果a < 0,那么|a |= 。
(注意:由于0的绝对值是0,既可以看作是0本身,也可以看作是0的相反数,所以绝对值是这个数本身的数包括 和 (即非负数);绝对值是这个数的相反数的数包括 和 (即非正数))例题1:|-6|= ;|7|= ;|0|= .任意有理数的绝对值一定是 数,即|a | 0(即非负性)。
例题2:|-5|= ;|5|= 。
互为相反数的两个数的绝对值 ;一个数的绝对值等于正数,这样的数应该有两个,它们互为相反数。
例题3:已知|a |=4,|b |=2,且a>b ,求a 、b 的值。
解:因为|a |=4,|b |=2,所以a =±4,b=±2,但a > b,所以a=4, b=±2.《绝对值的非负性、双值性都是保证做题全面的关键》知识点三:有理数比较大小:方法一:数轴直观法——数轴左边的数小于数轴右边的数。
方法二:法则——两个负数相比较,绝对值大的反而小。
正数大于0,0大于负数,正数大于负数。
例题6:比较-65和-76的大小: 解:因为|-65|=65=4235,|-76|=76=4236,而4235<4236,所以-65>-76。
(依据“两个负数相比较,绝对值大的反而小”法则)知识点四:只有符号不同的两个数叫互为相反数,它们位于原点 ,且到原点的距离 。
求相反数的方法是在数(正负数均可)前面加个“-”号即可。
多重符号化简的方法:只看“-”号的个数,偶数个结果为正,奇数个结果为负。
正号可以省略。
例题7:化简:-⎥⎦⎤⎢⎣⎡+-)31( 解:原式=+(+31)=31 例题8:-(-3)的相反数是 。
绝对值知识点及练习

绝对值知识点及练习1、定义:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|,读作“绝对值a”。
(2)代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.实数a的绝对值是:|a|①a为正数时,|a|=a(不变)②a为0时,|a|=0③a为负数时,|a|= -a(为a的绝对值)任何数的绝对值都大于或等于0,因为距离没有负的。
2、实数的绝对值具有以下性质:(1)|a|大于等于0(实数的绝对值是非负实数);(2)|-a|=|a|(互为相反数的两实数绝对值相等);(3)-|a|小于等于a小于等于|a|;(4)|a|>b可以推出a<-b或a>b,a<-b或a>b可以推出|a|>b;(5)|a·b|=|a|·|b|;(6)|a|/|b|=|a/b|(b≠0);(7)|a+b|小于等于|a|+|b|,当且仅当a、b同号时,等式成立;(8)|a-b|大于等于||a|-|b||,当且仅当a、b同号时,等式成立;(9)a属于R时,|a|的平方等于|a|的平方。
特别提醒:(1)绝对值具有非负性,即|a|≥0;(2)绝对值相等的两个数,它们相等或互为相反数;(3)0是绝对值最小的有理数。
3、利用绝对值比较大小(1)利用绝对值比较两个负数的大小两个负数比较大小,绝对值大的反而小.比较的具体步骤:①先求两个负数的绝对值;②比较绝对值的大小;③根据“两个负数,绝对值大的反而小”作出判断.(2)几个有理数的大小比较①同号两数,可以根据它们的绝对值来比较:a.两个正数,绝对值大的数较大;b.两个负数,绝对值大的反而小.②多个有理数的大小比较,需要先将它们按照正数、0、负数分类比较,然后利用各数的绝对值或借助于数轴来进一步比较.4、利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题,主要有以下两类:(1)判断物体或产品质量的好坏可以用绝对值判断物体或产品偏离标准的程度,绝对值越小,越接近标准,质量就越好.方法:①求每个数的绝对值;②比较所求绝对值的大小;③根据“绝对值越小,越接近标准”作出判断.(2)利用绝对值求距离路程问题中,当出现用“+”、“-”号表示的带方向的路程,求最后的总路程时,实际上就是求绝对值的和.方法:①求每个数的绝对值;②求所有数的绝对值的和;③写出答案.5、去绝对值符号的几种常用方法:(1)利用定义法去掉绝对值符号根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥⎧⎨-<⎩,有|x |<c (0)(0)c x c c c -<<>⎧⇔⎨∅≤⎩;|x |>c (0)0(0)(0)x c x c c x c x R c <->>⎧⎪⇔≠=⎨⎪∈<⎩或(2)利用不等式的性质去掉绝对值符号利用不等式的性质转化|x |<c 或|x |>c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或ax b +<-c ;|ax b +|<c 可化为-c <ax +b <c ,再由此求出原不等式的解集。
有理数的概念知识点归纳及练习题

有理数的概念知识梳理有理数的概念一、目标认知学习目标:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量。
掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小。
掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义。
重点:有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:绝对值的概念及求法,尤其是用字母表示的时候的意义。
运用数轴理解绝对值的几何意义。
有理数比较大小的方法的掌握。
二、知识要点梳理知识点一:负数的引入要点诠释:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
知识点二:正数和负数的概念要点诠释:(1)像3、、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-、、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3)零既不是正数也不是负数,零是正数和负数的分界。
注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、、也可以写作+3、+、+。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。
绝对值与相反数知识点以及专项训练(含答案解析)

绝对值与相反数知识点以及专项训练知识点1:相反数的概念1. 定义:两个数相加和等于0,那么这两个数就互为相反数。
比如:a +b =0,a 、b 互为相反数。
换句话说:如果两个数只有符号不同,那么称其中的一个数为另一个数的相反数.特别地,0的相反数是0.举例:5的相反数是-5;-3的相反数是3; 2. 互为相反数的两个数在数轴上的位置关系:互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).知识点2:简单的多重符号的化简(只涉及到正、负号)多重符号的化简我们只需要看这个数前面有多少个“负号”。
① 如果有奇数个负号,那么化简后的结果:只需要在这个数的前面加一个负号即可;举例:-[-(-5)]=-5 ; -{-[-(+3)]}=-3.② 如果有偶数个负号,那么化简后的结果:就是这个数。
举例:+[-(-9)]=9 ; -{-[-(-10)]}=10.知识点3:绝对值1. 定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
比如:5的绝对值是5;-3的绝对值是3;0的绝对值是0. 记作: |5|=5; |-3|=3; |0|=0. 2. 绝对值的代数意义:如何去掉绝对值: 判断该数是非正数还是非负数;非负数的绝对值是它本身;|a |=a ↔a ≥0 非正数的绝对值是它本身的相反数;|a |=−a ↔a ≤0若是代数式则需要进行分类讨论判断正、负数。
3. 绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. 4. 绝对值的性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.(0)||0(0)(0)aa a a a a >⎧⎪==⎨⎪-<⎩知识点4:含有绝对值的多重符号的化简含有绝对值的多重符号的化简,我们只需要看绝对值前面有多少个“负号”。
班课讲义有理数(二)绝对值相反数和比较大小

标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。
6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。
3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。
理解:代数定义:只有符号不同的两个数互为相反数。
0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。
0的相反数是0。
说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。
“0的相反数是0”是相反数定义的一部分。
这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
另外,“0的相反数是0”也是相反数定义的一部分。
关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。
关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
《相反数和绝对值》 知识清单

《相反数和绝对值》知识清单一、相反数在数学中,相反数是一个非常重要的概念。
我们先来了解一下它的定义。
相反数指的是绝对值相等,正负号相反的两个数。
比如说,5 的相反数是-5,-3 的相反数是 3。
可以简单地理解为,在数轴上,位于原点两侧,且到原点距离相等的两个点所表示的数互为相反数。
为了更好地理解相反数,我们来看看它的几个特点:1、相反数是成对出现的,不能单独存在。
比如,我们不能只说 5 是相反数,而应该说 5 和-5 互为相反数。
2、 0 的相反数是 0。
这是因为 0 既不是正数也不是负数,它是唯一的一个相反数等于自身的数。
3、互为相反数的两个数之和为 0。
例如,3 +(-3) = 0 。
那么,如何求一个数的相反数呢?其实很简单,只需要改变这个数的正负号就可以了。
正数的相反数是负数,负数的相反数是正数。
相反数在实际生活中也有很多应用。
比如,在温度计上,零上 5 摄氏度和零下 5 摄氏度就是一对相反数,表示的温度高低相反,但距离 0 摄氏度的距离相等。
在计算中,相反数也经常被用到。
比如简化式子:( 2) ,因为负负得正,所以( 2) = 2 。
二、绝对值接下来,我们再来说说绝对值。
绝对值的定义是:一个数在数轴上所对应点到原点的距离叫做这个数的绝对值。
例如,5 的绝对值是 5 ,记作| 5 |= 5 ; 5 的绝对值也是 5 ,记作| 5 |= 5 。
绝对值具有以下几个重要性质:1、绝对值是非负数,即| a |≥ 0 。
2、互为相反数的两个数的绝对值相等。
比如| 3 |=| 3 |=3 。
3、若| a |= a ,则a ≥ 0 ;若| a |= a ,则a ≤ 0 。
计算绝对值时,需要注意以下几点:当 a 是正数时,| a |= a ;当 a 是 0 时,| a |= 0 ;当 a 是负数时,| a |= a 。
比如,| 7 |= 7 ,| 0 |= 0 ,| 8 |=( 8) = 8 。
绝对值在解决很多数学问题中都有着关键的作用。
(完整版)有理数相反数绝对值知识点总结及针对性练习

板块一、正数、负数、有理数正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.针对性练习:⑴ 如果收入2000元,可以记作2000+元,那么支出5000元,记为 . ⑵ 高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶ 某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 .⑷向南走200-米,表示 .(5)珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为(6)饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL )”字样,请问“30mL ±” 是什么含义?质检局对该产品抽查5瓶,容量分别为603mL ,611mL ,589mL ,573mL ,627mL ,问抽查产品的容量是否合格?(7)下列个数中:1330.70125---,,,,,中负分数有 个;负整数有 个; 自然数有(8)下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数?4.5-,6,0,2.4,π,12-,0.313-,3.14,11- 属于负数的有:属于非正数的有:属于正分数的有:属于非负有理数的有:(9)下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等;④只有负数的绝对值等于它的相反数.A .0B .1C .2D .3(10) 若a -是负数,则a(11)下列说法正确的个数是( )①互为相反数的两个数一定是一正一负 ②0没有倒数③如果a 是有理数,那么a +一定是正数,a -一定是负数④一个数的相反数一定比原数小 ⑤a 一定不是负数⑥有最小的正数,没有最小的负数A .0个B .1个C .2个D .4个(12)下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数 D .绝对值相等的两个有理数相等板块二:数轴数轴:规定了原点、正方向和单位长度的直线.注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变. ⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:错例23 120 234有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数.注意:数轴上的点不都代表无理数,如π.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.(1) 如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.(2)数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .(3)如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( ) MA .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <(4)在数轴上,下面说法中不正确的是( ).A.两个正数,小的离原点近B.两个有理数,大数对应的点在右边C.两个负数,较大的数对应的点离原点近D.两个有理数,大的离原点较远(5)数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.(6)数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?(7)已知数轴上有A B,之间的距离为1,点A与原点O的距离为3,那么点B ,两点,A B所对应的数为板块三:相反数相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0.相反数的性质:⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0. 相反数必须成对出现,不能单独存在.例如5+和5-互为相反数,或者说5+是5-的相反数,5-是5+ 的相反数, 而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如3+与3-互为相反数,而3+与2-虽然符号不同,但它们不是相反数. ⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数,只要在这个数的前面添上“—”号即可.一般地,数a 的相反数是a -;这里以a 表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意a -不一定是负数.当0a >时,0a -<;当0a =时,0a -=;当0a <时,0a ->.⑷互为相反数的两个数的和为零,即若a 与b 互为相反数,则0a b +=,反之,若0a b +=,则a 与b 互为相反数.⑸多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉; 一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”(其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号).针对性例题⑴ 2010的相反数是A .2010B .20101 C .2010- D .20101- ⑵ 3的相反数是A . 3B . -3C . ±3D . 13(3)m -的相反数是 ,1m -+的相反数是 ,m n a b +-+的相反数是 .(4) 化简 -(-32)=________; +(+15)=_______; +[-(+1)]=________; -[-(-5)]=_________.(5) 若4x-5与3x-9互为相反数,则x=________.(6) 若-(b-2)是负数,则b-2________0.(7)如果0a <,化简下列各数的符号,并说出是正数还是负数⑴()a -+;⑵()a --;⑶[]()a -+-;⑷[]()a ---;⑸(){}a -+--⎡⎤⎣⎦(8)下列说法错误的是( )A .(3)+-与(3)--互为相反数B .(3)+-与(3)++互为相反数C .(3)+-与(3)-+互为相反数D .3-与(3)--互为相反数板块四:绝对值:(1)一个正数的绝对值是它本身。
人教版七年级数学有理数-绝对值知识总结及练习题(附答案)

1.2.4绝对值定义:一般地,在数轴上表示 数a 的点与原点的距离叫做数a 的绝对值,记作︱a ︱。
1)一个正数的绝对值是它本身;2)零的绝对值是零;3)一个负数的绝对值是它的相反数。
即:4)任何一个有理数的绝对值都是非负数,(即0和正数.)在数轴上表示的两个数,右边的数总要 大于 左边的数。
也就是:1)、负数 < 0,0 < 正数,正数大于负数.2)、两个负数,绝对值大的 反而小 .练习:1、判断下列说法是否正确:(1)有理数的绝对值一定是正数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)符号相反且绝对值相等的数互为相反数;(4)一个数的绝对值越大,表示它的点在数轴上越靠右;(5)一个数的绝对值越大,表示它的点在数轴上离原点越远。
(7)若a =b ,则|a|=|b|。
(8)若|a|=|b|,则a =b 。
(9)若|a|=-a ,则a 必为负数。
(10)互为相反数的两个数的绝对值相等。
(11)一个数的绝对值是 2 ,则这数是2 。
(12)|5|=|-5|。
(13)|-0.3|=|0.3|。
(14)|3|>0。
(15)|-1.4|<0。
例1、已知052=++-y x ,求x,y 的值。
例2、若3=x ,则x=___。
例3、下列说法中,错误的是( )A 、一个数的绝对值一定是正数B 、互为相反数的两个数的绝对值相等C 、绝对值最小的数是0D 、绝对值等于它本身的数是非负数作业:1化简:=--5___;=--)5(___;=+-)21(_2比较下列各对数的大小:-(-1)___-(+2);)3.0(--___31-; 2--___-(-2)。
4、已知a=-2,b=1,则b a -+得值为___。
5、下列结论中,正确的有( )①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板块一、正数、负数、有理数正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0. 负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0.0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km 可以用负数表示为3km -.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量.有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.针对性练习:⑴ 如果收入2000元,可以记作2000+元,那么支出5000元,记为 .⑵ 高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示 . ⑶ 某地区5月平均温度为20C ︒,记录表上有5月份5天的记录分别为 2.7+,0,1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是 .⑷向南走200-米,表示 .(5)珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为(6)饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL )”字样,请问“30mL ±” 是什么含义?质检局对该产品抽查5瓶,容量分别为603mL ,611mL ,589mL ,573mL ,627mL ,问抽查产品的容量是否合格?(7)下列个数中:1330.70125---,,,,,中负分数有 个;负整数有 个; 自然数有(8)下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数? 4.5-,6,0,2.4,π,12-,0.313-,3.14,11- 属于负数的有:属于非正数的有:属于正分数的有:属于非负有理数的有:(9)下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大;②没有最大的非负数,也没有最小的非负数;③不相等的两个数,它们的绝对值一定也不相等;④只有负数的绝对值等于它的相反数.A .0B .1C .2D .3(10) 若a -是负数,则a(11)下列说法正确的个数是( )①互为相反数的两个数一定是一正一负 ②0没有倒数③如果a 是有理数,那么a +一定是正数,a -一定是负数④一个数的相反数一定比原数小 ⑤a 一定不是负数⑥有最小的正数,没有最小的负数A .0个B .1个C .2个D .4个(12)下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数 D .绝对值相等的两个有理数相等板块二:数轴数轴:规定了原点、正方向和单位长度的直线.注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.⑶数轴的画法及常见错误分析①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点:③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.数轴画法的常见错误举例:错例120有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大.正数都大于0,负数都小于0,正数大于一切负数.注意:数轴上的点不都代表无理数,如π.利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.(1) 如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为_________.-1.3 2.6(2)数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 .(3)如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( )MA .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <(4)在数轴上,下面说法中不正确的是( ).A.两个正数,小的离原点近B.两个有理数,大数对应的点在右边C.两个负数,较大的数对应的点离原点近D.两个有理数,大的离原点较远(5)数轴上有一点到原点的距离是5.5,那么这个点表示的数是 _________.(6)数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?(7)已知数轴上有A B,之间的距离为1,点A与原点O的距离为3,那么点B ,两点,A B所对应的数为板块三:相反数相反数:只有符号不同的两个数互称为相反数.特别地,0的相反数是0.相反数的性质:⑴代数意义:只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0.相反数必须成对出现,不能单独存在.例如5+和5-互为相反数,或者说5+是5-的相反数,5-是5+ 的相反数,而单独的一个数不能说是相反数.另外,定义中的“只有”指除符号以外,两个数完全相同,注意应与“只要符号不同”区分开.例如3+与3-互为相反数,而3+与2-虽然符号不同,但它们不是相反数.⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数,只要在这个数的前面添上“—”号即可.一般地,数a 的相反数是a -;这里以a 表示任意一个数,可以为正数、0、负数,也可以是任意一个代数式.注意a -不一定是负数.当0a >时,0a -<;当0a =时,0a -=;当0a <时,0a ->.⑷互为相反数的两个数的和为零,即若a 与b 互为相反数,则0a b +=,反之,若0a b +=,则a 与b 互为相反数.⑸多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“-”号,也可以把“-”号全部去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号,既“奇负偶正”(其中“奇偶”是指正数前面的“-”号的个数的奇偶数,“负正”是指化简的最后结果的符号).针对性例题⑴ 2010的相反数是A .2010B .20101 C .2010- D .20101- ⑵ 3的相反数是A . 3B . -3C . ±3D . 13(3)m -的相反数是 ,1m -+的相反数是 ,m n a b +-+的相反数是 . (4) 化简 -(-32)=________; +(+15)=_______; +[-(+1)]=________; -[-(-5)]=_________.(5) 若4x-5与3x-9互为相反数,则x=________.(6) 若-(b-2)是负数,则b-2________0.(7)如果0a <,化简下列各数的符号,并说出是正数还是负数⑴()a -+;⑵()a --;⑶[]()a -+-;⑷[]()a ---;⑸(){}a -+--⎡⎤⎣⎦(8)下列说法错误的是( )A .(3)+-与(3)--互为相反数B .(3)+-与(3)++互为相反数C .(3)+-与(3)-+互为相反数D .3-与(3)--互为相反数板块四:绝对值:(1)一个正数的绝对值是它本身。
(2)一个负数的绝对值是它的相反数。
(3)0的绝对值是0。
因为正数可用a >0来表示,负数可用a <0来表示,所以上述三条可改写成:(1)如果a >0,那么|a |=a ,(2)如果a <0,那么|a |=-a ,(3)如果a =0,那么|a |=0.上面这几个式子可合并写成:a a a a a a =>=-<⎧⎨⎪⎩⎪()()()0000 由上面的几个式子可以看出,不论a 取何值,它的绝对值总是正数或0(通常也称为非负数),即对任意有理数a 而言,总有:a ≥0这是一条非常重要的性质,这里的“非负”就是“不是负数”,而有可能是正数或者是0. 上面的这几个式子还告诉咱们怎样求一个数的绝对值:如果求一个正数的绝对值,根据法则,就直接写出结果即可.如果求一个负数的绝对值,根据法则,就需要找它的相反数.而就“0”而言,它的绝对值就是它本身.针对性练习:1.______7.3=-;______0=;______3.3=--;______75.0=+-.2.______31=+;______45=--;______32=-+. 3.______510=-+-;______36=-÷-;______5.55.6=---.4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.5.当a a -=时,0______a ;当0>a 时,______=a .6.绝对值等于4的数是______.7.在数轴上,绝对值为4,且在原点左边的点表示的有理数为__. 8.如果3-=a ,则______=-a ,______=a .9、绝对值小于的所有非负整数为 。
10、-5的相反数是______,-3的倒数的相反数是____________ 。
11、如果x 与2互为相反数,那么1x -等于( )A .1B .2-C .3D .3-12、若|8||5|0a b -+-=,则a b -的值是 。
13、y x y x >==,2,3,求x+y 的值。