相反数、绝对值及比较大小复习知识点
数轴、相反数、绝对值

数轴、相反数、绝对值数学是研究数量、结构、变化及空间等概念的学科。
在数学中,数轴、相反数和绝对值是非常重要的概念,它们在解决各种实际问题中发挥着关键作用。
一、数轴数轴是数学中的一个基本概念,它是一个有序的直线,用来表示实数和有理数。
数轴上的点表示实数,原点表示零,正半轴表示正数,负半轴表示负数。
通过数轴,我们可以直观地比较两个实数的大小,也可以找出任何实数的相反数和绝对值。
二、相反数相反数是数学中的另一个重要概念。
如果一个数x的相反数是-x,那么它们在数轴上位于原点的两边,并且它们的距离相等。
例如,3的相反数是-3,5的相反数是-5。
在数学中,相反数经常被用于抵消或中和,以解决各种问题。
三、绝对值绝对值是数学中的一个非常有用的概念。
在数轴上,任何一个实数x的绝对值就是从原点到点x的距离。
例如,3的绝对值是3,-5的绝对值也是5。
绝对值的计算公式是|x| = x(x > 0)或 0(x = 0)或 -x(x < 0)。
绝对值的概念可以帮助我们确定一个数的符号和它的大小。
四、总结数轴、相反数和绝对值是数学中的基本概念,它们在解决各种实际问题中发挥着关键作用。
通过了解这些概念,我们可以更好地理解数学的本质,并解决各种复杂的问题。
因此,对于每一个学习数学的人来说,理解这些基本概念都是非常重要的。
《相反数、绝对值复习》课件一、教学目标1、复习相反数和绝对值的概念和性质,掌握它们的计算方法。
2、提高学生对于相反数和绝对值的理解和应用能力。
3、培养学生的思维能力和自主学习能力。
二、教学内容1、相反数的概念及性质。
2、绝对值的概念及性质。
3、相反数和绝对值的计算方法。
三、教学重点与难点重点:掌握相反数和绝对值的计算方法。
难点:理解相反数和绝对值的概念及性质,并应用到实际问题中。
四、教学方法与手段1、通过PPT展示相反数和绝对值的概念和性质,让学生自主思考和讨论。
2、通过例题讲解和练习,让学生掌握计算方法。
【初中数学++】+绝对值与相反数+课件+苏科版数学七年级上册

感悟新知
知2-练
方法点拨
求一个数的相反数的方法:
(1)求一个具体数的相反数时,改变这个数的符号,
其他部分不变,即可得到;
(2)求一个字母或一个式子的相反数时,也只需在这
个字母或式子的整体前面加上“-”号.
感悟新知
知识点 3 绝对值的代数意义
知3-讲
1. 性质 正数的绝对值是它本身;负数的绝对值是它的相
互为相反数的两个数绝对值相等.
也可以表示为:|-a|=|a|.1)若a与b互为相反数,则a=-b;
(2)若a=-b,则a与b互为相反数.
3. 相反数的求法 求一个数的相反数就是在这个数的前面
加上“-”号,即a的相反数是-a,其实质是改变这个
数的符号.
感悟新知
知2-练
知1-练
如图2.3-2,数轴上与原点的距离是2的点有2个,它们是点
A和点B. 分别表示2,-2 .
所以绝对值是2的数有两个,它们是2,-2,即a=±2.
答案:D
感悟新知
知1-练
教你一招
1. 已知一个数的绝对值求这个数,可以根据绝对值的概
念,先利用点与原点的距离,在数轴上分别画出相应
的点,然后读出这个点表示的数;
.
感悟新知
知1-练
方法点拨
绝对值实际上和四则运算“加、减、乘、除”一样,
也是一种运算,绝对值运算的本质就是要把带有绝对值
符号的数化为不带绝对值符号的数(即去掉绝对值符号).
感悟新知
知识点 2 相反数
知2-讲
1. 定义 像5与-5 ,2.5与-2.5, 与- ,…这样只有符
号不同的两个数称为互为相反数,其中一个数叫作另一
数轴、相反数、绝对值 (讲义及答案)

数轴、相反数、绝对值(讲义)➢课前预习1.为了表示相反意义的量,我们可以把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走5 m可记作+5 m,向西走8 m可记作_____m.(2)一种袋装食品标准净重为200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重205 g记为+5 g,那么食品净重197 g就记为_____g.2.正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5等都是负整数,而-1.5,12-都是负分数.请将下列各数进行分类:3,-2.5,3.14,32-,-9,100,0.其中属于整数的有:__________________________________;其中属于分数的有:__________________________________;其中属于正数的有:__________________________________;其中属于负数的有:__________________________________.3.如图,点A表示小明的家,动物园在小明家西边500米,书店在小明家东边500米,车站在书店东边200米,小明从动物园出发向东走1 000米,到达_________;动物园和书店到小明家的距离都是_______米;小明从家出发,走了500米,可以到达_________________;动物园和车站之间的距离为__________米.DCA1. _______与_______统称为有理数.2. 有理数的分类:有理数_________________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎨⎪⎩⎪⎩_________________________________________________有理数⎧⎧⎨⎪⎩⎪⎪⎪⎨⎪⎪⎪⎧⎨⎪⎩⎩ 3. 非正数:_________________;非负数:________________. 非正整数:_______________;非负整数:______________. 4. 数轴的定义:规定了_______、________、_________的一条数轴.任何一个______都可以用数轴上的一个点来表示.5.数轴的作用:__________________、___________________、___________________________.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越____,越往左数越_____,右边的总比左边的______.正数_____0,负数_______0,正数________负数.7. 相反数的定义:__________________的两个数,互为相反数.特别地,____________________. 互为相反数的两个数,和为0.8. 绝对值的定义:在________上,一个数所对应的点与原点的__________叫做这个数的绝对值. 9. 绝对值法则:正数的绝对值是_________;___________________________;___________________________.1. 若上升5 m 记作+5 m ,则-8 m 表示__________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作+5℃,那么零下2℃记作___________;太平洋中的马里亚纳海沟深达11 034 m ,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔___________,比海平面低30 m 的地方,它的高度记作海拔___________. 2. 选出下列不具有相反意义的量( )A .气温升高4℃与气温为12℃B .胜3局与负4局C .转盘逆时针转4圈与顺时针转6圈D .支出5万元与收入3万元3. 有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2B .-3C .+3D .+44. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( ) A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.015. 把下列各数填入它所在的集合里:-2,7,32-,0,2 020,0.618,3.14,-1.732,-5,+3.①正数集合:{__________________________________…};②负数集合:{__________________________________…}; ③整数集合:{__________________________________…}; ④非正数集合:{________________________________…}; ⑤非负整数集合:{______________________________…}; ⑥有理数集合:{________________________________…}.6.7. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b0aA .0<a <bB .a <0<bC .b <0<aD .a <b <08. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.9. 在数轴上大于-4.12的负整数有______________________.10. 到原点的距离等于3的数是____________.11. 数轴上,将表示-2的点向左移动两个单位后得到点A ,与点A 距离为3个单位的点对应的数是_________.12. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米13. 填空: 13+的相反数是_____;-3.5的相反数是_____;(1)--的相反数是_____;(2)+-的相反数是_____;0的相反数是_____. 14. A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A .B AB .B AC .B AD .B A15. 下列各组数中,互为相反数的两个数是( )A .-3和+2B .5和15C .-6和6D .13-和1216. 下列化简不正确的是( )A .( 4.9) 4.9--=+B .( 4.9) 4.9-+=-C .[]( 4.9) 4.9-+-=+D .[]( 4.9) 4.9+-+=+ 17. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数18. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b按照从小到大的顺序排列正确的是( )aA .b a a b -<-<<B .b a b a >->->C .b a a b -<<-<D .b b a a -<<-<19. 填空:5.3-=______;21+=_______;5--=_______;若x <0,则x =_______,x -=_______; 若m <n ,则m n -=________. 20. 下列各数:-2,31+,3-,0,2-+,-(-2),2--,其中是正数的有_______________________________. 21. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数22. 下列说法正确的是( )A .一个数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 23. 下列说法正确的是( )A .所有的有理数都可以用数轴上的点来表示B .绝对值等于它相反数的数是负数C .如果两个数的绝对值相等,那么这两个数相等D .相反数等于它本身的数是非负数24. 请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示 ( )(2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )25. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=____+____=____; (4)22--+=|_____-_____|=_____; (5)3 6.2-⨯=____×____=_____; (6)21433-÷-=____÷____=____×____=_____.【参考答案】 ➢ 课前预习1. (1)-8 (2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14,32-;其中属于正数的有:3,3.14,100;其中属于负数的有:-2.5,32-,-9.3. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数2.⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数正有理数正分数有理数0负整数负有理数负分数3. 负数和0;正数和0;负整数和0;正整数和04. 原点、单位长度、正方向、直线; 有理数.5. 表示数 比较大小 表示距离6. 大,小;大;大于,小于,大于7. 只有符号不同.0的相反数为0.8. 数轴,距离9.它本身;负数的绝对值是它的相反数;0的绝对值是0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩右侧框内答案 框2:图略框3:-a ,a ,-a +b框4:正数和0,负数和0➢ 精讲精练1. 下降8 m 收入50元 -2℃+50 m -30 m2. A3. A4.B5.①7,2 019,0.618,3.14,+3;②-2,23-,-1.732,-5③-2,7,0,2 019,-5,+3;④-2,23-,0,-1.732,-5⑤7,0,2 019,+3;⑥-2,7,23-,0,2 020,0.618,3.14,-1.732,-5,+36.212101332-3.5<-<-<<<+图略;7. B8.999.-4,-3,-2,-110.±311.-7或-112.B13.13-;3.5,-1,2,014.D15.C16.D17.B18.C19.3.5 12-5 -x -x-m +n20.13+,3-,-(-2)21.C22.C23.A24.(1)√(2)×(3)×(4)×(5)√(6)√(7)×(8)×25.(1)113 -;(2)4.2 4.2 0;(3)3 5 8;(4)2 2 0;(5)3 6.2 18.6;(6)231432331417.。
职高数学知识点总结复习整理

数学知识要点总结 初中基础知识:1. 相反数、绝对值、分数的运算;2. 因式分解:提公因式:xy-3x=(y-3)x十字相乘法 如:)2)(13(2532-+=--x x x x配方法 如:825)41(23222-+=-+x x x 公式法:(x+y )2=x 2+2xy+y 2 (x-y)2=x 2-2xy+y 2 x 2-y 2=(x-y)(x+y) 3. 一元一次方程、一元二次方程、二元一次方程组的解法: (1) 代入法 (2) 消元法6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-7.平方差公式:))((22b a b a b a -+=-8.立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。
2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。
注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。
(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(做题时多考虑φ是否满足题意)(2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。
5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合 (2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。
初一数学知识点总结归纳(5篇)

初一数学知识点总结归纳第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。
(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
绝对值与相反数(提高)__绝对值与相反数(提高)知识讲解

绝对值与相反数(提高)责编:康红梅【学习目标】1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系;3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小;4. 通过应用绝对值解决实际问题,体会绝对值的意义和作用.【要点梳理】要点一、相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释: (1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.要点三、绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3.要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数.(2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点四、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:同为正号:绝对值大的数大两数同号同为负号:绝对值大的反而小两数异号正数大于负数正数与0:正数大于0-数为0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若,则;若,则;若,1a b >a b >1a b =a b =1a b <则;反之也成立.若a 、b 为任意负数,则与上述结论相反.a b <5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、相反数的概念1.(2014•常德一模)若m 与n 互为相反数,则|m+n﹣2|= .【答案】2【解析】根据互为相反数的两个数的性质,可知,代入上式可得:|m+n﹣2|=0m n +=|0﹣2|=2.【总结升华】若互为相反数,则或.,m n 0m n +=m n =-举一反三:【变式】(2014秋•监利县期末)若|x﹣2|与(y+3)2互为相反数,则x+y= .【答案】-1.∵|x ﹣2|与(y+3)2互为相反数,∴|x ﹣2|+(y+3)2=0,∴x ﹣2=0,y+3=0,解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1.故答案为:﹣1.类型二、多重符号的化简2.化简下列各数.①; ②; ③ ;④;⑤(6)--(6)-+[(6)]--+{[(6)]}---+{[(6)]}----【答案】①6; ②;③6;④-6;⑤66-【解析】①表示-6的相反数,所以;(6)--(6)6--=②表示+6的相反数,所以;(6)-+(6)6-+=-③ 前面共有2个“-”号,为偶数个,而“+”可以省略,所以;[(6)]--+[(6)]6--+=④中共有3个“-”号,即奇数个,而“+”可以省略,所以=-{[(6)]}---+{[(6)]}---+6;⑤中共有4个“-”号,即偶数个,而 “+”可以省略,所以{[(6)]}----{[(6)]}6----=【总结升华】多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型三、绝对值的概念3.如果|x|=6,|y|=4,且x <y .试求x 、y 的值.【思路点拨】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案与解析】因为|x|=6,所以x =6或x =-6;因为|y|=4,所以y =4或y =-4;由于x <y ,故x 只能是-6,因此x =-6,y =±4.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x =-6,y =±4,就是x =-6,y =4或x =-6,y =-4.举一反三:【变式】如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .【答案】6或-6;1或3;或x>3x<-3类型四、比较大小4. 比较下列每组数的大小:(1)-(-5)与-|-5|;(2)-(+3)与0;(3)与;(4)与.45-34--π-| 3.14|--【思路点拨】先化简符号,去掉绝对值号再分清是“正数与零、负数与零、正数与负数、两个正数还是两个负数”,然后比较.【答案与解析】 (1)化简得:-(-5)=5,-|-5|=-5.因为正数大于一切负数,所以-(-5)>-|-5|.(2)化简得:-(+3)=-3.因为负数小于零,所以-(+3)<0.(3)化简得:.这是两个负数比较大小,因为,3344--=-44165520-==,且.所以.33154420-==16152020>4354-<-- (4)化简得:-|-3.14|=-3.14,这是两个负数比较大小,因为 |-π|=π,|-3.14|=3.14,而π>3.14,所以-π<-|-3.14|.【总结升华】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.类型五、含有字母的绝对值的化简5. 把下列各式去掉绝对值的符号.(1)|a-4|(a≥4);(2)|5-b|(b >5).【思路点拨】绝对值的化简问题主要看绝对值里面的数或式子是大于等于0,还是小于0,如果是大于等于0,化简后等于它本身;如果小于0,化简后等于它的相反数.【答案与解析】(1)∵ a≥4,∴a-4≥0,∴ |a-4|=a-4.(2)∵ b >5,∴ 5-b <0,∴ |5-b|=-(5-b)=b-5.【总结升华】由字母的取值范围来判断绝对值里面的符号情况,再根据绝对值的意义去掉绝对值的符号.举一反三:【变式】已知有理数a ,b ,c 在数轴上对应的点的位置如图所示: 化简:【答案】由图所示,可得. ∴ ,,,30a c -> ∵ . ∴ 原式.类型六、绝对值非负性的应用6. 已知a 、b 为有理数,且满足:,则a =_______,12b =________.【答案与解析】由,,,可得 ∴【总结升华】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.举一反三:【变式】已知b 为正整数,且a 、b 满足,求的值.【答案】由题意得∴ 所以,2ba 类型七、绝对值的实际应用7.一只可爱的小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm 就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【思路点拨】总路程应该为小虫爬行的距离和,和方向无关.【答案与解析】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm)小虫得到的芝麻数为54×2=108(粒)答:小虫一共可以得到108粒芝麻.【总结升华】此题是绝对值的应用问题,当求爬行路程是即为各数的绝对值之和,如果求最后所在的位置时即为各数之和,最后看正负来决定方向.。
班课讲义有理数(二)绝对值相反数和比较大小

标题: 有理数(二)——相反数、绝对值教学目标重点、难点教 学 内 容一、 知识点梳理+例题(一)相反数1.在数轴上分别找出表示各数的点。
6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。
3.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。
理解:代数定义:只有符号不同的两个数互为相反数。
0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。
0的相反数是0。
说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。
“0的相反数是0”是相反数定义的一部分。
这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
补充:一.相反数定义:只有符号不同的两个数叫做互为相反数定义的理解: “只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。
不能理解为只要符号不同的两个数就互为相反数。
另外,“0的相反数是0”也是相反数定义的一部分。
关于“数a 的相反数是-a”,应该明确的是-a 不一定是正数,a 不一定是正数。
关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。
二.相反数的意义(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
小升初数学衔接暑假班系列讲义第三讲:数轴、相反数和绝对值

第三讲数轴、相反数和绝对值课标要求:内容具体要求数轴A.能用数轴上的点表示有理数;知道实数与数轴上的点一一对应.相反数A.借助数轴理解相反数的意义,会求一个数的相反数.B.掌握相反数的性质.绝对值A.借助数轴理解绝对值的意义,会求一个数的绝对值,知道a的含义.B.会利用绝对值的知识解决简单的化简问题和计算问题.一. 数轴:知识点1 数轴定义通常用一条直线上的点表示数,这条直线叫做数轴。
数轴必须满足3个条件:(1)在直线上任取一点表示数0,这个点叫做原点.(2)通常规定直线上从原点向右为正方向。
(3)选取适当长度为单位长度。
注11.原点、正方向、单位长度是数轴的三要素,三者缺一不可.2。
“规定"是指原点、正方向和单位长度,是根据实际情况人为确定的.3。
一切有理数都可以用数轴上的点表示,但数轴上的点不仅能表示有理数.4。
利用数轴解题要注意应用数形结合思想和分类讨论思想.知识点2:数轴的画法1.画直线:通常画一条水平的直线.2.找原点:在这条直线上适当位置取一点作为原点.3.一般确定向右的方向为正方向,画上箭头.4。
选取适当的长度作单位长度,用细短线画出,并对应标注各数.注21.数轴上原点的位置和单位长度的大小的可根据各题的实际需要灵活选取.2。
注意同一数轴的单位长度要一致,一个数轴上的单位长度一旦确定之后,则不能再改变.【典型例题】例1(1)数轴上A,B,C,D各点分别表示的数是A ; B ; C ; D .(2)画一条数轴,并在数轴上表示下列各数.3,—2, 0, 4。
5, 0.8,—1。
3练习1(1) 一个数的相反数小于它本身,这个数是.(2) —2的相反数是,0.8的相反数是,0的相反数是.(3) a—1与b+1互为相反数,则a+b= .-3 -2 -1 0 1 2 3二. 相反数:知识点1:相反数的意义定义代数意义只有符号不同的两个数叫做互为相反数,特别地,0的相反数是0.数轴上,到原点的距离相等的点表示的数互为相反数.几何意义一对相反数在数轴上的对应点分别位于原点两侧,且关于原点对称.原点的对称点是它本身.注11.相反数必须成对出现,不能单独存在.2.定义中的“只有”指除符号以外,两个数完全相同,应与“只要符号不同”区分开,与具有相反意义的量区分开.3.互为相反数的两个数的和为零,即若a与b互为相反数,则0+=;a b反之,若0+=,则a与b互为相反数.a b知识点2:相反数的求法求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.注21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝对值及有理数大小比较和相反数
知识点一:数轴上表示数a 的点与原点的 叫数a 的绝对值,记作 。
如-2
到原点的距离是 ,所以-2的绝对值是 ,即|-2|= 。
知识点二:一个正数的绝对值是 ;一个负数的绝对值是 ;0
的绝对值是 。
即:如果a > 0,那么|a |= ;如果a =0,那么|a |= ;如果a < 0,那么|a |= 。
(注意:由于0的绝对值是0,既可以看作是0本身,也可以看作是0的相反
数,所以绝对值是这个数本身的数包括 和 (即非负数);绝对值是这个数的相反数的数包括 和 (即非正数))
例题1:|-6|= ;|7|= ;|0|= .任意有理数的绝对
值一定是 数,即|a | 0(即非负性)。
例题2:|-5|= ;|5|= 。
互为相反数的两个数的绝对值 ;
一个数的绝对值等于正数,这样的数应该有两个,它们互为相反数。
例题3:已知|a |=4,|b |=2,且a>b ,求a 、b 的值。
解:因为|a |=4,|b |=2,所以a =±4,b=±2,但a > b,所以a=4, b=±2.
《绝对值的非负性、双值性都是保证做题全面的关键》
知识点三:有理数比较大小:
方法一:数轴直观法——数轴左边的数小于数轴右边的数。
方法二:法则——两个负数相比较,绝对值大的反而小。
正数大于0,0大于负
数,正数大于负数。
例题6:比较-
65和-7
6的大小: 解:因为|-65|=65=4235,|-76|=76=4236,而4235<4236,所以-65>-76。
(依据“两个负数相比较,绝对值大的反而小”法则)
知识点四:只有符号不同的两个数叫互为相反数,它们位于原点 ,且到原点的距
离 。
求相反数的方法是在数(正负数均可)前面加个“-”号即可。
多重符号化简的方法:只看“-”号的个数,偶数个结果为正,奇数个结果为负。
正号可以省略。
例题7:化简:-⎥⎦⎤⎢⎣⎡+-)3
1( 解:原式=+(+31)=3
1 例题8:-(-3)的相反数是 。
(注意:有多重符号求相反数时,应先把符号化
简,再求相反数。
)。