键控大数据采集及数值显示电路设计(微机原理)

合集下载

数据采集电路和简易存储示波器设计

数据采集电路和简易存储示波器设计

梧州学院课程论文(2012 -2013学年第一学期)课程论文题目:数据采集电路和简易存储示波器设计学生姓名:石凯摘要:设计中采用了模块化设计方法,并使用了多种EDA工具,提高了设计效率。

整个设计实现了存储示波器的所有功能要求,达到较高的性能指标。

本设计分为四个模块分别是:数据采集模块,控制模块和数据存储模块和数据输出模块。

数据采集模块采用A/D(ADC0809)对不同频率的输入信号分别以相应的采样速度予以采样,并将采样数据存在FPGA内部的RAM中。

数据输出模块采用D/A(DAC0832)输出采样信号,在示波器上以X-Y的方式显示波形。

控块以采用EDA中的状态机控制A/D的采样和数字信号的输出。

关键词: 数字存储示波器,状态机, AD,DA, EDA,LPM RAM一、设计内容:数据采集电路和简易存储示波器设计二、设计目的与要求:用ADC0809采集外部一个信号(从IN1输入),转换为8位的二进制数据存储到存储器中,采样一个周期后,把存储器里面的数据重新读出来,通过DAC0832输出,用示波器观察比较被采集的信号和重新输出的信号。

三、设计原理本设计利用FPGA直接控制ADC0809对模拟信号进行采样,然后将转换好的8位二进制数迅速存储到FPGA内部RAM存储器中,在完成对模拟信号一个或数个周期的采样后,由外部按键电路系统将存储器中的采样数据读出处理。

包括如下模块:对ADC0809的采样控制电路、8位地址计数器、存储器、D触发器和按键电路模块。

为使电路设计更加简单快捷,且方便阅读与理解,本电路使采用模块化的设计思想,先由VHDL源程序对各个模块进行独立编写(对各个模块进行硬件描述)、测试,然后生成原理图封装,再用原理图方式进行连接、整合。

A/D采样控制电路可以分为三个部分来分别实现:ADC0809的控制部分、地址计数器部分、数据存储器部分。

系统框图:在设计整个系统的过程中,可以把设计分成信号采样、存储、信号输出等几部分。

采集AD值显示波形图案例原理与测试说明

采集AD值显示波形图案例原理与测试说明

“采集AD值显示波形图”案例原理与测试说明1 程序设计目标及程序运行效果说明程序设计目标:该程序是分时的采集四种AD值,并利用定时器以上位机要求的不同速率定时发送AD值,上位机把上传的四种AD值分别显示成波形。

程序运行效果说明:采集的四种AD值显示在上位机上,通过改变温度和光照强度可以看出波形的变化。

2 程序相关电路及工作原理说明2.1工作原理下位机工作原理:主函数中分时初始化四种AD,AD中断根据不同的标志位获取相应的AD值,我们用定时器T0计时,T0中断根据上位机要求的速率通过串口发送四个AD值。

串口通信采用协议来完成,发送过程包含:包头(A5),中间数据(P1.0AD值,P1.1AD值,温度AD值,光AD值,四种10位AD值中剩余两位的和),校验和(前面六个字节的和,进位丢弃),共七个字节,如:A5 01 02 71 03 60 7C ;接收过程包含:包头(5A),中间数据(上位机修改下位机传输速率),校验和(前面两个字节的和,进位丢弃),如:5A 04 5E 。

串口中断接收上位机发送过来的用于调节下位机发送速率的包,并用校验和检查收到的包是否正确,如果正确则在定时器T0中断中修改发送数据的频率,否则丢弃该包。

上位机工作原理:接收下位机发送的包,并通过校验和检查收到的包是否正确,如果正确则把收到的四个字节的AD 值分别显示成四种波形图,分别对应P1.0口电压值,P1.1口电压值,温度值,光照值。

上位机还可以调节下位机发送数据的频率,分别为低速,中速和高速,可以从波形图中很清楚的观察到速率的变化。

每一副波形图都有提取波形数据,保存波形图等功能。

2.2 程序总框图设计流程如下否是否初始化串口 串口中断,收到上位机发送的数据初始化定时器T0 T0中断,按照上位机的要求速率通过串口定时发送AD 数据包给上位机 上位机显示下位机发送四种AD 值的波形图 是否通过校验 丢弃该包 上位机发送要求的速率给下位机 是否通过校验 丢弃该包 主函数分时初始化AD AD 中断,获取四种AD 值2.3 上位机图形界面3 测试方法(1)将Hex文件下载到实验板;(2)打开“工程文件”文件夹,打开“上位机”文件夹,并启动程序Ware.exe;(3)采集波形软件自动连接实验板;(4)出现波形并正常显示即为成功。

1-单片机键盘与显示电路设计

1-单片机键盘与显示电路设计

独立式按键 单片机控制系统中,往往只需要几个 功能键,此时,可采用独立式按键结构。 1.独立式按键结构 独立式按键是直接用I/O口线构成的单 个按键电路,其特点是每个按键单独占 用一根I/O口线,每个按键的工作不会影 响其它I/O口线的状态。独立式按键的典 型应用如图9-3所示。
V CC
P 1.0 P 1.1 P 1.2 P 1.3 P 1.4 P 1.5 P 1.6 P 1.7
P1口某位结构

P1口电路中包含有一个数据输出锁存器、一个三态数据输入缓冲器 、一个数据输出的驱动电路。 P1口的功能和驱动能力

P1口只可以作为通用的I/O口使用;
P1可以驱动4个标准的TTL负载电路; 注意在P1口作为通用的I/O口使用时,在从I/O端口读入数据时,应 该首先向相应的I/O口内部锁存器写“1”。 举例:从P1口的低四位输入数据 MOV MOV P1,#00001111b ;;先给P1口底四位写1 A,P1 ;;再读P1口的底四位
依此规律循环,即可使各位数码管显 示将要显示的字符。虽然这些字符是在不 同的时刻分别显示,但由于人眼存在视觉 暂留效应,只要每位显示间隔足够短就可 以给人以同时显示的感觉。 采用动态显示方式比较节省I/O口,硬 件电路也较静态显示方式简单,但其亮度 不如静态显示方式,而且在显示位数较多 时,CPU要依次扫描,占用CPU较多的时 间。
矩阵式按键 单片机系统中,若使用按键较多时,通 常采用矩阵式(也称行列式)键盘 1.矩阵式键盘的结构及原理 矩阵式键盘由行线和列线组成,按键位 于行、列线的交叉点上,其结构如下图9-4 所示。
+5 V 0 4 8 12 0 1 5 9 13 1 2 6 10 14 2 3 7 11 15 3 0 1 2 3

数据采集系统设计原理PPT课件

数据采集系统设计原理PPT课件

▪ 例:青岛项目 薄膜蒸发器项目

南理工压力,速度测量系统
例子
.
例子
各. 种传 感器
智能数据 采集模块
下位机
RS485
工控机
.
.
USB总线数据采集系统
.
温湿度变送器
压差变送器 风速变送器 电压电流变
送器 流量传感器
各种传感器
机箱 供电电源
USB数据采集卡
USB总线
基于Labview平台 开发的数据采集
2、单片机的结构及组成
.
Sensor Sensor 开关量
键盘
打印
调理电路
放大滤波 整形
Smit触发器
A/D 整形
显示LED 报警
0832D/A 通信RS232
基于8051的智能仪表的组成
13.5基于IPC与PLC的测控系统
.所有的工业控制中,PLC的可靠性是最高的,其弱点是: (1)显示功能和数据处理的能力不如IPC机, (2)开关控制功能强大,模拟量控制能力稍差。 PLC一般应用于批量不大的工业设备和工厂生产过程的自 动控制。如果系统中开关量多(10个以上),采用PLC。 如今PLC 作为下位机与PC机,IPC进行连网,组成计算机 集散控制与管理系统(DCS)前景非常好。
软件
工业控制机
下位机机箱
上位机
13.3基于单片机数据采集系统
▪ . 1、单片机的特点 ▪ (1)可靠性高:芯片本身是按工业测控环境要求设计,其工业抗
干扰能力强,指令及系统常数因化在ROM中,不易破坏,硬件集成 度高,所以可靠性高。 ▪ (2)易扩展:单片机提供扩展用三总成,并行、串行I/O引脚,易 构成各种规模的计算机应用系统。 ▪ (3)控制功能强,软件指令丰富。 ▪ (4)存储容量小,一般RAM仅几百字节,ROM为几千字节 ▪ 8位: 256 4k 8k ▪ 扩展后: 64k 64k ▪ (5)体积小 ▪ (6)开发周期短,成本低

数据采集与分析技术(第2版)课件:数据采集系统常用电路

数据采集与分析技术(第2版)课件:数据采集系统常用电路
图 6.10 AD585 一倍增益采样/保持电路
数据采集系统常用电路
为了进一步说明 AD585 的应用,我们给出 AD585 与 12 位采样芯片 AD578K 的连接电路图,如图 6.11 所示,其 中 AD578K 的 27 脚作为 10V 范围输入脚与 AD585 的输出 脚相连。 AD578K 的 21 脚为采样变换启动命令脚,由高跳 低时启动采样。 AD578K 的 20 脚为结束采样信号端,在采 样期间保持高电平,驱动 AD585 的 12 脚( HOLD )保持信号。
数据采集系统常用电路
假若保持命令与 A / D 的转换命令同时发出,那么当输 入信号变化缓慢到在孔径时间T P 内输入信号的变化量小于 A / D 转换的分辨力时,采集系统不需要采样/保持器。即当 允许输入信号最大变化率(d V / d t )max 与采样/保持器的孔径 时间 T P 的乘积量小于 A/ D 转换器所能分辨的最小电压( 2- n ×V F ,其中 V F 是 A / D 转换的满度值)时,也就是
6. 1. 2 CD4051 CD4051 是常用的由场效应管组成的单端 8 通路模拟开
关,它的原理图如图 6. 3 所示。它有 3 根二进制的控制输入 端 A 、 B和 C以及1根禁止输入端 INH (高电平禁止)。片上 有二进制译码器,可由 A 、 B 和 C 共 3 个二进制信号在 8 个通路中选择 1 个。当 INH 为高电平时,无论 A 、 B 和 C 为何值, 8 个通路都不通。
多路转换设计中最令人关心的电气元件是开关器件,一 般常用的是机电开关和固体多路开关。机电开关有干簧继电 器、湿式水银继电器等。机电开关在通断指标方面具有近似 理想的电气特性,但是速度和体积等方面则不够理想。另外, 在簧片和连线间还存在有热电势。固体多路开关有双极型晶 体管、场效应管,目前集成电路中多用 CMOS 结构, CMOS 集成电路开关体积小、速度快、导通电阻较低。

数据采集显示系统设计(查询法)_硬件课设报告

数据采集显示系统设计(查询法)_硬件课设报告

硬件技术课程设计实验报告报告名称:数据采集显示系统设计二(查询法)学院专业:自动化学院自动化专业二○一二年六月二十六日一、实验目的1、利用PC机和实验装置设计并实现数据采集显示系统2、进一步掌握微机硬件和软件综合设计二、实验内容和要求通过ADC0809的通道0(IN0)采集电位器的值,并将其通过DAC0832输出,该输出直接连接到ADC0809的通道1(IN1),并将IN0和IN1采集到的模拟电压分别在LED和CRT上显示。

要求:1、设计简单操作页面,具有开始与结束运行控制的功能2、IN0采集的电压值在LED上以十进制显示,IN1采集的值在CRT上以十进制显示3、对IN0采集的通道进行如下处理:(1)如果IN0<2.5V,则送00H到DAC0832如果IN0>=2.5V,则送FFH到DAC0832(2)DAC0832的输出接ADC0809的IN1,同时接示波器(3) IN1采集的电压值以十进制在CRT 上显示 4、 ADC0809采用查询方式读取数据 5、 显示须有一定的延时 三、 硬件设计与接线图ADDA 转换模块:XD0—XD7+5V IOY1 500 10KXIOW 10K5VXD0-XD7CLK PA0 XIOWXD0 XD1IOY0 CS XD05V XIOR 8255检测模块XD0-XD7 D0-D7XIOW WRPA0XIOR RDPA4-PA7L3-L6XA2 A0XA3 A1/Y1 CSPB0-PB7A,B-G,Dp四、程序流程图和清单 主程序流程图:D0 Vref ILED7DAC0832 Xfer CS Rf WR1 Iout1 WR2 Iout2D0 IN0 IN1 ADC0809 D7 IN7CLOCK EOCALE ADD-A START ADD-B ADD-CREF+ ENABLE REF-A B8255数码管键盘单元初始化NONOYESNO YES YESNOYES十进制转换流程图:显示提示信息 读取输入 LED 显示输入是否为1是否为2 结束启动0809开始 转换IN0EOC=1? 读IN0采样值保存并计算后送0832启动0809IN1,将IN0数据转换成十进制保存EOC=1?读IN1采样值并保存,如果IN1值发生改变,将IN1转换为十进制后保存,在CRT 上显示3、程序清单:;回车换行宏定义CLRF MACROMOV DL,0DHMOV AH,02HINT 21HMOV DL,0AHINT 21HENDMIOY0 EQU 3000HIOY1 EQU 3040HIOY2 EQU 3080HADCS EQU IOY0DACS EQU IOY1PA55 EQU IOY2+00H*4PB55 EQU IOY2+01H*4PC55 EQU IOY2+02H*4 PCTL EQU IOY2+03H*4 STACK1 SEGMENT STACK DW 256(?)STACK1 ENDSDATA SEGMENTDCTBL DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FHDCTBL1 DB 0BFH,86H,0DBH,0CFH,0E6H,0EDH,0FDH,87H,0FFH,0EFH LED DB 3 DUP(0)CRT DB 3 DUP(0)MES0 DB 'PRESS 1 TO START TO CONVEY!',0DH,0AHDB 'PRESS 2 TO QUIT!',0DH,0AH,'$'MES1 DB 'THE DATA IN1 COLLECT IS:',0DH,0AH,'$'BUF DB 2 DUP(0)DATA ENDSSTAC SEGMENT PARA STACKDB 256 DUP(?)STAC ENDSCODE SEGMENTASSUME CS:CODE,DS:DATA,SS:STACSTART:MOV AX,DATAMOV DS,AXMOV DX,PCTL MOV AL,90HOUT DX,AL;显示提示信息LOP2: LEA DX,MES0 MOV AH,09HINT 21HLOP1:MOV DL,0FFHMOV AH,06HINT 21HJZ LOP1CMP AL,'1'JNZ LOP2LOP0: JMP ADDA LOP3: CALL DISPMOV DL,0FFHMOV AH,06HINT 21HCMP AL,'2'JZ EXITJMP LOP0 EXIT: MOV AH,4CH INT 21HADDA: MOV DX,ADCS ;采集通道0数据MOV AL,00HOUT DX,ALMOV DX,PA55L1: IN AL,DXAND AL,01HJZ L1MOV DX,ADCSIN AL,DXMOV BUF,ALCMP AL,7FHJAE L2MOV AL,00HJMP L3L2: MOV AL,0FFHL3: MOV DX,DACS ;转换后送入;DAC0832OUT DX,ALMOV AL,BUF ;数据转换XOR AH,AHMOV BL,33HDIV BLMOV LED,AL ;存入led显示整数;部分MOV DL,0AHMOV AL,AHXOR AH,AHMUL DLDIV BLMOV LED[1],AL ;存入led显示小;数部分MOV DL,0AHMOV AL,AHXOR AH,AHMUL DLDIV BLMOV LED[2],ALMOV DX,ADCS ;采集通道1的数;据MOV AL,01HOUT DX,ALMOV DX,PA55L4: IN AL,DXAND AL,01HJZ L4MOV DX,ADCSIN AL,DXCMP BUF[1],7FHJAE L5JMP L6L5: CMP AL,7FHJAE LOP3JMP L8L6: CMP AL,7FHJB L7JMP L8L7: JMP LOP3L8: MOV BUF[1],AL;通道1数据十进制转换MOV AL,BUF[1]XOR AH,AHDIV BLMOV CRT,AL ;存入CRT显示整;数部分 MOV DL,0AHMOV AL,AHXOR AH,AHMUL DLDIV BLMOV CRT[1],AL;存入CRT显示小;数部分MOV DL,0AHMOV AL,AHXOR AH,AHMUL DLDIV BLMOV CRT[2],ALLEA DX,MES1 ;CRT显示in1数据MOV AH,09HINT 21HMOV AH,02HMOV DL,CRTADD DL,30HINT 21HMOV DL,2EHINT 21HMOV DL,CRT[1]ADD DL,30HINT 21HMOV DL,CRT[2]ADD DL,30HINT 21HMOV DL,56HINT 21HCLRFJMP LOP3DISP PROC ;LED显示子程序MOV AL,LEDLEA BX,DCTBL1XLATMOV DX,PB55OUT DX,ALMOV DX,PC55 MOV AL,04HOUT DX,ALCALL DELAYMOV AL,LED[1]LEA BX,DCTBLXLATMOV DX,PB55OUT DX,ALMOV AL,02HMOV DX,PC55OUT DX,ALCALL DELAYMOV AL,LED[2]LEA BX,DCTBLXLATMOV DX,PB55OUT DX,ALMOV AL,01HMOV DX,PC55OUT DX,ALCALL DELAYRETDISP ENDPDELAY PROC ;延时子程序 PUSH CXMOV BX,60HDEL1:MOV CX,0FFFFHLOOP $DEC BXJNZ DEL1POP CXRETDELAY ENDPCODE ENDSEND START五、实验结果及分析实验结果:结果分析:本次实验的结果与理论值存在一定的误差。

数据采集技术PPT课件

数据采集技术PPT课件
系统设计灵活。 (3)数据采集与数据处理紧密,形成数据采
集与处理系统,可实现从数据采集、处理到 控制的全部工作。
2
(4)数据采集过程一般都具有“实时”特性,实时的 标准是能满足实际需要。
(5)随着微电子技术的发展,电路集成度的提高,数 据采集系统的体积越来越小,可靠性越来越高,出 现单片数据采集系统。
✓ CMOS:互补金属氧化物(PMOS管和NMOS管)共 同构成的互补型MOS集成电路制造工艺,功耗很低、 电压范围宽、抗干扰能力强。
✓ TTL:集成电路输入级和输出级全采用晶体管组成的 单元门电路,多发射极实现输入级“与”逻辑,输 出级晶体管实现“非”逻辑。与非门输出结果为: 有0出1,全1出0。+5V等价于逻辑“1”,0V等价于 逻辑“0”,被称做TTL(晶体管-晶体管逻辑电平) 信号系统 。
率信号和开关量信号等。
7
二、数据采集系统的主要性能指标 ➢ ①系统分辨率; ➢ ②系统精度; ➢ ③采集速率; ➢ ④动态范围; ➢ ⑤非线性失真。
8
第二节 数据釆集基本电路
一、运算放大器和测量放大器 1.运算放大器 在模拟集成电路中,集成运算放大器是最基本
又是用途最广的一种电路。集成运算放大器是 高增益、多级直接耦合放大器,在模拟计算中, 这种放大器能够实现各种数学运算,故称为运 算放大器。 ✓ 直接耦合:将前一级的输出端直接连接到后一级 的输入端。 高增益单片集成化运算放大器在自动控制、测 量仪表、计算技术等许多方面都有着极其广泛 的应用,是模拟电子领域中最重要的有源器件。
25
模拟多路开关有机械式、电磁式和电子式三大类。 ➢ 纯机械式开关在现代数据采集系统中已很少使用。 ➢ 电磁式多路开关主要是指各种继电器、干簧管等,

51单片机加CPLD驱动ADC0809的多路数据采集系统

51单片机加CPLD驱动ADC0809的多路数据采集系统
1. 启动AD转换
ADC0809 启动受 START、ALE 和 ADDR 信号控制,
一、ADC0809
ADC0809 是 8 位 A/D 转换器、8 路多路开关以及 微处理机兼容的控制逻辑的 CMOS 组件。它是逐次逼 近式 A/D 转换器,容易和单片机总线模式接口。图 1 是 ADC0809 芯片的实物图和引脚图。
51MCU 有与之对应的控制时序,当 MCU 执行指 令 MOVX @DPTR,A 时,将产生如图 3 所示的时序波形 图,P0 口分时复用,分别送出低 8 位地址 addrL 和数 据 data,P2 口送出高八位地址 addrH,并且在 t0 时刻, P3.6(WR)送出低脉冲信号。
通过比较图 2 图、3 波形图,如果将 Wr 信号取反, 就可以得到满足 ADC0809 启动所需的 ALE(START) 信号,从 P0 送出的 data 为其提供 ADDR 通道选择地址。
30 2011. 03
IN3 1 IN4 2 IN5 3 IN6 4 IN7 5 START 6 EOC 7 2-5 8 OE 9 CLOCK 10 VCC 11 VREF(+) 12 GND 13 2-7 14
28 IN2 27 IN1 26 IN0 25 ADD A 24 ADD B 23 ADD C 22 ALE 21 2-1MSB 20 2-2 19 2-3 18 2-4 17 2-8LSB 16 VREF(-) 15 2-6
IN7 5
32 2011. 03
图7 0809与Mini51板接口电路图
单片机制作
MCU
三、程序设计
多路数据采集系统主程序流程图如图 11 所示,外
部中断流程图如图 12 所示。
在 keil 中创建工程,主 C51 程序解读如下。 #include "STC89C51RC.H"//STC 单片机头文件,相当与一 般 51 的 reg51.h #include <absacc.h> #include <stdio.h> #include "STCEEPROM.H"//STC 单片机 EEPROM 读写头文件 // 根据单片机地址译码电路定义单片机扩展地址 #define SEG1 XBYTE[0xffec]// 数码管地址 #define SEG2 XBYTE[0xffed] #define SEG3 XBYTE[0xffee] #define SEG4 XBYTE[0xffef] #define ADC XBYTE[0xffe0]//ADC 地址 #define CH_BYTE EEPROM52// 预定义通道地址在 EEPROM 中存放地址,与单片机型号有关,详细在 STCEEPROM.H 中定义 sbit KEY_UP = P3^5;// 按键端口定义 sbit KEY_DN = P3^4; char CH;// 通道变量,0 ~ 7 unsigned char ledmap[]= // 共阳 LED 数码管译码表 { 0xc0,0xf9,0xa4,0xb0,0x99, 0x92,0x82,0xf8,0x80,0x90, //0;1;2;3;4;5;6;7;8;9; 0x40,0x79,0x24,0x30,0x19, 0x12,0x02,0x78,0x00,0x10,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二○一二~二○一三学年第一学期
信息科学与工程学院
自动化系
课程设计计划书
班级:自动化1006班
课程名称:微机原理及应用课程设计姓名:
指导教师:
二○一二年月十二日
一、设计题目
键控数据采集及数值显示电路设计
二、设计任务
按不同的数字键(0、1、2、3、4、5、6、7)采集0809相应数据通道的模拟量,并在LED数码管上显示值。

设定输入模拟量在0—5V范围内,显示值在0—255范围内。

三、设计要求
1.画出连接线路图或功能模块引脚连接图。

2.采用8088CPU作主控制器,0809作A/D转换器,采用直接地址译码方法,给各芯片分配地址,选取芯片中必须包含有8255。

3.采用3个共阴极型LED动态显示,只需显示0—255范围内的值。

四、设计思想及需要用的主要芯片
1、设计思想
首先通过编程对8255初始化,然后通过8255对ADC0809转换器初始化,通过0~7号按键(在这里0~7号按键用开关实现,有按键的过程中会有抖动,所以需要加入一个74LS244芯片,用于缓冲),经8088微处理器处理后选择ADC0809的模拟通道,将0~5V内的模拟量通过选择的模拟通道传递给模数转换器,通过转换器把模拟量转换为0~255之间的数字量,将数字量通过可编程并行接口8255(在这里端口A作为数据输入端,端口B作为数据输出端,端口C 作为控制端),送给LED数码管显示。

2.主要芯片及其功能
ADC0809是8位逐次逼近式A/D转换器。

片内有8路模拟开关及地址锁存与译码电路、8位A/D转换和三态输出锁存缓冲器。

其芯片引脚图如下
8255是Intel公司生产的可编程并行I/O接口芯片,有3个8位并行I/O 口。

具有3个通道3种工作方式的可编程并行接口芯片(40引脚)。

74LS244是数据输入三态缓冲器。

外设输入的数据和状态信号,通过数据输入三态缓冲器井经过数据总线传递给微处理器。

8个数据输入端与外设相连,8个数据输出端与微型计算机的数据总线相连。

其引脚图如下
74LS273是数据输出寄存器。

8个输入端微型计算机的数据总线相连,8个数据输出端与外设相连,由时终端控制数据的写入。

其引脚图如下
六、流程图:
七、源程序代码
STACK SEGMENT
DW 32 DUP(0)
STACK ENDP
DA TA SEGMENG
BUF DB 40H,79H,24H,30H,19H,12H,02H,78H,00H,18H ;0~9的字形码
IBUF DB 4,0,4 DUP(0) ;分配空间,为存储数据做准备DA TA ENDS
CODE SEGMENT
START PROC FAR
ASSUME CS:CODE,DS:DATA,SS:STACK
PUSH DS
SUB AX,AX
PUSH AX
MOV AX,DA TA
MOV DS,AX
MOV DX,383H ;8255控制字寄存器的端口地址
MOV AL,83H ;方式选择字
OUT DX,AL
LOP1: MOV AL,0
MOV DX,005H ;读74LS244芯片地址
IN AL,DX ;读74LS244端口地址
AND AL,OFFH
JZ LOP5
MOV BL,0
LOP2:CMP AL,01H ;将按键转化成相应的数字
JE LOP3
SHR AL,1
INC BL
JMP LOP2
LOP3:MOV AL,BL
OUT DX,AL ; 启动A/D转换并选择通道
MOV DX,382H ;PC端口地址
LOP4:IN AL,DX
TEST AL,01H ;为1表示转换结束,否则继续等待
JZ LOP4
MOV DX,383H ;控制字寄存器的端口地址
MOV AL,80H ;写OE让其有效
OUT DX,AL
MOV AL,1 ;PC端口选择位置位字
OUT DX,AL ;将ADC0809的EOC改为高电平有效
MOV AL,0BH;
OUT DX,AL ;使OE有效,允许输出
MOV DX,383H
MOV 90H ;将PA端口设置为输入
OUT DX,AL
MOV DX,380H ;写PA端口,将转化结果写入8255
IN AL,DX
MOV DX,383H ;设置控制字,将PB端口设置为输出
MOV AL,80H
OUT DX,AL
MOV DX,381H ;读PB端口
OUT DX,AL
LOP5:MOV CL,10
MOV AH,0
BEGIN:DIV CL
MOV BP,OFFSET IBUF ;依次将百位,十位,个位存入IBUF MOV [BP+4],AH
MOV AH,0
DIV CL
MOV [BP+3],AH
MOV AH,0
DIV CL
MOV [BP+2],AH
MOV [BP+5],0DH ;存入回车符
MOV AH,04H ;用于操作七段显示器的位码
SHOW:MOV BL,DS:[BP+2]
MOV BH,0
MOV AL,BUF[BX] ;取出BCD数七段显示码,用于显示
MOV DX,380H ;74LS273端口地址,输出端码
OUT DX,AL
MOV AL,AH
MOV DX,384H ;输出位码
OUT DX,AL
MOV CX,1000 ;延时
LOOP $
INC BP ;调整指向BCD码的指针,用于显示下一个数字SHR AH,1 ;调整位码指针,是的下一个七段显示器有效
AND AH,AH ;判断三位数字是否已经完全输出
JNZ SHOW ;没有输入完,则跳转至SHOW
MOV AH,11 ;检测有无输入
INT 21H
CMP AL,0
JNZ LOP1 ;若有按键,则返回继续选择通道继续执行
RET
START ENDP
CODE ENDS
END START
八、实验小结
此次试验对于我来说是一次历练,由于我们在做实验时做的题目相对于这一次的课程设计来说要简单,所以开始拿到题目是有一些茫然。

冷静下来后开始分析题目,首先得知道题目究竟要我们做什么,实现什么功能。

然后拿着我们的《微机原理、汇编与接口技术》课本,分析一个个学过的芯片,看它能够实现什么功能,分析芯片的引脚应该怎样连接。

除了已经要求必须要用到的主要芯片,还需要找出一些辅助芯片,看究竟用哪一个芯片,能够是连接的电路图能够更加的简介。

在画硬件电路图上我也遇到了问题,由于没有选修电子电路CAD那门课,我一开始对Protel软件完全不熟悉,所以开始完全不知道图怎么画,最后请教的同学,他们教我怎样选择芯片、怎样选择一些元器件、怎样连接试图看起来更加清晰。

在Protel 软件里面所有芯片内部的接Vcc的引脚和接地的引脚都没有显示,再此加以说明。

在实现功能的时候自己也遇到了一些麻烦,比如我们一般做试验的时候,实验室里面不需要我们对如何实现8086芯片的功能进行连线,只需把相应的数据总线等与其他的芯片连接起来即可,且许多芯片的内部已经接好,不需要我们另外连接。

在该课程设计中模拟量是0~5V,我在这里在ADC0809的ref(+)和ref(-)端分别接+5V和地,在在它们之间接一个滑动变阻器来实现。

实用标准文案
实用标准文案。

相关文档
最新文档