摩擦力做功和变力做功

合集下载

求变力做功的几种方法

求变力做功的几种方法

求变力做功的几种方法变力做功是物理学中的一个重要概念。

力可以改变物体的状态,让物体移动、加速或减速。

做功就是施加力使物体移动的过程中能量的转移。

以下将介绍几种常见的变力做功的方法。

1.推力做功:将物体推向前方时,施加的力与物体的位移方向一致,即力和位移向量的夹角为0度。

例如,我们推车子或推行李箱时,就是通过推力来做功。

2.拉力做功:这种方式与推力做功相反,即施加的力与物体的位移方向相反,力和位移向量的夹角为180度。

例如,我们拉拽一根绳子或拉弓发射箭矢时,施加的力与物体的运动方向相反。

3.重力做功:重力是地球吸引物体向地心运动的力。

当一个物体从高处下落时,重力对物体做功。

在这种情况下,重力与物体的位移方向相同,力和位移向量的夹角为0度。

4.弹力做功:当有弹簧或橡皮带等弹性物体被拉伸或压缩时,会产生弹力。

弹力做功是将弹性势能转化为动能的过程。

例如,我们拉伸弓弦时,弓的张力对箭矢做功,让它飞行。

5.摩擦力做功:当物体在表面上移动时,与表面接触的粒子之间会产生摩擦力。

摩擦力做功是将机械能转化为热能的过程。

例如,我们用力推动一个滑动在地面上的物体时,摩擦力会做功,使物体停下来。

6.磁力做功:磁力是磁体之间的相互作用力。

当磁场改变时,施加在物体上的磁力会做功。

例如,我们用电磁铁吸起一个金属球时,磁力会做功,将物体从地面抬起。

7.电力做功:电力是在电子之间产生的相互作用力。

当电流通过电阻产生的电阻力与电子的移动方向相对立时,电力会做功。

例如,电流通过电灯丝时,电力会转化为热能和光能,使灯泡发亮。

总结起来,变力做功的方法主要包括推力做功、拉力做功、重力做功、弹力做功、摩擦力做功、磁力做功和电力做功。

通过施加不同的力,我们可以改变物体的状态和能量的转移,从而实现各种实际应用。

高中物理必修二 第四章 专题强化11 摩擦力做功问题 变力做功的计算

高中物理必修二 第四章 专题强化11 摩擦力做功问题 变力做功的计算

根据速度的合成与分解,可得 A 位置船速大小为 vA=cosv30°=233 m/s,故 A 错误; 同理可得 B 位置船速大小为 vB=cosv60°=2 m/s,故 B 正确; 船从 A 运动到 B 的过程中,人的拉力做的功 W=F(2 AB sin 60°- AB ) =10×(2×4× 23-4) J=40( 3-1) J,故 C 错误,D 正确.
小球受到的拉力F在整个过程中大小不变,方向时刻 变化,是变力.但是,如果把圆周分成无数微小的弧 段,每一小段可近似看成直线,拉力F在每一小段上 方向不变,每一小段上可用恒力做功的公式计算,然后将各段做功累 加起来.设每一小段的长度分别为l1、l2、…、ln,拉力在每一段上做的 功W1=Fl1、W2=Fl2、…、Wn=Fln,拉力在整个过程中所做的功W= W1+W2+…+Wn=F(l1+l2+…+ln)=F(π·R2+πR)=32πFR.故选 C.
知识深化
3.一对相互作用的滑动摩擦力等大反向但物体之间相对滑动,即两 个物体的对地位移不相同,由W=Fscos α可判断两个相互作用的滑 动摩擦力做功的总和不为零.
[深度思考] 一对相互作用的滑动摩擦力做功的总和是正值还是负值? 答案 相互作用的一对滑动摩擦力中至少有一个做负功,且两力做功的 总和一定为负值.
√D.从 A 到 C 过程,摩擦力做功为-πRf
1 2 3 4 5 6 7 8 9 10 11
滑块从A到B过程,重力做功不为零,选项A错误; 弹力始终与位移方向垂直,弹力做功为零,选项 B正确; 滑块从 A 到 B 过程,摩擦力方向始终与速度方向相反,摩擦力做功 为 W1=-fsAB=-f(14×2πR)=-12πRf,选项 C 错误; 同理,滑块从 A 到 C 过程,摩擦力做功 W2=-f(12×2πR)=-πRf, 选项 D 正确.

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况

F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同.【典例2】 用质量为5 kg 的均匀铁索,从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2)【解析】 方法一 提升物体过程中拉力对位移的平均值:F -=250+2002N =225 N 故该过程中拉力做功:W =F -h =2 250 J.方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+2002×10 J =2 250 J. 【答案】 2 250 J法3.用微元法求变力做功圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了.【典例3】如图所示,质量为m的质点在力F的作用下,沿水平面上半径为R的光滑圆槽运动一周.若F的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F对质点做的功.【解析】质点在运动的过程中,F的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl1、Δl2、Δl3、…、Δln,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F对质点做的功等于它在每一小段上做功的代数和,即W =W1+W2+…+W n=F(Δl1+Δl2+…+Δl n)=2πRF.【答案】2πRF.变式训练1如图所示,放在水平地面上的木块与一劲度系数k=200 N/m的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x1=0.2 m,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m,求上述过程中拉力所做的功.解析:木块刚要滑动时,拉力的大小F=kx1=200×0.2 N=40 N,从开始到木块刚要滑动的过程,拉力做的功W1=0+F 2x1=402×0.2 J=4 J;木块缓慢移动的过程,拉力做的功W2=Fx2=40×0.4 J=16 J.故拉力所做的总功W=W1+W2=20 J.答案:20 J变式训练2如图所示,一质量为m=2.0 kg的物体从半径为R=5.0 m 的圆弧的A端,在拉力作用下沿圆弧缓慢运动到B端(圆弧AB如图所示,水平传送带正以v =2 m/s 的速度运行,两端水平距离l =8 m ,把一质量m =2 kg 的物块轻轻放到传送带的A 端,物块在传送带的带动下向右运动.若物块与传送带间的动摩擦因数μ=0.1,不计物块的大小,g 取10 m/s 2,则把这个物块从A 端传送到B 端的过程中.求:(1)摩擦力对物块做的功.(2)摩擦力对传送带做的功.【解析】 (1)物块刚放到传送带上时,由于与传送带有相对运动,物块受向右的滑动摩擦力,物块做加速运动,摩擦力对物块做功.物块受向右的摩擦力为F f =μmg =0.1×2×10 N =2 N加速度为a =F f m =μg =0.1×10 m/s 2=1 m/s 2当物块与传送带相对静止时的位移为x =v 22a =222×1m =2 m 摩擦力对物块做功为W =F f x =2×2 J =4 J.(2)把这个物块从A 端传送到B 端的过程中,摩擦力对传送带做功为:W ′=-μmgx ′=-μmg ·v ·v a =-8 J.【答案】 (1)4 J (2)-8 J变式训练3 以初速度v 0竖直向上抛出质量为m 的小球,上升的最大高度是h ,如果空气阻力f 的大小恒定,从抛出到落回出发点的整个过程中,空气阻力对小球做的功为( )A .0B .-fhC .-2mghD .-2fh解析:阻力做功跟物体的运动轨迹有关,所以阻力做功为W f =-2fh .答案:D。

摩擦力做功几种求法

摩擦力做功几种求法

θOB CD A⑤1o 2o 3o 0v 1l 2l 3l摩擦力做功几种求法白城一中物理组 / 闫炜平摩擦力做功计算是同学做题时容易疑惑的问题,概括的说分为三种情况,下面举例说明:一、在摩擦力大小、方向都不变的情况下,应该用θcos ⋅⋅=s f W f 可求。

二、在摩擦力大小不变,方向改变时,由微元法,可将变力功等效成恒力功求和。

例1:质量为m 的物体,放在粗糙水平面上。

现 使物体沿任意曲线缓慢地运动,路程为s ,物体与水平面间的动摩擦因数为μ。

则拉力F 做的功为多少? 解:由微元法可知:F 做的功应等于摩擦力做功总和。

例2:如图所示,竖直固定放置的斜面AB 的下端与光滑的圆弧轨道BCD 的B 端相切,圆弧面半径为R ,圆心O 与A 、D 在同一水平面上,∠COB=θ。

现有一个质量为m 的小物体从斜面上的A 点无初速滑下,已知小物体与AB 斜面间的动摩擦因数为μ。

求(1)小物体在斜面体上能够通过的路程;(2)小物体通过C 点时,对C 点的最大压力和最小压力。

[解析](1)小物体在运动过程中,只有重力及摩擦力做功,小物体最后取达B 点时速度为零。

设小物体在斜面上通过的总路程为s ,由动能定理得:① 又 由①②式得: (2)小物体第一次到达C 点时速度大,对C 点压力最大。

由动能定理 ④解③④⑤式得 小物体最后在BCD 圆弧轨道上运动,小物体通过C 点时对轨道压力最小。

得:⑥ 解⑥⑦式得由牛顿第三定律知,小物体对C 点压力最大值为最小值 [注意,摩擦力做功的公式s f W ⋅-=中,s 一般是物体运动的路程]三、摩擦力大小、方向都在时刻改变时,速度V 越大时,压力N F 也越大,则由N F f μ=可知N F 越大,f 也越大,摩擦力做功越多。

例1:连接A 、B 两点的弧形轨道ACB 与ADB 是用相同材料制成的,它们的曲率半径相同。

如图所示,一个小物体由A 点以一定初速度v 开始沿ACB 滑到B 点时,到达B 点速率为1v 若小物体由A 点以相同初速度沿ADB 滑到B 点时,速率为2v 与的关系:( )A 1v >2vB 1v =2vC 1v <2vD 无法判断 [解析]A 物体沿ACB 运动过程中受竖直向下的重力。

摩擦力做功问题及求变力做功的几种方法(学生版)-高考物理热点模型

摩擦力做功问题及求变力做功的几种方法(学生版)-高考物理热点模型

摩擦力做功问题及求变力做功的几种方法学校:_________班级:___________姓名:_____________模型概述1.摩擦力做功问题1)无论是静摩擦力还是滑动摩擦力都可以对物体可以做正功,也可以做负功,还可以不做功。

2)静摩擦力做功的能量问题①静摩擦做功只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能。

②一对静摩擦力所做功的代数和总等于零,而总的机械能保持不变。

3)滑动摩擦力做功的能量问题①滑动摩擦力做功时,一部分机械能从一个物体转移到另一个物体,另一部分机械能转化为内容,因此滑动摩擦力做功有机械能损失。

②一对滑动摩擦力做功的代数和总是负值,总功W =-F f ⋅x 相对,即发生相对滑动时产生的热量。

2.求变力做功的几种方法1.用W =Pt 求功当牵引力为变力,且发动机的功率一定时,由功率的定义式P =W t,可得W =Pt .1)“微元法”求变力做功:情形一:当力的大小不变,而方向始终与运动方向相同或相反时,力F 做的功与路程有关,W =Fs 或W =-Fs ,其中s 为物体通过的路程.情形二:当力的大小不变,运动为曲线时,将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数多个无穷小的位移上的恒力所做功的代数和,此法适用于求解大小不变、方向改变的变力做功.【举例】质量为m 的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f =F f ⋅Δx 1+F f ⋅Δx 2+F f ⋅Δx 3+...=F f ⋅(Δx 1+Δx 2+Δx 3+...)=F f ⋅2πR2)“图像法”求变力做功:在F -x 图像中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移内所做的功,且位于x 轴上方的“面积”为正功,位于x 轴下方的“面积”为负功,但此方法只适用于便于求图线与x 轴所围面积的情况(如三角形、矩形、圆等规则的几何图形).【举例】一水平拉力拉着一物体在水平面上运动的位移为x 0,图线与横轴所围面积表示拉力所做的功,W =F 0+F 12x3)“平均力”求变力做功:当力的方向不变而大小随位移线性变化时,可先求出力对位移的平均值F =F 0+F 12,再由W =F l cos θ计算,如弹簧弹力做功.【举例】弹力做功,弹力大小随位移线性变化,取初状态弹力为0,则W =F x =0+F k 2x =0+kx 2x =12kx 24.应用动能定理求解变力做功:在一个有变力做功的过程中,当变力做功无法直接通过功的公式求解时,可用动能定理W 变+W 恒=12mv 22-12mv 21,物体初、末速度已知,恒力做功W 恒可根据功的公式求出,这样就可以得到W 变=12mv 22-12mv 21-W 恒,就可以求出变力做的功了.【举例】用力F 把小球从A 处缓慢拉到B 处,F 做功为W F ,则有:W F +W G =0⇒W F -mgl (1-cos θ)=0⇒W F =mgl (1-cos θ)5)等效转换法求解变力做功:将变力转化为另一个恒力所做的功。

功率与摩擦力的关系

功率与摩擦力的关系

功率与摩擦力的关系摩擦力是我们日常生活中经常遇到的物理现象,而功率则是描述物体做功的效率。

本文将讨论功率与摩擦力之间的关系,并探讨在不同情况下如何调节功率以达到最佳效果。

1. 摩擦力的定义与计算方法摩擦力是两个接触物体之间由于相对运动或准备运动而产生的力。

它的大小与接触面的粗糙程度以及两物体之间施加的垂直压力有关。

根据库仑摩擦定律,摩擦力与两物体间的压力成正比,且与摩擦系数有关。

其计算公式为:F = μN其中,F是摩擦力,μ是摩擦系数,N是垂直于摩擦面的压力。

2. 功率的定义与计算方法功率是描述物体做功的效率,即单位时间内完成的功。

它可以通过以下公式计算:P = W / t其中,P是功率,W是物体所做的功,t是完成这个功所用的时间。

3. 功率与摩擦力之间的关系根据上述定义和计算方法,可以得出功率与摩擦力之间的关系。

当物体在受到摩擦力的作用下移动时,摩擦力会对物体进行负功。

负功意味着物体的能量减少,所以功率为负值。

对于一个向右移动的物体来说,摩擦力的方向则相反,且功率为正值。

这是因为物体向右移动时,施加在物体上的力和物体运动的方向相同,从而使物体的能量增加。

4. 调节功率以达到最佳效果在一些情况下,我们需要调节功率以达到最佳效果,比如减少能量损耗或增加速度。

这时,我们可以采取一些措施来改变摩擦力与功率之间的关系。

4.1 减小摩擦力减小摩擦力可以降低能量损耗,增加效率。

一种减小摩擦力的方法是使用润滑剂来减少物体之间的摩擦系数。

润滑剂能够在物体表面形成一层光滑的润滑膜,从而降低摩擦力的大小。

4.2 增加摩擦力在某些情况下,我们需要增加摩擦力以提高物体的速度或稳定性。

例如,在车辆的刹车系统中,为了确保车辆能够迅速停下来并保持稳定,刹车片与刹车盘之间需要有足够的摩擦力。

可以通过增加刹车盘与刹车片之间的压力或提高摩擦系数来增加摩擦力。

5. 结论功率与摩擦力之间存在密切的联系。

当物体受到摩擦力的作用时,功率为负值;而当物体克服摩擦力向右移动时,功率为正值。

摩擦力做功与能量转化问题

摩擦力做功与能量转化问题

专题专题专题 摩擦力做功与能量转化问题摩擦力做功与能量转化问题【学习目标】【学习目标】1.1.理解静摩擦力和滑动摩擦力做功的特点;理解静摩擦力和滑动摩擦力做功的特点;理解静摩擦力和滑动摩擦力做功的特点;2.2.2.理解摩擦生热及其计算。

理解摩擦生热及其计算。

理解摩擦生热及其计算。

【知识解读】【知识解读】1.1.静摩擦力做功的特点静摩擦力做功的特点静摩擦力做功的特点如图5-1515--1,放在水平桌面上的物体A 在水平拉力F 的作用下未动,则桌面对A 向左的静摩擦力不做功,因为桌面在静摩擦力的方向上没有位移。

如图5-1515--2,A 和B 叠放在一起置于光滑水平桌面上,在拉力F 的作用下,的作用下,A A 和B 一起向右加速运动,则B 对A 的静摩擦力做正功,的静摩擦力做正功,A A 对B 的静摩擦力做负功。

可见静摩擦力做功的特点是:的静摩擦力做负功。

可见静摩擦力做功的特点是: (1)静摩擦力可以做正功,也可以做负功,还可以不做功。

功,还可以不做功。

(2)相互作用的一对静摩擦力做功的代数和总等于零。

数和总等于零。

(3)在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其它形式的能。

,而没有机械能转化为其它形式的能。

2.2.滑动摩擦力做功的特点滑动摩擦力做功的特点滑动摩擦力做功的特点如图5-1515--3,物块A 在水平桌面上,在外力F 的作用下向右运动,桌面对A 向左的滑动摩擦力做负功,A 对桌面的滑动摩擦力不做功。

力不做功。

如图5-1515--4,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度,上表面不光滑的长木板,放在光滑的水平地面上,一小铁块以速度v 从木板的左端滑上木板,当铁块和木板相对静止时木板相对地面滑动的距离为s,小铁块相对木板滑动的距离为d ,滑动摩擦力对铁块所做的功为:W 铁=-f(s+d)―――①―――①根据动能定理,铁块动能的变化量为:k w =f s+d ED 铁铁=-()―――②―――②②式表明,铁块从开始滑动到相对木板静止的过程中,其动能减少。

变力做功的计算

变力做功的计算

一、微元法对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,这种方法具有普遍的适用性。

但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。

例1、用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。

求此过程中摩擦力所做的功。

分析:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。

解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为,,…,,摩擦力在一周内所做的功。

对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。

必须注意本题中的F是变力。

对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。

如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。

二、图象法在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。

如果作用在物体上的力是恒力,则其F-s图象如图所示。

经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W=Fs,s轴上方的面积表示力对物体做正功(如图(a)所示),s轴下方的面积表示力对物体做负功(如图(b)所示)。

如果F-s图象是一条曲线(如图所示),表示力的大小随位移不断变化,在曲线下方作阶梯形折线,则折线下方每个小矩形面积分别表示相应恒力做的功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功习题课:变力做功和摩擦力做功
、摩擦力做功1如图2所示,在光滑水平地面上有一辆平板小车,车上放着一个滑块,滑块和平板小车间有摩擦,滑块在水平恒力F作用下从车的一端拉到另一端.第一次拉滑块时将小车固定,第
次拉时小车没有固定.在这先后两次拉动木块的过程中, 下
列说法中正确的是()
A.滑块所受的摩擦力一样大
B.拉力F做的功一样大
C.滑块获得的动能一样大
D.系统增加的内能一样大2、质量为M的长木板放在光
滑的水平地面上,如图1-1-10所示,一个质量为m的滑块以某一速度沿木板表面从A端滑到B 点,在木板上前进了L,而木板前进s,若滑块与木板间的动摩擦因数为卩求:
(1)摩擦力对滑块所做功的大小;
(2)摩擦力对木板所做功的大小.
(3)摩擦力对滑块和木板做功的代数和
"A# I 「1
图1-1-10
①相互摩擦的系统内,一对静摩擦力所做的总功等于零。

②相互摩擦的系统内,一对滑动摩擦力所做的功总是负值,其绝对值等于滑动摩擦力与相对位移的乘积,即恰等于系统损失的机械能。

二、变力做功
功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可
用,对变力做功问题归纳如下:
1、微元法:当力的大小不变,而力的方向始终与运动方向相同或相反时,这类变力的功等于力和路程的乘积,如:滑动摩擦力、空气阻力做功等等。

始终垂直呢?
(1)马用水平力拉着碌子在场院上轧谷脱粒,若马的拉力为800牛顿,碌子在场院上转圈的半径是10米,求转一圈马对碌子做的功。

(2)用细绳系一小球,在水平面内运动一周,求绳的拉力做的功
(3)如图,设物体的质量为m,放在木板上,木板一端抬高的过程中,物体始终相对木板
静止,设物体升高了h,在这一过程中,判断摩擦力、支持力重力对物体做功情况。

2、图像法
如果参与做功的变力,方向与位移方向始终一致而大小随时变化,我们可作出该力随位移变 化的图像。

那么F-S 图线下方所围成的面积,即为变力做的功。

W=F S
已知某弹簧的劲度系数为k ,当弹簧伸长x 米时,求弹簧的弹力对小球做的功?
3、等值法 等值法即若某一变力的功和某一恒力的功相等,
贝U 可以通过计算该恒力的功,求出该变力的 功。

恒力做
功可以用 W=FScos 计算。

如图,定滑轮至滑块的高度为 h ,已知细绳的拉力为F (恒
定),滑块沿水平面由A 点前进S 至B 点,滑块在 初、末位
置时细绳与水平方向夹角分别为a 和B 。

求滑 块由A 点运动
到B 点过程中,绳的拉力对滑块所做的功。

4、如图,物体在F 的作用下沿水平面移动了 S ,求这一过程
中F 所做的功
t o
t i O F。

相关文档
最新文档