理论力学达朗贝尔原理
理论力学达朗贝尔原理

理论力学达朗贝尔原理达朗贝尔原理(d'Alembert's principle)是理论力学中的一个重要原理,它为研究物体在平衡或运动状态下受力情况提供了重要的理论基础。
达朗贝尔原理的提出,极大地推动了理论力学的发展,对于解决复杂的力学问题具有重要意义。
达朗贝尔原理的核心思想是,在运动坐标系中,对于一个质点系的平衡或运动状态,可以把系统的动力学问题转化为静力学问题来处理。
这就是说,对于一个质点系,可以找到一个虚拟的平衡系统,使得外力在这个虚拟系统中所做的功等于零。
通过这个虚拟系统的构建,我们可以简化动力学问题的求解过程,使得复杂的运动问题变得更加清晰和直观。
达朗贝尔原理的应用范围非常广泛,不仅可以用于刚体的运动问题,还可以用于弹性体、流体等物体的运动问题。
在工程实践中,达朗贝尔原理被广泛应用于各种机械系统的设计与分析中,例如汽车、飞机、船舶等。
通过运用达朗贝尔原理,工程师可以更加准确地分析系统的受力情况,从而设计出更加安全可靠的机械系统。
除此之外,达朗贝尔原理还在理论物理学中有着重要的应用。
在量子力学和相对论物理中,达朗贝尔原理也被广泛地运用于分析粒子的运动规律和相互作用。
通过引入虚拟位移和虚拟功的概念,达朗贝尔原理为理论物理学提供了一种全新的研究方法,为科学家们深入探索微观世界提供了重要的理论工具。
总的来说,达朗贝尔原理作为理论力学中的重要原理,为研究物体的运动和受力问题提供了重要的理论基础。
它的提出和应用,极大地推动了理论力学和工程实践的发展,为科学家们和工程师们提供了重要的研究方法和设计工具。
在今后的研究和实践中,我们应该深入理解达朗贝尔原理的原理和应用,不断拓展其在理论力学和工程领域的应用范围,为人类的科学技术进步做出新的贡献。
理论力学第12章 达朗贝尔原理

基础部分——动力学第12 章达朗贝尔原理惯性力Jean le Rond d’Alembert (1717-1783)达朗贝尔达朗贝尔原理达朗贝尔原理具体内容:a F F m −=−='惯性力定义:质点惯性力aF m −=I 一、惯性力的概念aF m −='2222d d d d z ty m t[注意]不是真实力直角坐标自然坐标aF m −=I−a m 质点的达朗贝尔原理二、质点的达朗贝尔原理合力:NF I FI N =++F F F 注意:◆◆优点:◆可以将动力学问题从形式上转化为静力学动静法◆给动力学问题提供了一种统一的解题格式。
如何测定车辆的加速度?虚加惯性力解:达朗贝尔原理[例12-1]IF 摆式加速计的原理⇒⇒构成形式上的平衡力系质点系的达朗贝尔原理内力外力表明:惯性力系外力平面任意力系实际应用时,同静力学问题一样,选取研究对象;刚体惯性力系的简化简化方法一、质点系惯性力系的主矢与主矩无关有关二、刚体惯性力系的简化◆质心C结论:1IF2IF3IF IRFCm aF−=IR⇒交点O简化tI iF nI iF αα特殊情形:●●αOz O J M −=I 作用在O 点C m a F −=IR t I iFn I iFn IRFt IRF OM I αt I iFn I iFα[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O=(逆)①2IR ωme F =②αCz O J M −=I (与α反向)③0, 0I IR ==O M F (惯性力主矢、主矩均为零)IRF OM I α(作用于质心C )C m a F −=IR αCz C J M −=I 质心C IRF CM I α特殊情形:●●⇒[思考]εmr F =t IRrR r mF −=22n IRωε2I 21mr M C=求:惯性力系向质心C 简化的主矢?主矩?达朗贝尔原理上节课内容回顾(质点惯性力)或:质心C Cm a F −=IRαOz O J M −=I Cm a F −=IR 交点O t I iFn I iFn IRFt IRF OM I ααOz O J M −=I C m a F −=IR 交点O t I iFn I iFn IRFt IRF OM I αCm a F −=IR αCz C J M −=I质心C IRF CM I α质心C[思考]求:向交点O 简化的主矢?主矩?)(41t IR↑=L m F αOCαωL /4)(412n IR →=L m F ωα2I 487mL M O =问:若向质心C 简化,则主矢?e =−∑Cx xma F 平面运动微分方程0)( e=−∑αCz C J MF 0e =−∑Cy yma F IRF CM I α⇒⇒[例12-2]解:惯性力系αt RI Fn IRFn AFt A FAM I αtRI Fn IR F nA F t AF AM I α惯性力系)解题步骤及要点:注意:F IR = ma C M I O = J Oz αα思考:AC CθASO[例12-3]先解:惯性力系m gF IR M I C F sF NαR a C =CθASOm gF IRF OxF OyM I C再惯性力系M O[例12-4]解:惯性力系 1I F OM I 2I F α)(=∑F OMα11r a =2211 α22r a =1I F OM I 2I F α[思考题] A BCD E )(118↓=g a A mgF 113T =111≥f主动力系惯性力系RFIRF OMIRF IRF OM I tI iFn I iF∑∑==ii iyzi i i zx z y m J x z m J RF IRF OM I tI iFn I iFRF IRF OM Ill F M l F M y x y x /)]()[( 2I I 2R ⋅−+⋅−ll F M l F M x y x y /)]()[(2I I 2R ⋅++⋅+−ll F M l F M y x y x /)]()[(1I I 1R ⋅++⋅+−ll F M l F M x y x y /)]()[( 1I I 1R ⋅−+⋅−xF R −约束力静动主动力惯性力动约束力I x 02=ωJ 质心过)04222≠+=−ωααωωα惯性主轴z 轴为中心惯性主轴静平衡过质心⇒动平衡中心惯性主轴⇒[例12-5]静平衡动平衡爆破时烟囱怎样倒塌θOAωα解:m g)cos 1(3θ−lg F OxF OyMI On RI F t IRF 受力分析[例12-6])]([)(sin ⋅−−+−+⋅x x l l x x l mg ααθ1()(sin mgl −θB注意:求内力(矩)时惯性力的处理!xθxAB()ml x lα−m l lαBM BxF x mg lByF12-5-1 关于惯性力系的简化OA ωαMI OnR I FtIRFOAωαMI CnRIFtRIFC 思考思考12-5-2 刚体平面运动时有关动力学量的计算mv+C12-5-3 本章知识结构框图达朗贝尔原理惯性力系的简化质点系达朗贝尔原理定轴转动的约束力一般质点系刚体静、动约束力静、动平衡课后学习建议:◆。
理论力学 第十三章达朗贝尔原理

设有一质点系由n个质点组成 第i个质点Mi,质量mi,受主动力 F, i 约束反力 FNi 作用,加速度为 ai ,对每一个质点,有: G G Fi mi ai Fi FNi Fi 0 (i 1, 2,, n)
表示为力系形式: G G G (F1,, Fi ,, Fn , FN1,, FNi ,, FNn , F 1 ,, F i ,, F n )0
G rC为刚体质心相对于质心 的矢径, rC 0MC 0
结论:刚体作平动时,惯性力系对质心C的主矩为零。
19
mi ri aC mrC aC
§13–2 刚体惯性力系的简化
三、刚体作定轴转动
讨论具有质量对称平面且转轴垂直于质量对称平面 的情况。(刚体的空间惯性力系投影在对称平面内 的平面力系,再将此平面力系向O点简化,O点为质 量对称平面与转轴Z的交点。) 空间惯性力系 平面惯性力系 (质量对称面) 直线 i : 平动, 过Mi点,惯性力系 G 为
将质点系受力按内力、外力划分:
(内力是大小相等,方向相反成 对出现,所以内力主矢和对任意点 的主矩分别恒为零)
e e e G G G (F1 ,, Fi ,, Fn , F1 ,, Fi ,, Fn ) 0 e G Fi Fi 0 e G M O ( Fi ) M O ( Fi ) 0
1
第十三章
达朗贝尔原理
§13–1 达朗贝尔原理 §13–2 刚体惯性力系的简化
§13–3 绕定轴转动刚体的动约束力
静平衡和动平衡的概念
2
第十三章
达朗贝尔原理
法国科学家达朗贝尔(J.le Rond d’Alembert)将适 用于自由质点的牛顿定律(第二定律)推广至受约束质 点,并于1743年提出了受约束质点动力学问题的一个原 理—达朗贝尔原理。 达朗贝尔原理为非自由质点系动力学的发展奠定了 基础。该原理提出一百多年后,后人引入了惯性力的概 念,并应用达朗贝尔原理中包含的用静力学中研究平衡 的方法研究动力学中不平衡问题的思想,将这一原理发 展成求解非自由质点系动力学问题的普遍而有效的方法, 称为动静法。 由于动静法简单有效,易于掌握,因此在工程技 术中得到了广泛应用。
《理论力学》--第十三章 达朗贝尔原理(动静法)

例13-7 已知:如图所示,轮盘(连同轴)的质量 m 20kg, 转轴AB与轮盘的质量对称面垂直,但轮盘的质心 C不在转轴上,偏心距 e 0.1mm. 当轮盘以均转速 转动. n 12000 r min 求:轴承A,B的约束力
解:
0.1 12000π 1 2 an e m s 158 m s 2 1000 30
2
FI man 3160 N 1 FNA FNB mg FI 2
1 20 9.8 3160N 1680N 2
(e) Fi 为作用于第i个质点上质点系外部物体的作用力. (i) Fi 为作用于第i个质点上质点系内部的力. (e) (i) Fi Fi Fi 0 i 1,2,, n
例13-2 已知:如图所示,定滑轮的半径为r ,质量为m 均匀分布在轮缘 上,绕水平轴O转动.垮过滑轮的无重绳的两端挂有质量 为m1 和m2 的重物(m1>m2),绳与轮间不打滑,轴承摩擦 忽略不计。 求:重物的加速度.
例13-1 已知: 求:
m 0.1kg , l 0.3m , 60
v, FT .
解:
v2 FI man m l sin mg FT FI 0
Fb Fn
0, FT cos mg 0 0, FT sin FI 0
Fs f s FN f s m1 m2 g
Fs 3m1 fs FN 2m1 m2
D
§ 13-4
绕定轴转动刚体的轴承动约束力
F
x
0 FA x FB x FR x FI x 0
F
y
0 FA y FB y FR y FI y 0
理论力学第十一章 达朗贝尔原理(动静法)

讨论:1)脱离角α与滚筒的角速度和滚筒半径有关,而与钢球质量无关。
2)
筒壁。此时转筒
的转速称为临界转速,对球磨机而言,要求n小于nL,否则球磨机就不能工作。
§11-2 刚体惯性力系的简化
刚体平移时惯性力系的简化
当刚体平移时,任一瞬时体内各点的加速度相等。若记某瞬 时刚体质心加速度为aC,则该瞬时体内任一质量为m的质点 的加速度ai=aC,虚加在该点上的惯性力Fgi=-miai=-miaC 。 刚体内每一点都加上相应的惯性力,由静力学知,该空间平 行力系可简化为过质心的合力,即
式中,Fgτ=-maτ,称为切向惯性力 Fgn=-man称为法向惯性力(也称离心力)
负号表示它们分别与切向加速度和法向加速度的方向相反。
§11-1 惯性力与质点的达朗贝尔原理
质点系的动静法
对由n个质点组成的非自由质点系,设其中任一质点的质量 为mi,某瞬时加速度为ai,作用其上的主动力F,约束反力 Fni,假想在该质点上加上惯性力Fgi=-mai,由质点达朗贝 尔原理,则
=- maC
该力偶的力偶矩等于惯性力系对刚体惯性力系的简化
结论 当刚体有质量对称面,且绕垂直于质量对称面的定轴 转动时,惯性力系可以简化为对称面内的一个力和一个力偶。 该力等于刚体的质量与质心加速度的乘积,方向与质心加速 度方向相反,且力的作用线通过转轴;
该力偶的力偶矩等于刚体对转轴的转动惯量与角加速度的乘 积,其转向与角加速度转向相反。惯性力系向点O简化的结 果如图b)所示。
Fg=-m a
质点的达朗伯原理:质点在运动的每一瞬时,作用 于质点上的主动力、约束反力与假想地在质点上 的惯性力,在形式上构成一平衡力系。
§11-1 惯性力与质点的达朗贝尔原理
理论力学-达朗贝尔原理及其应用

t aC
FIR =-m a C
a
n C
C
n FR
t n 2、定轴转动 FIR =-m aC =-m( aC aC )
FR
3、平面运动 FIR =-m a C
C
O
FR
Ft R
aC
12.3 刚体惯性力系的简化
惯性力系的主矩与刚体的运动形式有关!
理论力学 第三篇 动力学
第三篇 动力学
第12章 达朗贝尔原理
第12章 达朗贝尔原理
12.1 质点惯性力与达朗贝尔原理 12.2 质点系的达朗贝尔原理 12.3 刚体惯性力系的简化
第12章 达朗贝尔原理
12.1 质点惯性力与达朗贝尔原理
12.1 质点惯性力与达朗贝尔原理
z m A
FI2 a1
m C FIi m2 a2
mi
FR FIi mi ai maC
主矢
ai
FIR maC
主矢与刚体的运动形式无关。
主矩
12.3 刚体惯性力系的简化
刚体平移时,惯性力系向质心简化 ● 主矢
1.刚体作平移
m1
FIR maC
FI2
m2 FI1
a2 maC FIR an m FIn n
12.2 质点系的达朗贝尔原理
例题3
FnIi FtIi F at an
Ny
r
a
FI1
A
mg
解: 对象:系统 受力:如图 运动:略 方程: FNx 惯性力 F I1 n FI 2 a F dm a
B m2g
理论力学13—达朗贝尔原理

FI
l Pw2 sin x d x P lw2 sin
0 gl
2g
A
an
FAy FAx
A
dFI B
x
FI
PB x
设力FI 的作用点到点A的距离为d, 由合力矩定理, 有
l
FI (d cos ) 0 (x cos ) d FI
即
l Pw2 sin x 2 dx
d 0 gl
2l
P lw2 sin
积, 方向与质点加速度的方向相反。
13.1 质点的达朗贝尔原理
uur uuur uur
则有
F FN FI 0
即:在质点运动的任一瞬时, 作用于质点上的主动力、 约束反力和假想加在质点上的惯性力构成形式上的平 衡力系。这就是质点的达朗贝尔原理。
应该强调指出,质点并非处于平衡状态,这样 做的目的是将动力学问题转化为静力学问题求解。 达朗贝尔原理与虚位移原理构成了分析力学的基础。
13.1 质点的达朗贝尔原理
设一质点质量为m, 加速度为a, 作用于质点的主
动力为F, 约束反力为FN 。由牛顿第二定律,有
r uur uuur
ma F FN
FI
将上式改写成
uur uuur r
m F
F FN ma 0
令
uur r
FI ma
FN
a
FI具有力的量纲, 且与质点的质量有关,称其为质点 的惯性力。它的大小等于质点的质量与加速度的乘
代入MIB 和FIC解得
FIC P
FAy
W
G
P
2(M rP) r(G 2P)
P
W
(M rP)
rG 2M
mA
l(
第十五章 达朗贝尔原理理论力学

主讲教师薛孔宪纪冬梅§15-1 惯性力的概念§15-2 达朗贝尔原理§15-3 惯性力系的简化§15-4 定轴转动刚体的动约束力·静平衡与动平衡的概念前面介绍的动力学普遍定理,为解决质点系动力学问题提供了一种普遍的方法。
达朗伯原理为解决非自由质点系动力学问题提供了另一种普遍的方法。
这种方法的特点是:用静力学研究平衡问题的方法来研究动力学的不平衡问题,因此这种方法又叫动静法。
由于静力学研究平衡问题的方法比较简单,也容易掌握,达朗贝尔原理一方面广泛应用于刚体动力学求解动约束力;另一方面又普遍应用于弹性杆件求解动应力。
根据动力学基本方程有N ma F F =+r r r 将上式改写成()0N F F ma ++−=r r r 令I F ma =−r r 于是,假想是一个力,称之为质点的惯性力。
的大小等于质点的质量与其加速度大小的乘积,方向与其加速度的方向相反。
I F I F 则有0N I F F F ++=r r r 即:在质点运动的任一瞬时,作用于质点上的主动力、约束反力和假想加在质点上的惯性力构成形式上的平衡力系。
这就是质点的达朗贝尔原理。
设质量为的质点M ,沿图示轨迹运动,在某瞬时作用于质点M 上的主动力为,约束反力为,其加速度为。
m F N F a惯性力对于质点本身,惯性力是假想的。
但确有大小等于ma的力-ma存在,它作用在使质点运动状态发生改变的物体上。
例如,人推车前进,这个力向后作用在人手上。
正是通过这个力,我们感到了物体运动的惯性,称这个力为惯性力。
应用达朗贝尔原理求解非自由质点动约束力的方法1、分析质点所受的主动力和约束力;2、分析质点的运动,确定加速度;3、在质点上施加与加速度方向相反的惯性力。
质点的达朗贝尔原理0N I F F F ++=r rI N I N I N ==++==++==++∑∑∑iz z z z iy y y y ix x x x F F F F F F F F F F F F例15-1 球磨机的滚筒以匀角速度绕水平轴O 转动,内装钢球和需要粉碎的物料,钢球被筒壁带到一定高度脱离筒壁,然后沿抛物线轨迹自由落下,从而击碎物料,如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§14-1 惯性力•质点的达朗贝尔原理 §14-2 质点系的达朗贝尔原理 §14-3 刚体惯性力系的简化 §14-4 绕定轴转动刚体的动约束力 结论与讨论 习题
质点的达朗贝尔原理
第十四章 达朗贝尔原理
ma = F + FN
F + FN − ma = 0
− ma = FI
F + FN + FI = 0
刚体惯性力系的简化
第十四章 达朗贝尔原理
均质圆盘作定轴转动。试对图示四种情形向转轴进行 惯性力系的简化。 n 2 2 F = m ω r FI = mω r I
FIτ = mα r
ω α=0 α≠0 ω α=0 ω α≠0 ω
(a)
3mr 2 MI = α 2
(b)
(c)
mr 2 MI = α 2
mg
m2
m2 g
FI 2
∑ m ar = ar ∑ m
i
m1 − m2 a= g m1 + m2 + m
i
= arm
a
m1 m1 g
刚体惯性力系的简化
第十四章 达朗贝尔原理
一、刚体作平动
平动刚体惯性力系简化为通过质心的合力
FIi = − mi ai = − mi aC FIR = −∑τ ( m1 g − FI 1 − FI 2 − m 2 g ) r − ∑ FIi ⋅r = 0 τ FI 1 = m1a, FI 2 = m2 a, FIi = mi aτ
O
∑M
FN
FIi
τ
(m1 g − m1a − m2 a − m2 g )r − ∑ mi ar = 0
FI 1
v FI = man = m l sin α
n
2
α
l
T n mg b τ
∑F
b
= 0 T cos α = mg
T = 1.96 N , v = 2.1m / s
FI
n
质点系的达朗贝尔原理
第十四章 达朗贝尔原理
Fi + FNi + FIi = 0
Fi
(e)
+ Fi + FIi = 0
(e) i
(i )
12
∫
l 0
m 1 2 dx ⋅ x = m l 2 3 l
2、均质薄圆环对中心轴的转动惯量:
设杆质量为m
J z = ∑ mi R 2 = R 2 ∑ mi = mR2
J z = mR
2
3、均质薄圆板对中心轴的转动惯量: 设圆板半径为R,质量为m, m ρA = 2 单位面积的质量为ρ πR
J z = ∫ r 2 dm
作用在质点上的主动力、约束力和虚 加的惯性力在形式上组成平衡力系。
质点的达朗贝尔原理
第十四章 达朗贝尔原理
小球作匀速圆周运动,质量m=0.1kg,l =0.3m,α=600 。 求:绳的拉力及小球的速度。
解:取小球为研究对象 受力分析、加惯性力列平衡方程
n F = 0 T sin α = FI ∑ n
∫
π
∑F
x
=0
2 0
m Rdθ ⋅ ω 2 R ⋅ cosθ − FA = 0 2πR 用相同方法 2 mRω 计算FB FA = 2π
由于截面对称,任一横截面张力相同。
质点系的达朗贝尔原理
第十四章 达朗贝尔原理
滑轮半径为r,质量m均匀分布在轮缘上,绕水平轴转动。 轮缘上跨过的软绳的两端各挂质量为m1和m2的重物,且 m1 >m2 。绳的重量不计,绳与滑轮之间无相对滑动,摩擦不 n 计。求重物的加速度。 Ii 取整个质点系为研究对象:受力分析、加惯性力 例二
二、刚体作定轴转动 一般取定轴O为简化中心
M IO = −∑ M O ( FIi )
τ
FIR = −∑ mi ai τ n + aC ) = − maC = − m(aC
= −∑ miαri ⋅ ri = − J Oα
mr ∑ 刚体作定轴转动时,惯性力系简 r =
i i C
化为通过O点的一力和一力偶。 m
刚体惯性力系的简化
第十四章 达朗贝尔原理
三、刚体作平面运动 一般取质心C为简化中心
FIR = −maC
M IC = −∑ M C (mi ai )
= −∑ M C (mi aiτ ) − ∑ M C (mi ain )
= − J Cα
惯性力系简化为平面内一个力和一个力偶:惯性力通过质心, 大小等于质量与质心加速度的乘积, 方向与质心加速度方向 相反;惯性力偶矩大小等于通过质心且垂直于平面的轴的转动 惯量与角加速度的乘积,转向与角加速度的转向相反。
∑F ∑M
O
+ ∑ FIi = 0
( Fi ) + ∑ M O ( FIi ) = 0
(e)
质点系的达朗贝尔原理:作用在质点系上的外力与虚 加在每个质点上的惯性力在形式上组成平衡力系。
质点系的达朗贝尔原理
第十四章 达朗贝尔原理
例一 飞轮质量为m,半径为R,以匀角速度ω 转动,轮缘较薄, 质量均匀分布,轮辐质量不计。求轮缘横截面上的张力。 解:取1/4飞轮为研究对象,由对称性可 知受力分析如图。添加惯性力后由 静力平衡方程有:
刚体对轴的转动惯量
J z = ∑ mi ri
2
2
m 在工程中,常将转动惯量表示为
J z = ∫ r dm
J z = mρ
2 z
1、均质细直杆对Z轴的转动惯量 设杆长为l,单位长度的质量为m/l:
Jz =
J z = ∫ r 2 dm
m
J z′
1 J z = ml 2 3 1 2 J z = ml 2 = J zC + md
m
mi = 2πri dr ⋅ ρ A
Jz =
∫
R
0
1 2πr ρ A dr ⋅ r = mR 2 2
2
1 2 J z = mR 2
4、均质薄圆板对直径轴的转动惯量:
1 J z = mR 2 4
试求:各均质物体对其转轴的转动惯量。
1 2 1 1 2 1 2 2 J 0 = ml J0 = ml + m ( l ) = ml 3 6 9 12 5 1 1 2 2 J 0 = m ( 2 a ) + m ( 2 a ) = ma 2 12 3 3 1 3 2 2 J 0 = mR + mR = mR 2 2 2
(d)
两种情形的定滑轮质量均为m,半径均为r。图a中的绳所 受拉力为W;图b中块重力为W。试分析两种情形下定滑轮 的角加速度、绳中拉力和定滑轮轴承处的约束反力是否相 同。 FOy FOy ∑MO = 0 F Ox FOx J Oα a = Wr M I O + FI r − Wr = 0
W W 1 2 mr α a = Wr FI = a = rα b 2 g g 2W 1 αa = M IO = mr 2α b mr 2 2Wg Ta = W α b = r (mg + 2W )