第三章差分方程模型
差分方程模型

分 析
• 体重变化由体内能量守恒破坏引起 • 饮食(吸收热量)引起体重增加 • 代谢和运动(消耗热量)引起体重减少
模型假设
1)体重增加正比于吸收的热量— —每8000千卡增加体重1千克; 2)代谢引起的体重减少正比于体重—— 每周每公斤体重消耗200千卡 ~ 320千卡(因人而异), 相当于70千克的人每天消耗2000千卡 ~ 3200千卡; 3)运动引起的体重减少正比于体重,且与运动 形式有关; 4)为了安全与健康,每周体重减少不宜超过1.5 千克,每周吸收热量不要小于10000千卡。
称如下形式的差分方程
a 0 y n t a1 y n t 1 a n y t b ( t ) (1)
为n 阶常系数线性差分方程, 。其对应的齐次方程为
a 0 y n t a1 y n t 1 a n y t 0 (2)
差分方程解的理论和微分方程解的理论类似。
§1 差分方程
1.1 差分方程简介
规定t只取非负整数。yt为y在t点的取值,则称 y t y t 1 y t 为yt的一阶向前差分,简称差分,称 2 y t ( y t ) y t 1 y t y t 2 2 y t 1 y t 为yt的二阶差分。 由 t、 yt及yt的差分给出的方程称为 yt的差分方程,其中含 yt的最高阶差分的阶数称为该差分方程的阶。差分方程也可以 写成不显含差分的形式。例如,二阶差分方程
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格
消费者的需求关系
生产者的供应关系
数学建模中的差分方程模型

数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。
在各种数学模型中,差分方程模型也是一种很重要的模型。
本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。
差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。
这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。
例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。
差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。
一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。
此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。
以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。
设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。
我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。
差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。
差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。
第三章差分方程模型

基本模型
w(k)~第k周(初)体重 (kg) , k=1,2,…
c(k) ~第k周吸收热量 (kcal)
~热量转换系数
平均8000kcal增加体重1kg
=1/8000(kg/kcal)
~代谢系数(因人而异).
w(k 1) w(k) c(k) w(k), k 1,2,
xk 1 axk b, x0已知,k 0,1,2,
a,b~常数
• 由x0按照方程递推计算x1, x2, …
• 求解公式
xk
ak (x0
b ) b , 1 a 1 a
k 1,2,
a <1
k→∞,
xk
x
b 1 a
~稳定平衡点
2. 二阶线性常系数差分方程
xk 2 a1xk 1 a2 xk b, x0 , x1已知, k 0,1,2,
k=n递推至k=1
xn= na+ar(1+2+…+n)
a =3000, r =0.035/12, n =125 (月)
xn= 196,012.50
等额本息贷款和等额本金贷款
房贷计算器的选项 • 贷款类别:商业贷款, 公积金, 组合型 • 计算方法:根据贷款总额或面积、单价计算. • 按揭年数:可选1至30年. 选择20年.
2)代谢引起的体重减少正比于体重, 每周每千克 体重消耗200 ~ 320kcal (因人而异). 体重70kg每天消耗2000 ~ 3200kcal.
3)运动引起的体重减少正比于体重, 且与运动 形式和运动时间有关.
模型假设
4)为了安全与健康, 每周吸收热量≥10000kcal,且每周 减少量≤1000kcal; 每周体重减少量≤ 1.5kg.
第三章差分方程模型 ppt课件

输入必要信息 轻击鼠标即得
单利和复利 两种计算利息的基本方式
单利 ~1万元存5年定期, 年利率4.75%, 到期后本 息(本金加利息):10000(1+0.04755)=12375元.
复利 ~1万元存1年定期, 年利率为3%, 到期不取则 自动转存, 5年后本息:10000 (1+0.03)5=11593元.
3. 差分方程模型
• 差分方程的基本类型及求解 3.1 贷款购房 3.2 管住嘴迈开腿 3.3 物价的波动 3.4 动物的繁殖与收获 3.5 中国人口增长预测——全国大学生
数学建模竞赛2007年A 题
差分方程的基本类型及求解
xk~未知变量x在时段k的数值(k=0,1,2, …)
1. 一阶线性常系数差分方程 xk 1 axk b, x0已知,k 0,1,2,
• 由x0, x1按照方程递推地计算x2, x3,…
•
求解公式
xk
c11k
c2k2
b 1 a1 a2
,
k 0,1,2,
1, 2~特征根 2 a1 a2 0 ~ 特征方程
c1, c2 ~常数, பைடு நூலகம்始值x0, x1代入求解公式确定.
1, 2<1
k→∞,
xk
x
1
b a1 a2
~稳定平衡点
3. 线性常系数差分方程组
x1(k), x2(k),, xn(k) ~n个未知变量在时段k的数值
x1(k 1) a11x1(k) a12x2 (k) a1n xn (k) b1 x2 (k 1) a21x1(k) a22x2 (k) a2n xn (k) b2 xn (k 1) an1x1(k) an2x2 (k) ann xn (k) bn
差分方程模型

差分方程模型
周家全
对连续型变化的问题而言, 常常可建立微分方程模型. 而对离散状态转移的问题, 则可建立差分方程模型. 差分方 程与常微分方程有很多类似的性质和结论.首先引入差分的 概念.
1 差分定义及其性质
定义 设函数 y = y(x) 在等距节点 xi = x0 + ih ( i = 0,1, , n)
对于一般的差分方程 xn+2 + axn+1 + bxn = f 来讲, 其平衡 点的稳定性问题可以同样给出. 二阶方程的上述结果可以推
广到 n 阶线性差分方程, 即稳定平衡点的条件是特征根: n
次代数方程的根 λi (i = 1, 2, , n) 均有| λi |< 1.
4 经济学中的蛛网模型
1. 提出问题 在自由竞争的社会中, 很多领域会出现循环波动的现象. 在经济领域中, 可以从自由集市上某种商品的价格变化看到 如下现象:在某一时期, 商品的上市量大于需求, 引起价格 下跌, 生产者觉得该商品无利可图, 转而经营其它商品;一
解
Δf (0) = f (0.5) − f (0) = 0.75 ,
-2-
洛阳理工学院数学建模竞赛培训教案
Δf (0.5) = f (1) − f (0.5) = 1.25
周家全
Δ2 f (0)= Δ(Δf (0)) = Δf (0.5) − Δf (0) = 1.25 − 0.75 = 0.5
计算较多点的差分可按差分表进行, 容易看出表中每一 个需要计算的差分值分别等于其左侧的数减去左上侧的 数.每个点 xi 处的各阶差分位于与主对角线平行的斜线上.
(I) 先求解对应的特征方程
a0λn + a1λn−1 + + a0 = 0
差分方程模型PPT课件

回到全国竞赛题。这里提出了新的问题: (1)潜伏期病人如何描述? (2)死亡病人在模型中的描述。 (3)需要考虑人口的迁移影响,如何描述? (4)如何控制疾病的蔓延?
问题的图示
b O
a
d
d
利用简单的几何关系即得到 yk1 f ( yk ), y1 b
例2:按年龄分组的种群增长模型。
问题考虑两个要点:增长和人口分布 人口分布:对于连续问题,可以利用分布函数和 密度函数描绘。
我们也可以利用离散的方法描述人口分布。把t时
刻人口从小到大分为n组,第k 组人数xk(t),则离 散人口分布可以利用向量
试从中国的实际情况和人口增长的上述特点出发, 参考附录2中的相关数据(也可以搜索相关文献和 补充新的数据),建立中国人口增长的数学模型, 并由此对中国人口增长的中短期和长期趋势做出 预测;特别要指出你们模型中的优点与不足之处。
附录1 《国家人口发展战略研究报告》 附录2 人口数据(《中国人口统计年鉴》中的部 分数据)及其说明
差分方程建模:设第k天病人所占比例为i(k),健 康人数量为s(k),则第k天病人数量变化为
Ni(k 1) Ni(k) s(k)Ni(k) Ni(k)
第k天健康人数量变化为
Ns(k 1) Ns(k) s(k)Ni(k)
把两个式子化简即得到差分方程组。
差分方程和微分方程的建模过程没有差异,差别 在于:变化率和的意义不同。
一阶线性差分方程组的稳定性: 设一阶线性差分方程组的解为{Xk}, 而受扰动解为 {Yk}。记扰动误差为
k X k Yk 则扰动误差满足
k1 A k
对任意初始扰动0,k0的充分必要条件为
( A) 1
这就是差分方程的稳定性条件。
差分方程模型

设特解为 an D 代入 D 0.5D 0.1 得 D 0.2 , 于是所求通解 an c(0.5) n 0.2 例3 (养老金) 解: 齐次特征方程 设特解 an D
an1 1.01an 1000
1.01 0,
* an c(1.01) n.
代入原方程得 D 100000
例 4 求非齐次差分方程
* 对应齐次方程的通解为 an c1 2n c2 n 2n
的通解
f (n) 2 中, 2 是2 重根, 设特解为
n
an A n 2 2 n
n 2 n1
代入
得 A 1 2 方法2 (化齐) :
故通解为 an c1 2 c2 n 2 n 2
Fn Fn 1 Fn 2 F1 F2 1
解:差分方程的特征方程为 x 2 x 1 0 特征根
x1
n
1 5 1 5 , x2 2 2
n
1 5 1 5 Fn c1 c2 2 2
n
2(an1 4an2 4an3 ) 2 2n1 相减得 an 6an1 12an2 8an3 0 特征方程 3 62 12 8 0 特征根 2 为三重根, 通解为:
an 4an1 4an2 2n
an c1 2n c2 n 2n c3n 2 2n
x k b1 x k 1 b2 x k 2 bk 0
称为差分方程的特征方程,其根称为特征根。 定理1(单根)若特征方程恰有k个相异的特 x1 , x2 ,, x 征根 , k 则差分方程的通解为
an c x c x ck x