初级中学数学通用公式定理(中考用)
初中数学定理公式定律大全

初中数学定理公式定律大全1.代数定理-同号两数相乘为正,异号两数相乘为负。
-分配率:a×(b+c)=a×b+a×c。
-同底数幂相除,指数相减:(a^m)÷(a^n)=a^(m-n)。
-幂的乘法:(a^m)×(a^n)=a^(m+n)。
2.平方根公式-设a≥0,则√a×√a=a。
-若a≥0,则√(a^2)=a。
3.线性方程- 设a ≠ 0,方程 ax + b = 0 的解是 x = -b/a。
- 形如 ax + b = cx + d 的一次方程,有唯一解 x = (d - b)/(a -c)。
4.角度定理-外角和定理:一个三角形的外角等于它的两个不相邻内角的和。
-三角形内角和定理:一个三角形的内角之和等于180°。
-同位角定理:如果两条直线被一条截线分成两个内交角和两个外交角,则这两个内交角互为同位角,两个外交角互为同位角。
5.平行线和三角形定理-同位角、内错角定理:当两条直线被一条截线分成两个内交角和两个外交角时,同位角相等,内错角相等。
-平行线截割定理:当两条平行线被一条截线截断时,同位角相等,内错角相等。
-三角形内角和定理:一个三角形的内角之和等于180°。
-等腰三角形定理:两边相等的三角形中,两个对应的内角也相等。
6.几何定理-直角三角形定理:一个三角形中,如果一些角是直角,则它是直角三角形。
-直角边定理:在直角三角形中,斜边的平方等于各直角边的平方和。
-勾股定理:在直角三角形中,斜边的平方等于两个直角边的平方和。
-相似三角形定理:如果两个三角形的对应角相等,则这两个三角形相似。
-正方形的对角线垂直定理:正方形的对角线互相垂直且相等。
7.百分数与比例-百分数换分数:将百分数转化为分数,百分数除以100即可得到对应的分数。
-百分数的四则运算:百分数的加减乘除运算,先转化为分数进行计算,最后再转化为百分数。
-比例:设a:b=c:d,称a和b为比例的两个项,c和d为比例的两个对应项。
中考数学常用公式定理

中考数学常用公式定理数学是一门基础科学,常用公式和定理在中考数学中起着非常重要的作用。
它们是学生解题过程中的基石,也是学习数学知识的基础。
下面是一些中考数学中常用的公式和定理。
1.二次根式的化简:(a√b)*(c√b) = ac(b)(a√b)/(c√b)=a/c√a*√a=a2.两点间的距离:在坐标平面上,点A(x1,y1)和点B(x2,y2)的距离可以用勾股定理来计算:AB=√((x2-x1)²+(y2-y1)²)3.平均数的计算:n个数的平均数等于这些数的和除以n:平均数=(数1+数2+...+数n)/n4.利息的计算:利息=本金*年利率*时间5.百分数和比例:百分数是百分之一的意思,通常用%表示。
比例是两个相同类别的量的比值,通常用:表示。
6.几何图形的面积:-矩形的面积等于长乘以宽:面积=长*宽-正方形的面积等于边长的平方:面积=边长²-三角形的面积等于底边乘以高的一半:面积=(底边*高)/2-圆的面积等于半径的平方乘以π:面积=π*r²7.同底数幂的乘除计算:a^x*a^y=a^(x+y)a^x/a^y=a^(x-y)8.同底数幂的幂次计算:(a^x)^y=a^(x*y)9.二次方程的解法:二次方程一般是形如ax² + bx + c = 0的方程,可以用求根公式解:x = (-b ± √(b² - 4ac)) / (2a)10.两角和差的三角函数关系:- 余弦函数的和差公式:cos(A±B) = cosAcosB∓sinAsinB- 正弦函数的和差公式:sin(A±B) = sinAcosB±cosAsinB- 正切函数的和差公式:tan(A±B) = (tanA±tanB) / (1∓tanAtanB)以上是一些中考数学中常用的公式和定理,它们涵盖了数学的不同领域,包括代数、几何、三角等。
(完整版)中考数学常用公式和定理大全

中考数学常用公式定理1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a .如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n.⑥a-n =1na,特别:()-n=()n .⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,x n,那么:①平均数为:12......nx x xxn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;③方差:数据1x、2x……,nx的方差为2s,则2s=()()()222121.....nx x x x x xn⎡⎤-+-++-⎢⎥⎣⎦标准差:方差的算术平方根.数据1x、2x……,nx的标准差s,则s=()()()222121.....nx x x x x xn⎡⎤-+-++-⎢⎥⎣⎦一组数据的方差越大,这组数据的波动越大,越不稳定。
中考数学公式大全归纳

中考数学公式大全归纳下面整理了一些中考数学的常用公式,希望能对你的学习有所帮助。
1.代数和式:- 一次项和:(a + b)^2 = a^2 + 2ab + b^2- 平方差:(a - b)^2 = a^2 - 2ab + b^2-平方差公式:a^2-b^2=(a+b)(a-b)- 完全平方公式:(a + b)^ 2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^22.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc*cosA,b^2 = a^2 + c^2 - 2ac*cosB,c^2 = a^2 + b^2 - 2ab*cosC- 正弦函数定义:sinA = 对边/斜边- 余弦函数定义:cosA = 邻边/斜边- 正切函数定义:tanA = 对边/邻边3.相似三角形:-边长比相等-对应角相等4.数列:-等差数列通项公式:an = a1 + (n - 1)d-等差数列求和公式:Sn = (a1 + an)n/2-等比数列通项公式:an = a1 * q^(n-1),其中q为公比-等比数列求和公式:Sn=a1(q^n-1)/(q-1)5.平面几何:-面积公式:矩形的面积=长*宽,三角形的面积=底边*高/2,梯形的面积=上底加下底的和*高/2,圆的面积=π*r^2-周长公式:正方形的周长=4*边长,矩形的周长=2*(长+宽),圆的周长=2*π*r6.平面解析几何:-中点公式:x=(x1+x2)/2,y=(y1+y2)/2-距离公式:两点之间的距离d=√((x2-x1)^2+(y2-y1)^2)7.三角函数:- 余角公式:sin(90° - A) = cosA,cos(90° - A) = sinA- 和差化积公式:sin(A + B) = sinA * cosB + cosA * sinB,cos(A + B) = cosA * cosB - sinA * sinB- 积化和差公式:sinA * sinB = (cos(A - B) - cos(A + B))/2,cosA * cosB = (cos(A - B) + cos(A + B))/28.指数与幂:- 指数运算公式:a^m * a^n = a^(m + n),(a^m)^n = a^(mn),(ab)^n = a^n * b^n-幂运算公式:a^(-m)=1/a^m,(1/a)^m=1/a^m以上是一些中考数学常用的公式,希望能对你的学习有所帮助。
中考数学公式定理汇总

中考数学公式定理汇总1. 两点间距离公式:设两点坐标分别为(x1,y1)和(x2,y2),则两点间距离公式为d=√[(x2-x1)²+(y2-y1)²]。
2. 勾股定理:直角三角形斜边的平方等于两直角边长度的平方和。
即a²+b²=c²(其中c为斜边,a、b为两直角边)。
3. 相似三角形定理:若两个三角形的对应角相等,那么它们的对应边成比例。
4. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC,其中a、b、c分别为三角形的三个边长。
5. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
6. 集合论基本公式:①并集公式:A∪B表示A和B的并集,其中A、B为两个集合,则A∪B={x|x∈A∨x∈B};②交集公式:A∩B表示A和B的交集,其中A、B为两个集合,则A∩B={x|x∈A∧x∈B};③差集公式:A-B表示A与B的差集,其中A、B为两个集合,则A-B={x|x∈A∧x∉B}。
7. 均值不等式:对于任意非负实数a1、a2、……、an,则有(a1+a2+……+an)/n≥√(a1a2……an),即算术平均数大于等于几何平均数。
8. 对数基本公式:①a^m*a^n=a^(m+n);②(a^m)^n=a^(mn);③a^(m-n)=a^m/a^n;④loga(m*n)=logam+logan;⑤loga(m/n)=logam-logan;⑥loga(m^n)=n*logam。
9. 斯涅尔定理:(1)光线从光疏介质到光密介质中以一定角度射入后,会向法线方向弯曲;(2)入射角和折射角之比是一个定值,称为折射率n,即n=sin(i)/sin(r)。
10. 三角函数基本公式:sin(-x)=-sinx,cos(-x)=cosx,tan(-x)=-tanx,cot(-x)=-cotx。
11. 欧拉公式:e^(ix)=cosx+i*sinx。
初中数学-中考数学必背公式大全

初中数学-中考数学必背公式大全初中数学中考数学必背公式大全数学,这门充满逻辑与智慧的学科,在初中阶段为我们的学习之路铺上了坚实的基石。
而在中考数学中,掌握一系列重要的公式是取得好成绩的关键。
接下来,让我们一同梳理那些必背的公式,为中考数学打下坚实的基础。
一、代数部分1、实数运算(1)加法交换律:a + b = b + a(2)加法结合律:(a + b) + c = a +(b + c)(3)乘法交换律:ab = ba(4)乘法结合律:(ab)c = a(bc)(5)乘法分配律:a(b + c) = ab + ac2、整式运算(1)同底数幂的乘法:a^m × a^n = a^(m + n)(2)幂的乘方:(a^m)^n = a^(mn)(3)积的乘方:(ab)^n = a^n × b^n(4)同底数幂的除法:a^m ÷ a^n = a^(m n) (a ≠ 0)3、乘法公式(1)平方差公式:(a + b)(a b) = a^2 b^2(2)完全平方公式:(a ± b)^2 = a^2 ± 2ab + b^24、一元一次方程解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为 1。
公式:ax + b = 0 (a ≠ 0),则 x = b / a5、二元一次方程组(1)代入消元法(2)加减消元法6、一元二次方程(1)一般形式:ax^2 + bx + c = 0 (a ≠ 0)(2)求根公式:x =b ± √(b^2 4ac) /(2a)7、分式(1)分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为 0 的整式,分式的值不变。
(2)分式的加减:通分后进行加减运算。
(3)分式的乘除:分子乘分子,分母乘分母;除以一个分式,等于乘以它的倒数。
二、几何部分1、线段与角(1)线段的中点:若点 C 是线段 AB 的中点,则 AC = BC = 1/2 AB(2)角平分线:若射线 OC 是∠AOB 的平分线,则∠AOC =∠BOC = 1/2 ∠AOB2、相交线与平行线(1)对顶角相等(2)邻补角互补(3)平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
初中数学必背公式及定理
初中数学必背公式及定理初中数学中,有很多重要的公式和定理需要掌握。
下面是一些必备的公式和定理:一、基础运算法则:1.加法交换律:a+b=b+a2.减法的定义:a-b=a+(-b)3.减法与加法的关系:a-b=a+(-b)=a+(-1)×b4.乘法交换律:a×b=b×a5.乘法结合律:(a×b)×c=a×(b×c)6.乘法分配律:a×(b+c)=a×b+a×c二、整数运算公式:1.同号相乘,异号相反:正×正=正,负×负=正,正×负=负,负×正=负2.乘方运算:a^m×a^n=a^(m+n),(a^m)^n=a^(m×n)3.含有分数运算:a/b×c/d=(a×c)/(b×d),a/b÷c/d=(a×d)/(b×c)4.分数乘方运算:(a/b)^n=a^n/b^n,a^(1/n)=b,则a=b^n5.注意计算顺序:先乘方,再乘除,最后加减三、平方与立方公式:1. (a+b)² = a² + 2ab + b²2. (a-b)² = a² - 2ab + b²3.a²-b²=(a+b)(a-b)4. (a+b)³ = a³ + 3a²b + 3ab² + b³5. (a-b)³ = a³ - 3a²b + 3ab² - b³四、勾股定理:1.直角三角形的斜边平方等于两直角边平方和:c²=a²+b²五、等腰三角形定理:1.等腰三角形的两底边相等:AB=AC2.等腰三角形的两底角相等:∠B=∠C3.等腰三角形的顶角底角和为180°:∠A+∠B+∠C=180°六、平行线定理:1.同位角相等:如果两条直线被一条直线截断,同位角相等2.内错角相等:平行线被截断时,内错角相等3.顶角、底角和补角的关系:顶角与底角之和为补角4.平行线间的平行线相等:若有两条直线分别与另外两条直线平行,那么这两条直线也平行。
初三初中数学常用公式与定理
初三初中数学常用公式与定理1. 数学常用公式在初三初中数学学习中,常用公式对于解题和计算非常重要。
下面列举了一些常用的数学公式:1.1 代数公式- 两个数的乘积等于它们的最大公约数与最小公倍数的积:a × b = [a, b] × (a,b)- 平方差公式:(a + b)(a - b) = a^2 - b^2- 一元二次方程求根公式:x = (-b ± √(b^2 - 4ac)) / 2a1.2 几何公式- 三角形周长公式:P = a + b + c(a、b、c为三角形的三边)- 三角形面积公式:S = 1/2 ×底边 ×高- 圆的周长公式:C = 2πr(r为圆的半径)- 圆的面积公式:S = πr^21.3 概率公式- 事件的概率:P(A) = n(A) / n(S)(n(A)为事件A发生的次数,n(S)为样本空间的元素个数)- 互斥事件的概率:P(A ∪ B) = P(A) + P(B)2. 数学常用定理2.1 代数定理- 乘法交换律:a × b = b × a- 加法结合律:(a + b) + c = a + (b + c)- 分配律:a × (b + c) = a × b + a × c2.2 几何定理- 直角三角形勾股定理:c^2 = a^2 + b^2(c为斜边,a和b为两直角边)- 三角形内角和定理:三角形的三个内角的和为180°- 对角线定理:平行四边形的对角线互相平分2.3 梅钦定理- 若一个集合A是集合B的子集,且集合B是集合C的子集,则集合A一定是集合C的子集3. 数学常用定律3.1 代数定律- 同号相乘,异号相乘:正 ×正 = 正、负 ×负 = 正、正 ×负 = 负- 零乘任何数等于零:0 × a = 03.2 几何定律- 同位角定理:同位角互等,即对应角、内错角、同旁内角相等- 对顶角定理:对顶角互等,即顶角和底角互补以上列举的公式、定理和定律只是初三初中数学学习中的一部分常用内容,希望能够对你的学习有所帮助。
初中中考数学常用公式及重要性质和定理
初中中考数学常用公式及重要性质和定理数学是一门高效的科学,而公式则是数学思想的高效表达方式。
在初中中考数学中,掌握常用公式、重要性质和定理是很重要的。
下面我将重新整理并详细介绍常用公式、重要性质和定理。
一、常用公式:1.直角三角形的勾股定理:设直角三角形的两直角边分别为a、b,斜边为c,则有a²+b²=c²。
2. 二次函数的解法公式:设二次函数为y = ax² + bx + c,其中a ≠ 0,则它的解法公式为x = [-b ± √(b² - 4ac)] / (2a)。
3.等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ=a₁+(n-1)d。
4.等差数列的前n项和公式:设等差数列的首项为a₁,公差为d,前n项的和为Sn,则有Sn=(n/2)(a₁+aₙ)。
5. 平方差公式:(a + b)² = a² + 2ab + b²。
6. 两角和、差公式:sin(A ± B) = sinAcosB ± cosAsinB,cos(A ± B) = cosAcosB ∓ sinAsinB。
7.梯形面积公式:设梯形的上底长度为a,下底长度为b,高为h,则梯形的面积为S=(a+b)h/28.圆的周长公式:设圆的半径为r,则圆的周长L=2πr。
9.圆的面积公式:设圆的半径为r,则圆的面积S=πr²。
二、重要性质和定理:1.三角形内角和定理:设三角形的三个内角分别为A、B、C,则有A+B+C=180°。
2.三角形面积公式:设三角形的底边为a,对应高为h,则三角形的面积S=1/2×a×h。
3.三角形的相似性质:若两个三角形的对应角相等,则这两个三角形相似。
4.三角形的勾股定理:设三角形的三个边长分别为a、b、c,其中c为斜边,则有a²+b²=c²。
九年级数学常见的公式与定理
一、代数公式1. 一元一次方程:ax+b=0,其中a和b为实数,a≠0,解为x=-b/a。
2. 一元二次方程:ax^2+bx+c=0,其中a、b和c为实数,a≠0,解为x=(-b±√(b^2-4ac))/2a。
3.因式分解公式:a^2-b^2=(a+b)(a-b)。
4. 完全平方公式:(a+b)^2=a^2+2ab+b^25. 二次完全平方公式:a^2-2ab+b^2=(a-b)^26. 立方公式:(a+b)^3=a^3+3a^2b+3ab^2+b^37. 立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)。
二、几何公式1.勾股定理:直角三角形斜边的平方等于两条直角边的平方和。
c^2=a^2+b^22.同位角定理:同位角互相相等,即对应角、内错角、同旁内角、同旁外角。
3.平行线性质:同位角相等、内错角相等、同旁内角和为180°、同旁外角互补。
4. 钝角三角函数定理:在锐角三角函数的定义域内,sin(90°-θ)=cosθ,cos(90°-θ)=sinθ。
5. 锐角三角函数定理:在锐角三角函数的定义域内,sin(180°-θ)=sinθ,cos(180°-θ)=-cosθ,tan(180°-θ)=-tanθ。
6.圆的面积公式:S=πr^2,其中S为圆的面积,r为半径。
7.直角三角形斜边长公式:斜边长c=√(a^2+b^2),其中a、b为直角三角形的直角边。
8. 30°、45°、60°三角函数值:sin30°=1/2,sin45°=cos45°=1/√2,sin60°=√3/2,cos30°=√3/2,cos60°=1/2,tan30°=1/√3,tan45°=1,tan60°=√3三、概率论公式1.组合公式:C(n,m)=n!/(m!(n-m)!),其中C(n,m)表示从n个元素中选取m个元素的组合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学常用公式及性质1.乘法与因式分解①(a +b )(a -b )=a 2-b 2;②(a ±b )2=a 2±2ab +b 2;③(a +b )(a 2-ab +b 2)=a 3+b 3;④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab 。
2.幂的运算性质①a m ×a n =a m +n ;②a m ÷a n =a m -n ;③(a m )n =a mn ;④(ab )n =a n b n ;⑤(a b )n =n n a b;⑥a -n =1n a,特别:()-n =()n ;⑦a 0=1(a ≠0)。
3.二次根式①()2=a (a ≥0);②=丨a 丨;③=×;④=(a >0,b ≥0)。
;4.一元二次方程对于方程:ax 2+bx +c =0:①求根公式是x 24b b ac-±-b 2-4ac 叫做根的判别式。
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
5.一次函数一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标,称为截距)。
①当k >0时,y 随x 的增大而增大(直线从左向右上升); ②当k <0时,y 随x 的增大而减小(直线从左向右下降);③特别地:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点。
6.反比例函数反比例函数y =(k ≠0)的图象叫做双曲线。
①当k >0时,双曲线在一、三象限(在每一象限内,从左向右降); ②当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升)。
7. 二次函数(1).定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。
(2).抛物线的三要素:开口方向、对称轴、顶点。
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同。
y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x 。
(3).几种特殊的二次函数的图像特征如下:函数解析式开口方向 对称轴顶点坐标 2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=2 0=x (y 轴)(0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x =(h ,k )c bx ax y ++=2abx 2-=(ab ac a b 4422--,) (4).求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=。
③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
(5).抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样。
②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线。
ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b(即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧。
③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置。
当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab。
(6).用待定系数法求二次函数的解析式①一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ②顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。
③交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。
8 .直线与抛物线的交点①y 轴与抛物线c bx ax y ++=2得交点为(0, c )。
②抛物线与x 轴的交点。
二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:a 有两个交点⇔(0>∆)⇔抛物线与x 轴相交;b 有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切;c 没有交点⇔(0<∆)⇔抛物线与x 轴相离。
(9 ) 统计初步(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =()()()222121.....nx x xx xx n 轾-+-++-犏臌④标准差:方差的算术平方根。
数据1x 、2x ……, n x 的标准差s ,则s =()()()222121.....nx x xx xx n 轾-+-++-犏臌一组数据的方差越大,这组数据的波动越大,越不稳定。
10 . 频率与概率 (1)频率频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P (A )≤1; P (必然事件)=1;P (不可能事件)=0; 锐角三角形①设∠A 是△ABC 的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =-,∠A 的正切:tan A =.③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,tan30º=,tan45º=1,tan60º=。
11.平面直角坐标系中的有关知识(1)对称性:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。
(2)坐标平移:若直角坐标系内一点P(a,b)向左平移h个单位,坐标变为P (a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h个单位,坐标变为P(a,b+h),向下平移h个单位,坐标变为P(a,b-h).如:点A (2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为A(7,1)。
12.多边形内角和公式多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º(2)两条平行弦所夹的弧相等。
(3)圆心角的度数等于它所对的弧的度数。
(4)一条弧所对的圆周角等于它所对的圆心角的一半。
(5)圆周角等于它所对的弧的度数的一半。
(6)同弧或等弧所对的圆周角相等。
(7)在同圆或等圆中,相等的圆周角所对的弧相等。
(8)90º的圆周角所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦。
、(9)圆内接四边形的对角互补。
13.三角形的内心与外心(1)三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点。
(2)三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点14. 面积公式 ①S △=ah②S 平行四边形=底×高.③S 菱形=底×高=×(对角线的积),④1()2S =+⨯=⨯梯形上底下底高中位线高 ⑤S 圆=πR 2. ⑥l 圆周长=2πR . ⑦弧长L =.⑧213602n r S lr π==扇形⑨S 圆柱侧=底面周长×高=2πrh ,S 全面积=S 侧+S 底=2πrh +2πr 2⑩S 圆锥侧=×底面周长×母线=πrb ,S 全面积=S 侧+S 底=πrb +πr 2(11) 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 (12) 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率(13)正方形: 周长=边长×4, C=4a , 面积=边长×边长S=a ×a (14) 正方体 体 积=棱长×棱长×棱长 V=a ×a ×a(15)长方形 周长=(长+宽)×2 C=2(a+b) , 面积=长×宽 S=ab (16)长方体 体积=长×宽×高 V=abh15. 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的 一半 , 直角三角形斜边上的中线等于斜边上的一半16. 勾股定理 : 直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,, 17. 定理 : 四边形的内角和等于360°, 四边形的外角和等于360° 多边形内角和定理 n 边形的内角的和等于(n-2)×180°推论任意多边的外角和等于360°18. 平行四边形性质定理: 1. 平行四边形的对角相等 2. 平行四边形的对边相等3 . 平行四边形的对角线互相平分19. 平行四边形判定定理: 1 . 两组对角分别相等的四边形是平行四边形2 . 两组对边分别相等的四边形是平行四边形 3. 对角线互相平分的四边形是平行四边形 4. 一组对边平行相等的四边形是平行四边形20. 矩形性质定理: 1 . 矩形的四个角都是直角 2. 矩形的对角线相等21. 矩形判定定理: 1 .有三个角是直角的四边形是矩形2 .对角线相等的平行四边形是矩形22. 菱形性质定理: 1. 菱形的四条边都相等 2 . 菱形的对角线互相垂直,并且每一条对角线平分一组对角23.. 菱形判定定理 1. 四边都相等的四边形是菱形 2 . 对角线互相垂直的平行四边形是菱形24.正方形性质定理 1. 正方形的四个角都是直角,四条边都相等2.正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角25.等腰梯形性质定理等腰梯形在同一底上的两个角相等, 等腰梯形的两条对角线相等26,等腰梯形判定定理: 在同一底上的两个角相等的梯形是等腰梯形,对角线相等的梯形是等腰梯形27. 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半28.相似三角形的性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比性质定理2 . 相似三角形周长的比等于相似比性质定理3 . 相似三角形面积的比等于相似比的平方29.垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线切线的性质定理圆的切线垂直于经过切点的半径。