生化复习总结(经典大题):酶

合集下载

生物化学试题 酶

生物化学试题  酶
B.酶在生物体内催化的反应都是不可逆的
C.酶在反应前后无质和量的变化
D.酶对所催化的反应有选择性
E.能缩短化学反应到达反应平衡的时间
26.酶促反应的作用是
A.保证产物比底物更稳定B.获得更多的自由能
C.加速反应平衡到达的速率D.保证底物全部转变成产物
E.改变反应的平衡常数
27,在形成酶-底物复合物时
E.辅酶为小分子物质有利于酶在介质中发挥酶促作用
10,下列哪种酶含辅助因子Gu2+
A.黄嘌呤氧化酶B,细胞色素氧化酶
C.过氧化氢酶D.脲酶E.谷胱甘肽过氧化物酶
11,酶保持催化活性,必须
A.酶分子完整无缺B.有酶分子上所有化学基团存在
C.有金属离子参加D.有辅酶参加
E.有活性中心及其必需基团
12,酶催化作用所必需的基团是指
A.丙二酸对琥珀酸脱氢酶的抑制作用
B,EDrA对金属活化酶类的抑制作用
C.磺胺药类对细菌二氢叶酸还原酶的抑制作用
D,麦芽糖对淀粉酶水解淀粉的抑制作用
E,反应产物对酶的反馈抑制
48.对可逆性抑制剂的描述,哪项是正确的
A.使酶变性失活的抑制剂
B..抑制剂与酶是共价键相结合
C.抑制剂与酶是非共价键结合
D,抑制剂与酶结合后用透析等物理方法不能解除抑制
B.变构调节是快速调节,化学修饰不是快速调节
B.两种形式的转变有酶催化
D.两种形式的转变由共价变化
E.有放大效应
[答案]B
5..测定酶活性时,在反应体系中,哪项叙述是正确的
A.作用物的浓度越高越好B.温育的时间越长越好
C.pH必须中性D.反应温度宜以3713为佳
E.有的酶需要加入激活剂
[答案]E

生化复习重点及试题酶

生化复习重点及试题酶

生化复习重点及试题(酶)一、知识要点在生物体的活细胞中每分每秒都进行着成千上万的大量生物化学反应,而这些反应却能有条不紊地进行且速度非常快,使细胞能同时进行各种降解代谢及合成代谢,以满足生命活动的需要。

生物细胞之所以能在常温常压下以极高的速度和很大的专一性进行化学反应,这是由于生物细胞中存在着生物催化剂——酶。

酶是生物体活细胞产生的具有特殊催化能力的蛋白质。

酶作为一种生物催化剂不同于一般的催化剂,它具有条件温和、催化效率高、高度专一性和酶活可调控性等催化特点。

酶可分为氧化还原酶类、转移酶类、水解酶类、裂解酶类、异构酶类和合成酶类六大类。

酶的专一性可分为相对专一性、绝对专一性和立体异构专一性,其中相对专一性又分为基团专一性和键专一性,立体异构专一性又分为旋光异构专一性、几何异构专一性和潜手性专一性。

影响酶促反应速度的因素有底物浓度(S)、酶液浓度(E)、反应温度(T)、反应pH值、激活剂(A)和抑制剂(I)等。

其中底物浓度与酶反应速度之间有一个重要的关系为米氏方程,米氏常数(Km)是酶的特征性常数,它的物理意义是当酶反应速度达到最大反应速度一半时的底物浓度。

竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用分别对Km值与Vmax的影响是各不相同的。

酶的活性中心有两个功能部位,即结合部位和催化部位。

酶的催化机理包括过渡态学说、邻近和定向效应、锁钥学说、诱导楔合学说、酸碱催化和共价催化等,每个学说都有其各自的理论依据,其中过渡态学说或中间产物学说为大家所公认,诱导楔合学说也为对酶的研究做了大量贡献。

胰凝乳蛋白酶是胰脏中合成的一种蛋白水解酶,其活性中心由Asp102、His57及Ser195构成一个电荷转接系统,即电荷中继网。

其催化机理包括两个阶段,第一阶段为水解反应的酰化阶段,第二阶段为水解反应的脱酰阶段。

同工酶和变构酶是两种重要的酶。

同工酶是指有机体内能催化相同的化学反应,但其酶蛋白本身的理化性质及生物学功能不完全相同的一组酶;变构酶是利用构象的改变来调节其催化活性的酶,是一个关键酶,催化限速步骤。

生物化学试题库及其答案——酶

生物化学试题库及其答案——酶

生物化学试题库及其答案——酶一、填空题1.酶是产生的,具有催化活性的。

2.T.Cech从自我剪切的RNA中发现了具有催化活性的,称之为这是对酶概念的重要进展。

3.结合酶是由与两部分构成,其中任何一部分都催化活性,只有才有催化活性。

4.有一种化合物为A-B,某一酶对化合物的A,B基团及其连接的键都有严格的要求,称之,若对A基团与键有要求称之,若对A,B之间的键合方式有要求则称之。

5.酶发生催化作用过程可表示为E+S→ES→E+P,当底物浓度足够大时,酶都转变为如今酶促反应速成度为。

6.竞争性抑制剂使酶促反应的km 而Vmax 。

7.磺胺类药物能抑制细菌生长,由于它是结构类似物,能性地抑制酶活性。

8.当底物浓度远远大于Km,酶促反应速度与酶浓度。

9.PH对酶活力的影响,要紧是由于它与。

10.温度对酶作用的影响是双重的:①②。

11.同工酶是一类酶,乳酸脱氢酶是由种亚基构成的四聚体,有种同工酶。

12.与酶高催化效率有关的因素有、、、与活性中心的。

13.关于某些调节酶来说,、V对[S]作图是S形曲线是由于底物结合到酶分子上产生的一种效应而引起的。

14.测定酶活力时要求在特定的与条件下,而且酶浓度务必底物浓度。

15.解释别构酶变构机理,要紧有与两种。

16.能催化多种底物进行化学反应的酶有个Km值,该酶最适底物的Km值。

17.与化学催化剂相比,酶具有、、与等催化特性。

18.在某一酶溶液中加入G-SH能提出高此酶活力,那么能够推测基可能是酶活性中心的必需基团。

19.影响酶促反应速度的因素有、、、、、。

20.从酶蛋白结构看,仅具有三级结构的酶为,具有四级结构的酶,而在系列反应中催化一系列反应的一组酶为二、选择题1.有四种辅因子(1)NAD,(2)FAD,(3)磷酸吡哆素,(4)生物素,属于转移基团的辅酶因子为:A、(1)(3)B、(2)(4)C、(3)(4)D、(1)(4)2.哪一种维生素具有可逆的氧化还原特性:A、硫胺素B、核黄素C、生物素D、泛酸3.含B族维生素的辅酶在酶促反应中的作用是:A、传递电子、质子与化学基团B、稳固酶蛋白的构象C、提高酶的催化性质D、决定酶的专一性4.有机磷农药作为酶的抑制剂是作用于酶活性中心的:A、巯基B、羟基C、羧基D、咪唑基5.从组织中提取酶时,最理想的结果是:A、蛋白产量最高B、转换系数最高C、酶活力单位数值很大D、比活力最高6.同工酶鉴定最常用的电泳方法是:A、纸电泳B、SDS—聚丙烯酰胺凝胶电泳C、醋酸纤维薄膜电泳D、聚丙烯酰胺凝胶电泳7.酶催化底物时将产生哪种效应A、提高产物能量水平B、降低反应的活化能C、提高反应所需活化能D、降低反应物的能量水平8.下列不属于酶催化高效率的因素为:A、对环境变化敏感B、共价催化C、靠近及定向D、微环境影响9.米氏常数:A、随酶浓度的增加而增加B、随酶浓度的增加而减小C、随底物浓度的增加而增大D、是酶的特征常数10.下列哪种辅酶结构中不含腺苷酸残基:A、FADB、NADP+C、辅酶QD、辅酶A 11.下列那一项符合“诱导契合”学说:A、酶与底物的关系如锁钥关系B、酶活性中心有可变性,在底物的影响下其空间构象发生一定的改变,才能与底物进行反应。

生物化学总结酶

生物化学总结酶

生物化学总结酶生物化学总结酶一、酶的概论1.定义:具有高效性与特异性的生物催化剂。

2.酶作为生物催化剂的特点:a.酶具有很高的催化效率。

b.酶具有高度专一性。

c.酶易失活。

d.酶活性受到调节和控制。

3.酶作用专一性的机制与假说:锁钥学说、诱导契合学说。

4.酶的化学组成:5.酶的命名:反应物:反应物+反应类型+酶。

6.六大酶类:二、酶的催化原理1.酶通过降低反应的活化能,从而使反应速率增大。

2.酶与底物复合物的形成:。

3.酶的活性部位:蛋白质的结构决定功能,酶活性部位的结构特点决定酶行使其催化功能的特点(高效性、专一性)。

活性部位是酶结合和催化底物反应的场所,是酶分子表面的一小部分区域,其功能基团包含催化基团与结合基团。

特点:a.活性部位在酶分子整个体积中只占很小的一部分。

b.酶的活性部位具有三维立体结构。

c.酶的活性部位是酶分子上的一个裂隙。

d.活性部位具有与底物相对互补的结构,酶活性部位具有柔性,可发生诱导契合。

e.底物通过非共价作用结合到酶分子上。

f.活性部位对酶的整体构象具有依赖性。

4.影响酶催化效率的因素:(改变反应途径降低活化能)非共价作用:邻近效应与定向效应、底物的形变与诱导契合(←过渡态理论)。

共价作用:酸碱催化、共价催化、金属离子催化。

(1).邻近效应:酶与底物结合以后,使原来游离的底物集中于酶的活性部位,从而减小底物之间或底物与酶的催化基团之间的距离,提高底物有效浓度,使反应更容易进行,增加反应速率的一种效应。

定向效应:反应物的反应基团之间、以及酶的催化基团与底物的反应基团之间的正确定位和取向产生的效应。

(2).当酶与底物结合后,酶与底物之间的非共价作用可以使底物分子围绕其敏感键发生形变,从而促进底物过渡态的形成,反应活化能被降低,反应速率得以加快。

酶与底物结合时,在底物发生形变的同时,酶活性部位的构象也在底物的影响作用下发生改变,二者的形变导致酶与底物更好地结合,形成一个互相契合的酶-底物复合物。

《生物化学》试题:酶

《生物化学》试题:酶

《生物化学》试题:酶2、简述酶高效催化的一般原理。

3、简述K m的意义。

4、简述V max的意义。

5、简述竟争性抑制的特点。

6、简述非竟争性抑制的特点。

7、简述反竟争性抑制的特点。

【参考答案】一、名词解释1、酶:指由活细胞产生的,具有催化活性和高度专一性的特殊生物大分子,包括蛋白质和核酸。

2、活性中心:指酶分子中直接参与底物结合及催化作用的氨基酸残基的侧链基团按一定空间结构所组成的区域。

3、诱导楔合学说:该学说认为酶和底物结合之前,酶活性中心的结构与底物的结构并不一定完全吻合,但当二者相互作用时,因酶活性中心具有柔性,底物与酶相互诱导发生构象变化,从而能楔合形成中间过渡态。

4、酶活力:又称酶活性,指酶催化一定化学反应的能力。

在一定条件下,可用其催化的某一化学反应的反应速度来表示。

5、比活力:指每毫克酶蛋白中所含的活力单位数,代表酶制度剂的纯度。

6、转换数:指酶被底物完全饱和时,每单位时间内、每个酶分子所能转化底物的分子数,用于描述酶的催化效率。

7、别构酶:酶分子非催化部位与某些化合物可逆地非共价结合后引发酶构象改变,进而引起酶活性改变,具有这种变构调节作用的酶称为别构酶或变构酶。

8、同工酶:能催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫学特性不同的一组酶。

9、诱导酶:在诱导物的剌激下,能大量产生的酶。

10、K m:酶促反应速度达到最大速度一半时的底物浓度。

11、天然底物:当一种酶有多种底物时,酶对每种底物均各有一个特定的K m值,K m最小的底物称为该酶的天然底物。

12、Q10:即温度系数,指T每增加10℃,υ增加的倍数。

13、可逆抑制作用:抑制剂(I)与酶非共价结合,一般用透析或超滤的方法可以除去抑制剂使酶恢复活力,这称为可逆抑制作用。

14、不可逆抑制作用:抑制剂(I)与酶共价结合使酶丧失活性,不能用透析或超滤的方法除去抑制剂而恢复酶活力,这称为不可逆抑制作用。

二、填空题1、酶蛋白、辅因子,酶蛋白;2、共价;3、单体酶、寡聚酶、多酶复合体;4、绝对专一性、相对专一性、立体异构专一性;5、氧化还原酶类、转移酶类、水解酶类、裂合(或裂解)酶类、异构酶类、合成(或连接)酶类;6、活性中心;7、结合基团、催化基团;8、底物浓度或[S]、酶浓度或[E]、温度或T、pH、激活剂、抑制剂;9、竟争性抑制、非竟争性抑制、反竟争性抑制;10、对氨基苯甲酸,二氢叶酸合成酶;11、胆碱酯酶或羟基酶;12、无;13、1/4[S];14、心肌;15、肝脏;16、S型、表观双曲线;17、等于或近似于,亲和力;18、不是,降低或下调。

生化第三章酶

生化第三章酶

第三章酶本章要点生物催化剂——酶:由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质。

一、酶的分子结构与功能1.单体酶:由单一亚基构成的酶。

(如溶菌酶)2.寡聚酶:由多个相同或不同的亚基以非共价键连接组成的酶。

(如磷酸果糖激酶-1)3.多酶复合物(多酶体系):几种具有不同催化功能的酶可彼此聚合。

(如丙酮酸脱氢酶复合物)4.多功能酶(串联酶):一些酶在一条肽链上同时具有多种不同的催化功能。

(如氨基甲酰磷酸合成酶Ⅱ)(一)、酶的分子组成中常含有辅助因子1.酶蛋白主要决定酶促反应的特异性及其催化机制;辅助因子主要决定酶促反应的性质和类型。

2.酶蛋白和辅助因子单独存在时均无催化活性,只有全酶才具有催化作用。

3.辅酶与酶蛋白的结合疏松,可以用透析和超滤的方法除去。

在酶促反应中,辅酶作为底物接受质子或基团后离开酶蛋白,参加另一酶促反应并将所携带的质子或基团转移出去,或者相反。

4.辅基则与酶蛋白结合紧密,不能通过透析或超滤将其除去。

在酶促反应中,辅基不能离开酶蛋白。

5.作为辅助因子的有机化合物多为B族维生素的衍生物或卟啉化合物,它们在酶促反应中主要参与传递电子、质子(或基团)或起运载体作用。

金属离子时最常见的辅助因子,约2/3的酶含有金属离子。

6.金属离子作为酶的辅助因子的主要作用①作为酶活性中心的组成部分参加催化反应,使底物与酶活性中心的必需基团形成正确的空间排列,有利于酶促反应的发生;②作为连接酶与底物的桥梁,形成三元复合物;③金属离子还可以中和电荷,减小静电斥力,有利于底物与酶的结合;④金属离子与酶的结合还可以稳定酶的空间构象。

7.金属酶:有的金属离子与酶结合紧密,提取过程中不易丢失。

8.金属激活酶:有的金属离子虽为酶的活性所必需,但与酶的结合是可逆结合。

(二)、酶的活性中心是酶分子执行其催化功能的部位1.酶的活性中心(活性部位):酶分子中能与底物特异地结合并催化底物转变为产物的具有特定三维结构的区域。

高中生物酶的知识点总结

高中生物酶的知识点总结

高中生物酶的知识点总结
酶是一类能够催化生化反应的蛋白质,常见于生物体内,具有高效、特异性和可逆性等特点。

下面是高中生物酶的知识点总结:
1. 酶的性质:
- 酶分子激活能较低,催化反应速度快。

- 酶可以选择性地促进某种底物的反应,也可以受到抑制剂的影响。

- 酶催化的反应通常是可逆的。

在反应达到一定平衡时,产物和底物的浓度不再改变。

2. 酶的分类:
- 按照反应类型:氧化还原酶、转移酶、水解酶、脱羧酶等。

- 按照反应底物:蛋白酶、脂肪酶、糖苷酶等。

- 按照反应条件:酸性酶、碱性酶等。

3. 酶的影响因素:
- pH值:不同的酶对pH值的适应范围不同,酶活性在特定pH值区间内最高。

- 温度:酶活性在一定温度范围内最高,但超过一定温度会导致酶失活。

- 底物浓度:当底物浓度高于一定值时,反应速率不再随着底物浓度的增加而增加,因为酶的催化位点已全部占满。

4. 酶在生物体内的作用:
- 帮助生物体进行代谢活动,例如消化食物、合成有机物质。

- 调节代谢反应的速率,维持代谢平衡。

- 参与抵御病原微生物的攻击,例如生物体内的酶可低温杀菌。

5. 酶在实际应用中的应用:
- 酶技术广泛应用于食品、医药、纺织、制浆造纸等领域。

- 酶制剂也可用于环境保护,例如处理废水、垃圾等。

生化各章节复习题答案

生化各章节复习题答案

生化各章节复习题答案一、酶的基本概念1. 酶是什么?答:酶是一类具有生物催化作用的蛋白质或RNA分子,能够显著降低化学反应的活化能,加速生物体内的化学反应。

2. 酶的催化机制是什么?答:酶通过其活性部位与底物结合,形成酶-底物复合物,降低反应的活化能,从而加速反应速率。

3. 酶的专一性是如何实现的?答:酶的专一性主要通过其活性部位的三维结构与底物的立体结构的精确匹配来实现。

二、代谢途径1. 什么是代谢途径?答:代谢途径是指生物体内一系列酶促反应的有序过程,这些反应相互联系,共同完成特定的生物化学功能。

2. 代谢途径的调控机制有哪些?答:代谢途径的调控机制主要包括酶活性的调节、酶合成的调节、代谢物的反馈抑制等。

3. 糖酵解途径的最终产物是什么?答:糖酵解途径的最终产物是丙酮酸、还原型烟酰胺腺嘌呤二核苷酸(NADH)和还原型黄素腺嘌呤二核苷酸(FADH2)。

三、DNA复制1. DNA复制的基本原理是什么?答:DNA复制是半保留复制,即每个新合成的DNA分子都包含一个亲本链和一个新合成的子链。

2. DNA聚合酶的作用是什么?答:DNA聚合酶的作用是催化脱氧核苷酸的聚合,将它们连接成长链DNA分子。

3. 引物的作用是什么?答:引物是一段短的RNA或DNA序列,它与DNA模板链互补配对,为DNA聚合酶提供起始点进行DNA合成。

四、蛋白质合成1. 遗传密码是什么?答:遗传密码是mRNA上的三个连续的核苷酸(密码子)所决定的氨基酸序列。

2. 翻译过程中的起始密码子是什么?答:翻译过程中的起始密码子通常是AUG,它编码的是甲硫氨酸。

3. 肽链合成的终止是如何实现的?答:肽链合成的终止是通过识别终止密码子(UAA、UAG、UGA)来实现的,此时没有相应的tRNA与之配对,肽链合成随即终止。

五、细胞呼吸1. 细胞呼吸的基本过程是什么?答:细胞呼吸主要包括糖酵解、丙酮酸氧化脱羧、柠檬酸循环和电子传递链四个阶段。

2. 电子传递链中的主要功能是什么?答:电子传递链的主要功能是将电子从NADH和FADH2传递至氧气,同时通过氧化磷酸化产生大量的ATP。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章酶复习总结酶的特点酶和一般催化剂的共性加快反应的速度,但不改变反应的平衡。

酶作为生物催化剂的特点(1)易失活(2)具有很高的催化效率酶的催化效率可以用转换数(turnover number,TN)来表示,它的定义是在一定条件下,每个酶分子单位时间内(通常为1秒钟)转换底物的分子数。

转换数高的可到四千万(如过氧化氢酶),低的不足1(如溶菌酶)。

(3)具有很高的专一性(4)酶的活性受到调节控制①调节酶的浓度;②通过激素调节酶的活性;③反馈抑制调节酶的活性;④抑制剂和激活剂调节酶的活性;⑤其他调节方式如别构调节。

6.5.1 酶的活性部位在整个酶分子中,只有一小部分区域的氨基酸残基参与对底物的结合与催化作用,这些特异的氨基酸残基比较集中的区域称为酶的活性部位(active site),或称为酶的活性中心(active center)。

酶的活性部位是酶结合和催化底物的场所,是与酶活力直接相关的区域。

酶活性部位的结构是酶作用机理的结构基础。

酶分子中与结合底物有关的部位称为结合部位,每一种酶具有一个或一个以上的结合部位,每一个结合部位至少结合一种底物,结合部位决定酶的专一性;酶分子中促使底物发生化学变化的部位称为催化部位,催化部位决定酶的催化能力以及酶促反应的性质。

酶的结合部位与催化部位共同构成酶的活性部位,在功能上,二者缺一不可,在空间构成上,二者也是紧密连接在一起。

不同酶有不同的活性部位,活性部位的共同特点是:①活性部位在酶分子整体结构中只占很小的部分,通常由数个氨基酸残基组成,活性部位体积虽小,却是酶最重要的部分。

②酶的活性部位具有三维立体结构,酶活性部位的立体结构在形状、大小、电荷性质等方面与底物分子具有较好的互补性。

参与组成酶活性部位的氨基酸残基在一级结构上可能相距很远,但是通过肽链的折叠,它们最终在酶的高级结构中相互靠近。

③酶的活性部位的催化基团主要包括氨基酸侧链的化学功能团以及辅因子的化学功能团,某些酶的辅因子也可作为酶的催化基团,辅因子与酶协同作用,为催化过程提供了更多种类的功能基团。

除催化基团外,酶的活性部位还有参与底物结合的结合基团。

在活性部位之外,也可能具有某些对于维持酶活性部位的结构和功能必不可少的基团。

这些对酶的催化功能来说必不可少的基团,称为必需基团,若必需基团被改变,酶的活力会严重下降,甚至完全丧失。

④酶的活性部位具有柔性。

在酶和底物结合的过程中,酶分子和底物分子的构象均发生一定的变化才形成互补结构。

诱导契合假说被诸多实验结果证实,此外,酶的活性部位相比于整个酶分子更具柔性或称可运动性,容易在蛋白变性剂或底物的诱导作用下发生构象的变化。

⑤酶的活性部位通常是酶分子上的一个裂隙,它将底物分子包围起来,从而给即将发生的反应提供了一个局部微环境。

这种微环境通常是疏水的环境,比较有利于酶与底物的结合以及底物分子与酶催化基团之间的相互作用。

酶的活性部位对酶的整体结构具有较高的依赖性,没有酶的整体空间结构,就没有酶的活性部位,一旦酶的整体空间结构被破坏,酶的活性部位也就被破坏,酶就会失活。

酶的其它部位除了提供酶分子结构的完整性外,还在酶活性的调节中起到重要作用。

酶的活性部位与酶蛋白的整体结构之间,酶的活性部位和酶分子其它部位之间具有协调统一的关系。

研究酶活性部位的方法(1)侧链基团的化学修饰法:非特异性共价修饰(作用于酶分子中某一基团),酶活力丧失与修饰剂浓度成比例,底物或竞争性抑制剂可降低修饰作用。

特异性共价修饰(作用于特定酶的特定基团),;亲和标记试剂可以与活性部位的特定基团共价定量结合,如对甲苯磺酰-L-苯丙氨酰氯甲基酮(TPCK)与胰凝乳蛋白酶活性部位丝氨酸羟。

(2)动力学参数测定法(3)X-射线晶体结构分析法(4)定点诱变法6.5.3 酶具有高催化效率的分子机理酶促反应形成过渡态所需要的活化能远小于非酶促反应,分子机理有以下几种:(1)邻近效应与定向效应邻近(approximation)效应指酶与底物结合以后,使底物集中于酶的活性部位,酶活性部位的底物浓度远远超过整个溶液体系中底物的平均浓度,从而增加反应速率的效应。

定向(orientation)效应指底物的反应基团之间、酶的催化基团与底物的反应基团之间的正确定位与取向所产生的增进反应速率的效应。

两个发生作用的化学基团的正确定位与取向通过限制化学基团的自由度,拉近化学基团之间的距离,调整化学基团之间的角度,使化学基团能够更有效地相互作用,从而提高了反应速率。

邻近效应与定向效应在酶促反应中所起的促进作用可以累积,两者共同作用可使反应速率升高108倍左右。

(2)促进底物过渡态形成的非共价作用酶与底物之间的非共价作用(如氢键、疏水作用等)可以使底物分子围绕其敏感键发生形变,从而促进底物过渡态的形成,反应活化能被降低,反应速率得以加快。

过渡态互补学说认为,与经诱导契合调整构象后的酶最匹配的是底物经形变产生的过渡态,而不是底物的原始状态,同样,经调整后酶活性部位的理想构象应该是一种与底物的过渡态互补的构象,如此才能产生最适宜的非共价作用。

酶与底物过渡态的亲和力要远大于酶与底物或产物的亲和力。

(3)酸碱催化酸碱催化(acid-base catalysis)指催化剂通过向反应物提供质子或从反应物接受质子,从而稳定过渡态,降低反应活化能,加速反应的一类催化机制。

狭义的酸碱催化指水溶液中通过质子和氢氧离子进行的催化;广义的酸碱催化指通过质子、氢氧离子以及其他能提供质子或接受质子的物质进行的催化,广义的酸碱催化可提高反应速率102到105倍。

在生理条件下,因质子和氢氧离子的浓度太低,因此生物体内的反应以广义的酸碱催化为主,由酶活性部位的一些功能基团来提供质子或接受质子。

咪唑基即可作为质子供体,又可作为质子受体在酶促反应中发挥催化作用,同时咪唑基接受质子和供出质子的速率相当大,因此组氨酸残基虽然在酶分子中含量很少,但在酶的催化功能中占据重要地位。

(4)共价催化共价催化(covalent catalysis)指催化剂通过与底物形成相对不稳定的共价中间复合物,改变了反应历程,由于新历程所需活化能更低,因此反应速率得以提高。

其具体机制分亲核催化与亲电催化两种,亲核催化指催化剂作为提供电子的亲核试剂攻击反应物的缺电子中心,与反应物形成共价中间复合物;亲电催化指催化剂作为吸取电子的亲电试剂攻击反应物的负电中心,与之形成共价中间复合物。

酶中参与共价催化的基团主要包括组氨酸残基侧链的咪唑基、半胱氨酸残基侧链的巯基、丝氨酸残基侧链的羟基等,它们一般作为亲核试剂攻击底物的缺电子中心,形成共价中间复合物。

(5)金属离子催化金属离子可通过多种途径参加催化过程,例如金属离子可提高水的亲核性能;金属离子可通过静电作用屏蔽负电荷;金属离子可通过结合底物为反应定向;金属离子可在氧化还原反应中起传递电子的作用等。

金属离子的作用主要有:①与底物结合为反应定向;②参与氧化还原反应;③稳定或屏蔽负电荷;④活化水分子;⑤与过渡态底物形成螯合物。

酶的活性部位一般都含有多个起催化作用的基团,这些基团在空间上有特殊的排列和取向,可以通过协同的方式作用于底物,从而提高底物的反应速率。

一种酶的催化作用常常是多种催化机制的综合作用,这种多元催化和协同效应是酶具有高效性的重要原因。

6.7.1 抑制剂不可逆抑制剂与酶的必需基团以共价键结合,引起酶的永久性失活,其抑制作用不能够用透析、超滤等温和物理手段解除。

可逆抑制剂与酶蛋白以非共价键结合,其抑制作用可以通过透析、超滤等手段解除。

可逆抑制剂又可分为竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂等。

①竞争性抑制剂(competitive inhibitor)抑制剂的化学结构与底物相似,因而能与底物竞争与酶活性部位的结合,当抑制剂结合于酶的活性部位后,底物被排斥在酶活性部位之外,导致酶促反应被抑制。

②非竞争性抑制剂(noncompetitive inhibitor)酶可同时与底物及这类抑制剂结合,形成的三元复合物不能进一步分解为产物,导致酶促反应被抑制。

抑制剂的结合位点与底物结合位点不同。

③反竞争性抑制剂(uncompetitive inhibitor)酶只有与底物结合后,才能与这类抑制剂结合,形成的三元复合物不能分解为产物,导致酶促反应被抑制。

抑制剂的结合位点与底物结合位点不同。

一些重要的抑制剂不可逆抑制剂非专一抑制剂:有机磷(作用于羟基酶类,特别是胆碱酯酶,可用肟类解毒)、有机汞和有机砷(作用于巯基,可用过量的巯基化合物解毒)、重金属盐(使蛋白质变性失活,可用螯合剂解毒)、氰化物、硫化物和一氧化碳(作用于酶中的金属离子,使酶失活而阻止呼吸)、青霉素(抑制细菌的糖肽转移酶)等;专一抑制剂:K s型抑制剂修饰活性基团,K cat型抑制剂为自杀型底物。

6.7.2 温度对酶反应的影响化学反应速率一般都受温度影响,反应速率随温度的升高而加快,但在酶促反应中,随着温度的升高,酶会因热变性而失活,从而使反应速率减慢,直至酶完全失活。

因此在较低的温度范围内,酶促反应速率随温度升高而增大,超过一定温度后,反应速率反而下降,以反应速率对温度作图可得到一条钟形曲线,曲线的顶点对应的温度称为酶作用的最适温度(optimum temperature,T m),此温度对应的酶促反应速率最大。

有些耐热的酶有很好的应用价值。

酶的最适温度不是一个恒定不变的常数,其数值与反应时间、底物类型等因素有关,如反应时间的增加可导致最适温度测定值的降低,这说明酶的最适温度只有在一定条件下测定才有意义。

6.7.3 pH对酶反应的影响pH对酶促反应速率的影响作用主要有:①pH过高或过低可导致酶高级结构的改变,使酶失活,又称为酸变性或碱变性,酶活性部位具有柔性,比其他部位更容易在酸、碱的作用下发生构象变化,导致酶活力的下降;②酶具有许多可解离的基团,在不同的pH环境中,这些基团的解离状态不同,所带电荷不同,它们的解离状态对酶与底物的结合能力以及酶的催化能力都有重要作用,因此溶液pH的改变可通过影响这些基团的解离状态来影响酶活性;③pH通过影响底物的解离状态以及中间复合物ES的解离状态影响酶促反应速率。

6.8.1 酶的调节方式生物体内调节酶活性的方式有很多种,可以概括为以下两类: 通过改变酶的数量与分布来调节酶的活性,例如通过激素的作用促进或抑制某一特定酶的表达,以增加或降低酶的浓度,许多酶在一种生物体内有多种同工酶形式,不同的同工酶形式分布于不同的器官或组织中,执行不同的功能; 通过改变酶的活性来调节酶的总活性,这种调节方式又包括通过改变酶的结构来调节酶的活性(例如别构调控、可逆的共价修饰、酶原的激活),以及通过直接影响酶与底物的相互作用来调节酶的活性等方式,例如竞争性抑制剂对酶活性的抑制作用、pH的微调对酶活性的影响作用等。

相关文档
最新文档