2021高考数学一轮复习统考第6章数列第2讲等差数列及其前n项和课时作业(含解析)北师大版
2021高考数学一轮复习统考第6章数列第2讲等差数列及其前n项和课时作业含解析北师大版

等差数列及其前n 项和课时作业1.在等差数列{a n }中,已知a 2=2,前7项和S 7=56,则公差d =( ) A .2 B .3 C .-2 D .-3答案 B解析 由题意可得⎩⎪⎨⎪⎧a 1+d =2,7a 1+7×62d =56,即⎩⎪⎨⎪⎧a 1+d =2,a 1+3d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =3,选B.2.(2019·衡阳模拟)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A .6 B .12 C .24 D .48答案 D解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,∴由等差数列的性质可得a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.故选D. 3.(2020·荆州模拟)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A .15 B .30 C .31 D .64 答案 A解析 设等差数列{a n }的公差为d ,∵a 3+a 4+a 5=3,∴3a 4=3,即a 1+3d =1,又由a 8=8得a 1+7d =8,联立解得a 1=-174,d =74,则a 12=-174+74×11=15.故选A.4.(2019·山东济南调研)已知数列{a n }为等差数列,且满足a 2+a 8=8,a 6=5,则其前10项和S 10的值为( )A .50B .45C .55D .40 答案 B解析 因为数列{a n }为等差数列,且a 2+a 8=8,所以根据等差数列的性质得2a 5=8,所以a 5=4,又因为a 6=5,所以S 10=10(a 1+a 10)2=10(a 5+a 6)2=45.5.(2019·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( )A .9B .15C .18D .36答案 C解析 由等差数列的通项公式及性质,可得S 9=9(a 1+a 9)2=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C. 6.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .27 B .36 C .45 D .54答案 D解析 ∵在等差数列{a n }中,2a 8=a 5+a 11=6+a 11, ∴a 5=6,故S 9=9(a 1+a 9)2=9a 5=54.故选D.7.(2019·东北三省三校联考)已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论中错误的是( )A .S 9=0B .S 5最小C .S 3=S 6D .a 5=0 答案 B解析 由题意知a 1+2(a 1+d )=5a 1+5×42d ,则a 5=0,∴a 4+a 6=0,∴S 3=S 6,且S 9=9a 5=0,故选B.8.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,且S n T n =5n +2n +3,则a 2+a 20b 7+b 15=( )A.10724 B.724C.14912D.1493答案 A 解析 由题知,a 2+a 20b 7+b 15=S 21T 21=10724. 9.(2019·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.故选C.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A.310B.13C.18D.19答案 A解析 令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A. 11.已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 6D .S 6,S 7均为S n 的最大值答案 C解析 因为S 5<S 6,所以S 5<S 5+a 6,所以a 6>0,因为S 6=S 7,所以S 6=S 6+a 7,所以a 7=0,因为S 7>S 8,所以S 7>S 7+a 8,所以a 8<0,所以d <0且S 6,S 7均为S n 的最大值,所以S 9<S 6.故选C.12.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m =( )A .3B .4C .5D .6答案 C解析 ∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.又S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1. 又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.13.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________. 答案19解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19.14.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则a 1+a 2+…+a 51=________.答案 676解析 ∵a n +2-a n =⎩⎪⎨⎪⎧0,n 为奇数,2,n 为偶数,∴数列{a n }的奇数项为常数1,偶数项构成以2为首项,2为公差的等差数列,∴a 1+a 2+…+a 51 =(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26+⎝ ⎛⎭⎪⎫25×2+25×242×2=676. 15.(2019·广雅中学模拟)已知等差数列{a n }中,a 2=2,a 4=8,若abn =3n -1,则b 2019=________.答案 2020解析 由a 2=2,a 4=8,得公差d =8-22=3,所以a n =2+(n -2)×3=3n -4,所以a n +1=3n -1.又由数列{a n }的公差大于0,知数列{a n }为递增数列,所以结合abn =3n -1,可得b n =n +1,故b 2019=2020.16.(2020·武汉模拟)在数列{a n }中,a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{a n }的通项公式为a n =________,数列{b n }的前n 项和S n 的最小值为________.答案3n -13n -4 -13解析 由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,即b n -b n -1=1(n ≥2,n ∈N *).又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,∴b n =n -43,即1a n -1=n -43,∴a n =3n -13n -4.又b 1=-13<0,b 2=23>0,∴S n 的最小值为S 1=b 1=-13.17.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解 (1)设{a n }的公差为d ,由题意,得3a 1+3d =-15. 由a 1=-7,得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1),得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.18.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.19.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意的n ∈N *恒成立,求λ的取值范围. 解 (1)证明:当n =1时,S 1=2a 1-22,得a 1=4.S n =2a n -2n +1,当n ≥2时,S n -1=2a n -1-2n,两式相减得a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=1,又a 121=2,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =n ·2n +2n.因为a n >0,所以不等式2n 2-n -3<(5-λ)a n 等价于5-λ>2n -32n .即λ<5-⎝ ⎛⎭⎪⎫2n -32n .记b n =2n -32n ,b 1=-12,b 2=14,当n ≥2时,b n +1b n =2n -12n +12n -32n =2n -14n -6,则b 3b 2=32,即b 3>b 2,又显然当n ≥3时,b n +1b n <1,所以(b n )max =b 3=38,所以λ<378. 20.(2019·唐山模拟)已知{a n }是公差为正数的等差数列,且a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若a n =b 1+b 23+b 35+…+b n2n -1,求数列{b n }的前n 项和S n .解 (1)∵{a n }是公差d >0的等差数列, ∴由a 3a 6=55,a 2+a 7=16=a 3+a 6, 解得a 3=5,a 6=11,∴⎩⎪⎨⎪⎧a 1+2d =5,a 1+5d =11,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1.(2)∵a n =b 1+b 23+b 35+…+b n2n -1,∴a n -1=b 1+b 23+b 35+…+b n -12n -3(n ≥2,n ∈N *), 两式相减,得b n2n -1=2(n ≥2,n ∈N *), 则b n =4n -2(n ≥2,n ∈N *), 当n =1时,b 1=1,∴b n =⎩⎪⎨⎪⎧1,n =1,4n -2,n ≥2,∴当n ≥2时,S n =1+(n -1)(6+4n -2)2=2n 2-1.又n =1时,S 1=1,适合上式, ∴S n =2n 2-1.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2021届数学大一轮复习【福建专用,理】课时作业, 第2讲 等差数列及其前n项和 Word版含答案

第2讲 等差数列及其前n 项和一、选择题1. {a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( ) A .18 B .20C .22D .24解析 由S 10=S 11得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20. 答案 B2.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ). A .6B .7C .8D .9解析 由a 4+a 6=a 1+a 9=-11+a 9=-6,得a 9=5,从而d =2,所以S n =-11n +n (n -1)=n 2-12n =(n -6)2-36,因此当S n 取得最小值时,n =6. 答案 A3.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ). A .-1B .1C .3D .7解析 两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+17×(-2)=1. 答案 B4.在等差数列{a n }中,S 15>0,S 16<0,则使a n >0成立的n 的最大值为( ). A .6B .7C .8D .9解析 依题意得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0;S 16=16(a 1+a 16)2=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ). A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数的个数是( ). A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________. 解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值,。
2021年高考数学一轮复习讲练测(浙江版)专题6.2 等差数列及其前n项和(测)

班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1.【浙江省高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【辽宁省沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a⋅=( )A.10B.20C.40D.22log 5+【答案】B 【解析】试题分析:由于10121056125()54222222a a a a a a a a ++++⨯⋅⋅⋅===,所以10125422log (222)log 220.a a a ⨯⋅⋅⋅==选B.3. 数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】4.各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( ) (A )78 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:由于11212494912()6()12722a a S a a a a +==+≥=,当且仅当496a a ==时取等号,所以12S 的最小值为72,选D.5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D.31【答案】D【解析】由于)(2)(231212n n n n n a a n a a n S S +=+=-+,)(23313n n a a n S +=,所以3132=-n n n S S S .6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B7.【2022新课标I 学易大联考二】已知数列{}n a 的前n 项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n +【命题意图】本题考查数列前n 项和n S 与通项n a 间的关系、等差数列通项公式等基础学问,意在考查同学的规律思维力量、运算求解力量,以及转化思想的应用. 【答案】A【解析】由21(1)22n n nS n S n n +-+=+,得121n n S S n n+-=+,则数列{}n S n 是首项为131S=,公差为2的等差数列,则32(1)21nS n n n=+-=+,即22n S n n =+,则当2n ≥时,1n n n a S S -=-=2222(1)(1)41n n n n n +----=-.又当1n =时,113a S ==,满足41n a n =-,故选A .8.【2022新课标II 学易大联考一】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,其次日、第五日、第八日所织之和为十五尺,问第十日所织尺数为( ) A .6 B .9 C .12 D .15【命题意图】本题主要考查等差数列的通项公式与前n 项和公式,是基础题.【答案】D【解析】由题知该女每天所织尺数等差数列,设为{}n a ,n S 是其前n 项和,则7S =177()2a a +=47a =21,所以4a =3,由于258a a a ++=53a =15,所以5a =5,所以公差54d a a =-=2,所以10a =55a d +=15,故选D.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从其次年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( )A.4B.5C.6D.7 【答案】A10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B【解析】由已知得,597214a a a +==,故77a =,又19959()9902a a S a +===,故510a =,则7532a a d -=-=,32d =-,故125217102a a d =+=-12=-.11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的开放式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的开放式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【2022浙江理6】如图所示,点列{}{},n n A B 分别在某锐角的两边上,且1n n A A +=12n n A A ++,2n n A A +≠,n ∈*N ,112n n n n B B B B +++=,2n n B B +≠,n ∈*N (P Q ≠表示点P 与点Q 不重合).若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).S nB 1B 2B nB 3B n+1A n+1A 3A nS 1S 2A 2A 1••••••••••••••••••A. {}n S 是等差数列B.2{}n S 是等差数列C.{}n d 是等差数列D.2{}n d 是等差数列 【答案】A .那么11121(tan )2n n S h A A B B θ=+⋅.由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-. 所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2022江苏8】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20【解析】设公差为d ,则由题意可得()2111351010a a d a d ⎧++=-⎪⎨+=⎪⎩,解得143a d =-⎧⎨=⎩,则948320a =-+⨯=.14.【2022北京理12】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6S =__________. 【答案】615.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 假如一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1) ()61n -;(2)8.【解析】试题分析: (1)由题意知:11a =,26a =,312a =,418a =,…, ∴数列{}n a 是从第2项起成等差数列,∴2(2)66n a a n d n =+-=-.(2)由(1)(666)11692n n n S -+-=+=,∴8n =.16.【2021届江苏省盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 .【答案】23 【解析】所以1B C A+-的最小值为23故答案为3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2022届广东省惠州市高三第一次调研考试】(本题10分)已知{}n a 为等差数列,且满足138a a +=,2412a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k = 【解析】∴3236a =⨯=,12(1)k a k +=+,2k S k k =+因 31,,k k a a S + 成等比数列,所以213k ka a S +=,从而22(22)6()k k k +=+, 即 220k k --=,*k N ∈,解得2k = 或1k =-(舍去) ∴ 2k =18.【2022届宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = (1)求n a 与n b ;(2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】试题分析:(1)由{}n b 的公比22S q b =及2212b S +=可解得3,q =由11b =则n b 可求,又由22Sq b = 可得3,6,91222=-===a a d a S 则n a 可求;(2)由(1)可得3(1)2n n n S +=则12211()3(1)31)n S n n n n ==-++,故由裂项相消法可求n S S S 11121+++12111211111(1)32231n S S S n n +++=-+-++-+ 212(1)313(1)n n n =-=++ 19.【2022全国甲理17】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg 991=. (1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和.【答案】(1)0,1,2;(2)1893. 【解析】(1)设{}n a 的公差为d ,74728S a ==,所以44a =,所以4113a a d -==,所以1(1)n a a n d n =+-=. 所以[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101lg lg1012b a ===.(2)当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =. 所以1000121000=T b b b =++⋅⋅⋅+[][][]121000lg lg lg =a a a ++⋅⋅⋅+091902900311893⨯+⨯+⨯+⨯=. 20.【江苏省盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式.【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+.【解析】列{}n a 的通项公式.试题解析:(1)由题意,得2212(1)(1)1n n px qx a x a x a x +++++++=,明显2,x x 的系数为0,所以121+0++0a p a a p q =⎧⎨=⎩,从而1a p =-,22a p q =-.(2)由1,1p q =-=-,考虑(3)nx n ≥的系数,则有120n n n a pa qa --++=,得1212120(3)n n n a a a a a n --=⎧⎪=⎨⎪--=≥⎩,即21n n n a a a ++=+,所以210p q +=-=,即2,1p q =-=,由(1)知12a =,23a =,所以1n a n =+. 21.【2022年山西高三四校联考】(本小题满分12分)在等差数列}{n a 中,11,552==a a ,数列}{n b 的前n 项和n n a n S +=2.(Ⅰ)求数列}{n a ,}{n b 的通项公式;(Ⅱ)求数列⎩⎨⎧⎭⎬⎫+11n n b b 的前n 项和n T .【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .【解析】(I )由11,552==a a 可求得数列}{n a 的首项及公差,从而求得n a ,对于数列}{n b ,可先令1=n ,由1111b a S =+=,先求得1b ,再由1,1>-=-n S S b n n n 来求得}{n b 的通项;(II )有第一问可求得⎩⎨⎧≥+==)2(,12)1(,4n n n b n ,可先求得⎩⎨⎧⎭⎬⎫+11n n b b 的通项公式,在利用拆项法求n T .试题解析:(1)设等差数列}{n a 的首项为1a ,公差为d ,则⎩⎨⎧=+==+=11451512d a a d a a∴⎩⎨⎧==231d a ∴122)1(3+=⨯-+=n n a n …………(3分)所以)32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T nn=1仍旧适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n …………(12分)22.【2022年江西师大附中高三二模】(本小题满分12分) 在公比为2的等比数列{}n a 中,2a 与5a 的等差中项是93. (Ⅰ)求1a 的值; (Ⅱ)若函数1sin 4y a x πφ⎛⎫=+⎪⎝⎭,φπ<,的一部分图像如图所示,()11,M a -,()13,N a -为图像 上的两点,设MPN β∠=,其中P 与坐标原点O 重合,πβ<<0,求()tan φβ-的值.【答案】(I )13a =;(II )32-+. 【解析】试题分析:(I )n a 为公比为2的等比数列,所以258a a =代入等差中项关系式31825=+a a 中,求出2a ,如图,连接MN ,在MPN ∆中,由余弦定理得222412283cos 2283PM PN MNPM PNβ+-+-===-又∵πβ<<0 ∴ 56βπ= -------------9分∴ 12πφβ-=-∴ ()tan tantan 231246πππφβ⎛⎫-=-=--=-+ ⎪⎝⎭-------------12分。
高考数学一轮复习第六章数列第二节等差数列及其前n项和课后作业理

高考数学一轮复习第六章数列第二节等差数列及其前n项和课后作业理一、选择题1.(2015·重庆高考)在等差数列中,若a2=4,a4=2,则a6=( )A.-1 B.0 C.D.62.(2016·泉州模拟)等差数列的前三项为x-1,x+1,2x+3,则这个数列的通项公式为()A.an=2n-5 B.an=2n-3C.an=2n-1 D.an=2n+13.已知等差数列{an}的前n项和为Sn,且满足-=1,则数列{an}的公差d是( )A.1 B.2 C.4 D.64.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A.13 B.12 C.11 D.105.(2016·包头模拟)在等差数列{an}中,其前n项和是Sn,若S15>0,S16<0,则在,,…,中最大的是( )A.B. C.D.S15a15二、填空题6.(2016·海淀模拟)已知等差数列{an}的公差d≠0,且a3+a9=a10-a8.若an=0,则n=________.7.(2016·温州模拟)在等差数列{an}中,a9=a12+6,则数列{an}的前11项和S11等于________.8.已知等差数列{an}中,an≠0,若n≥2且an-1+an+1-a =0,S2n-1=38,则n等于________.三、解答题9.已知数列{an}满足a1=1,an=(n∈N*,n≥2),数列{bn}满足关系式bn=(n∈N*).(1)求证:数列{bn}为等差数列;(2)求数列{an}的通项公式.10.已知数列{an}满足2an+1=an+an+2(n∈N*),它的前n 项和为Sn,且a3=10,S6=72,若bn=an-30,设数列{bn}的前n 项和为Tn,求Tn的最小值.1.若数列{an}的首项为3,{bn}为等差数列且bn=an+1-an(n∈N*),若b3=-2,b10=12,则a8=( )A.0 B.3 C.8 D.112.设Sn为等差数列{an}的前n项和,(n+1)Sn<nSn+1(n∈N*).若<-1,则( )A.Sn的最大值是S8B.Sn的最小值是S8C.Sn的最大值是S7D.Sn的最小值是S73.已知正项数列{an}满足a1=2,a2=1,且+=2,则a12=________.4.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且=,则使得为整数的正整数n的个数是________.5.已知等差数列的前三项依次为a,4,3a,前n项和为Sn,且Sk=110.(1)求a及k的值;。
高考数学一轮复习第6章数列第2讲等差数列及其前n项和课件文

n≤10 , 即 共 有
10
个数.所以
S10
=
10(1+19) 2
=
100或S10=10×1+1பைடு நூலகம்× 2 9×2=100,故选 C.
12/13/2021
第七页,共四十二页。
(必修 5 P46B 组 T2 改编)等差数列{an}的前 n 项和为 Sn,若 S10=20,S20=50,则 S30=________. 解析:根据等差数列性质 S10,S20-S10,S30-S20 成等差数列, 所以 2(S20-S10)=S10+S30-S20,所以 S30=3(S20-S10)=3(50 -20)=90. 答案:90
12/13/2021
第二十七页,共四十二页。
考点四 等差数列的单调性与最值
(1)下面是关于公差 d>0 的等差数列{an}的四个命题:p1: 数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann 是递增数列;p4:数列{an+3nd}是递增数列.其中真命题为
12/13/2021
第十六页,共四十二页。
当 n≥2 时,由22SSnn=-1=a2na+n2-a1n+,an-1, 得 2an=a2n+an-a2n-1-an-1. 即(an+an-1)(an-an-1-1)=0, 因为 an+an-1>0, 所以 an-an-1=1(n≥2), 所以数列{an}是等差数列.
ak+al=am+an.
(3)若{an}是等差数列,公差为 d,则{a2n}也是等差数列,公差 为__2_d_.
(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
12/13/2021
第三页,共四十二页。
5.等差数列的前 n 项和公式 设等差数列{an}的公差为 d,其前 n 项和 Sn=n(a12+an)或 Sn=____n_a_1+ __n__(__n_2-__1_)__d________.
2021版江苏高考数学一轮复习讲义:第6章 第2节 等差数列及其前n项和 Word版含答案

第二节 等差数列及其前n 项和[最新考纲] 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表示为a n +1-a n =d (n ∈N *),d 为常数.(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的通项公式及前n 项和公式与函数的关系(1)当d ≠0时,等差数列{a n }的通项公式a n =dn +(a 1-d )是关于d 的一次函数.(2)当d ≠0时,等差数列{a n }的前n 项和S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 是关于n 的二次函数.4.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.[常用结论]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (5)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(6)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.(7)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1.(8)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .一、思考辨析(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的. ( )(3)数列{a n }为等差数列的充要条件是对任意n ∈N +,都有2a n +1=a n +a n +2.( )(4)等差数列的前n 项和公式是常数项为0的二次函数. ( )[答案](1)× (2)√ (3)√ (4)× 二、教材改编1.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d 等于( ) A.14 B.12 C .2 D .-12 A [∵a 4+a 8=2a 6=10,∴a 6=5,又a 10=6,∴公差d =a 10-a 610-6=6-54=14.故选A.]2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .34B [设数列{a n }的公差为d , 法一:由S 5=5a 3=30得a 3=6, 又a 6=2,∴S 8=8(a 1+a 8)2=8(a 3+a 6)2=8(6+2)2=32.法二:由⎩⎨⎧a 1+5d =2,5a 1+5×42d =30,得⎩⎪⎨⎪⎧a 1=263,d =-43.∴S 8=8a 1+8×72d =8×263-28×43=32.]3.已知等差数列-8,-3,2,7,…,则该数列的第100项为 .487 [依题意得,该数列的首项为-8,公差为5,所以a 100=-8+99×5=487.]4.某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,则剧场总共的座位数为 .820 [设第n 排的座位数为a n (n ∈N *),数列{a n }为等差数列,其公差d =2,则a n =a 1+(n -1)d =a 1+2(n -1).由已知a 20=60,得60=a 1+2×(20-1),解得a 1=22,则剧场总共的座位数为20(a 1+a 20)2=20×(22+60)2=820.]考点1 等差数列基本量的运算 解决等差数列运算问题的思想方法(1)方程思想:等差数列的基本量为首项a 1和公差d ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等差数列中包含a 1,d ,n ,a n ,S n 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用a 1,d 表示,寻求两者间的联系,整体代换即可求解.(3)利用性质:运用等差数列性质可以化繁为简、优化解题过程.1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2nA[由题知,⎩⎨⎧S 4=4a 1+d2×4×3=0,a 5=a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,∴a n =2n -5,S n =n 2-4n ,故选A.]2.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5等于( )A .-12B .-10C .10D .12B [设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3⎣⎢⎡⎦⎥⎤3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B.]3.(2019·黄山三模)《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 1=( )A .23B .32C .35D .38C [由题意可知年龄构成的数列为等差数列,其公差为-3,则9a 1+9×82×(-3)=207,解得a 1=35,故选C.]确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d . 考点2 等差数列的判定与证明 等差数列的4个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数. (2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.(3)通项公式法:得出a n =pn +q 后,再根据定义判定数列{a n }为等差数列. (4)前n 项和公式法:得出S n =An 2+Bn 后,再使用定义法证明数列{a n }为等差数列.若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解](1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1, 因为S n ≠0,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)由(1)可得1S n=2n ,所以S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式. 故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.证明⎩⎨⎧⎭⎬⎫1S n 成等差数列的关键是1S n -1S n -1为与n 无关的常数,同时注意求数列{a n }的通项公式时务必检验其通项公式是否包含n =1的情形.[教师备选例题]数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.[解](1)证明:∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n=2n -1,所以S n =n (1+2n -1)2=n 2,1S n=1n 2>1n (n +1)=1n -1n +1.证明:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 故1S 1+1S 2+…+1S n >nn +1.1.已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[解](1)由已知,得a 2-2a 1=4,则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15. (2)由已知na n +1-(n +1)a n =2n (n +1), 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a n n=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .2.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由.[解](1)证明:由题设知a n a n +1=λS n -1,a n +1a n +2=λS n +1-1,两式相减得a n +1(a n +2-a n )=λa n +1,由于a n +1≠0, 所以a n +2-a n =λ.(2)由题设知a 1=1,a 1a 2=λS 1-1, 可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3, 解得λ=4. 故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2,因此存在λ=4,使得数列{a n}为等差数列.考点3等差数列的性质及应用等差数列中常用的解题性质(1)项的性质:在等差数列{a n}中,m+n=p+q(m,n,p,q∈N*),则a m+a n=a p+a q.(2)和的性质:在等差数列{a n}中,S n为其前n项和,则①S2n=n(a1+a2n)=…=n(a n+a n+1);②S2n-1=(2n-1)a n.(3)在S n=n(a1+a n)2中常用性质或等差中的项解题.(1)正项等差数列{a n}的前n项和为S n,已知a3+a9-a26+15=0,则S11=()A.35 B.36C.45 D.55(2)(2019·锦州模拟)已知等差数列{a n}的前n项和为S n.若S5=7,S10=21,则S15等于()A.35 B.42C.49 D.63(3)已知S n是等差数列{a n}的前n项和,若a1=-2 018,S2 0192 019-S2 0132 013=6,则S2 020=.(1)D(2)B(3)2 020[(1)因为{a n}为正项等差数列,故a3+a9=2a6,所以a 26-2a 6-15=0,解得a 6=5或者a 6=-3(舍),所以S 11=11a 6=11×5=55,故选D.(2)在等差数列{a n }中, S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0192 019-S 2 0132 013=6d =6,∴d =1.故S 2 0202 020=S 11+2 019d =-2 018+2 019=1, ∴S 2 020=1×2 020=2 020.]以数列项或和的下角标为突破口,结合等差数列的性质灵活解答.[教师备选例题](1)设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37(2)(2019·商洛模拟)等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值是( )A .20B .22C .24D .8(3)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27(1)C (2)C (3)B [(1)设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,所以{a n +b n }为等差数列.又a 1+b1=a2+b2=100,所以{a n+b n}为常数列,所以a37+b37=100.(2)因为a1+3a8+a15=5a8=120,所以a8=24,所以2a9-a10=a10+a8-a10=a8=24.(3)由{a n}是等差数列,得S3,S6-S3,S9-S6为等差数列.即2(S6-S3)=S3+(S9-S6),得到S9-S6=2S6-3S3=45.]1.已知等差数列{a n}的前n项和为S n,若m>1,且a m-1+a m+1-a2m-1=0,S2m-1=39,则m等于()A.39 B.20C.19 D.10B[数列{a n}为等差数列,则a m-1+a m+1=2a m,则a m-1+a m+1-a2m-1=0可化为2a m-a2m-1=0,解得a m=1.又S2m-1=(2m-1)a m=39,则m=20.故选B.]2.设等差数列{a n},{b n}的前n项和分别为S n,T n,若对任意的n∈N*,都有S nT n=2n-34n-3,则a2b3+b13+a14b5+b11的值为()A.2945 B.1329C.919 D.1930C[由题意可知b3+b13=b5+b11=b1+b15=2b8,∴a2b3+b13+a14b5+b11=a2+a142b8=a8b8=S15T15=2×15-34×15-3=2757=919.故选C.] 考点4等差数列前n项和的最值问题求等差数列前n项和S n最值的2种方法(1)函数法:利用等差数列前n项和的函数表达式S n=an2+bn,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ; ②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧ a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [一题多解]等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是( )A .5B .6C .7D .8C [法一:(邻项变号法)由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0.根据首项等于13可推知这个数列为递减数列,从而得到a 7>0,a 8<0,故n =7时S n 最大.法二:(函数法)由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n .根据二次函数的性质,知当n =7时S n 最大.法三:(函数法)根据a 1=13,S 3=S 11,知这个数列的公差不等于零,且这个数列的和是先递增后递减.根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,可得只有当n =3+112=7时,S n 取得最大值.][母题探究] 将本例中“a 1=13,S 3=S 11”改为“a 1=20,S 10=S 15”,则n 为何值?[解] 因为a 1=20,S 10=S 15,所以10×20+10×92d =15×20+15×142d ,所以d =-53.法一:由a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653,得a 13=0. 即当n ≤12时,a n >0,当n ≥14时,a n <0.所以当n =12或n =13时,S n 取得最大值.法二:S n =20n +n (n -1)2·⎝ ⎛⎭⎪⎫-53 =-56n 2+1256n=-56⎝ ⎛⎭⎪⎫n -2522+3 12524. 因为n ∈N *,所以当n =12或n =13时,S n 有最大值.法三:由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.所以5a 13=0,即a 13=0.所以当n =12或n =13时,S n 有最大值.本题用了三种不同的方法,其中方法一是从项的角度分析函数最值的变化;方法二、三是借助二次函数的图象及性质给与解得,三种方法各有优点,灵活运用是解题的关键.1.设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为( )A .5B .6C .5或6D .11C [由题意得S 6=6a 1+15d =5a 1+10d ,化简得a 1=-5d ,所以a 6=0,故当n =5或6时,S n 最大.]2.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.[解](1)∵{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列. ∴(a 3+8)2=(a 2+10)(a 4+6),∴(-2+2d )2=d (-4+3d ),解得d =2, ∴a n =a 1+(n -1)d =-10+2n -2=2n -12.(2)法一:(函数法)由a 1=-10,d =2,得S n =-10n +n (n -1)2×2=n 2-11n =⎝ ⎛⎭⎪⎫n -1122-1214, ∴n =5或n =6时,S n 取最小值-30. 法二:(邻项变号法)由(1)知,a n =2n -12. 所以,当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 6=-30.。
2021年高中数学一轮复习第六章数列6.2等差数列及其前n项和学案
§6.2 等差数列及其前n 项和考纲展示►1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.考点1 等差数列的基本运算1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第________项起,每一项与它的前一项的差等于________,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母________表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *).(2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2.答案:(1)2 同一个常数 d 2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是________. (2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n n -12d 或S n =n a 1+a n2.答案:(1)a n =a 1+(n -1)d(1)[教材习题改编]已知等差数列-5,-2,1,…,则该数列的第20项为________. 答案:52(2)[教材习题改编]在100以内的正整数中有________个能被6整除的数. 答案:16 知三求二.等差数列中,有五个基本量,a 1,d ,n ,a n ,S n ,这五个基本量通过________,____________联系起来,如果已知其中三个量,利用这些公式,便可以求出其余两个的值,这其间主要是通过方程思想,列方程组求解.答案:通项公式 前n 项和公式[典题1] (1)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6B .-4C .-2D .2[答案] A[解析] 解法一(常规解法):设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.解法二(结合性质求解):根据等差数列的定义和性质,可得S 8=4(a 3+a 6),又S 8=4a 3, 所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6.(2)[2017·河北武邑中学高三期中]等差数列{a n }中,S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10=( )A .0B .-9C .10D .-10[答案] A[解析] 因为⎩⎨⎧⎭⎬⎫S n n 是等差数列,且公差为d =1,故S 1010=a 11+1×(10-1)=-9+9=0,故选A.(3)[2017·河北唐山模拟]设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.[答案] 30[解析] 解法一:设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 6=6a 1+15d =30.解法二:∵等差数列{a n },故可设S n =An 2+Bn ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1, 即S n =n 2-n ,则S 6=36-6=30.[点石成金] 等差数列运算的解题思路及答题步骤 (1)解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中的三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.(2)答题步骤步骤一:结合所求结论,寻找已知与未知的关系; 步骤二:根据已知条件列方程求出未知量; 步骤三:利用前n 项和公式求得结果.考点2 等差数列的判断与证明等差数列的概念的两个易误点:同一个常数;常数.(1)在数列{a n }中,若a 1=1,a n +1=a n +2,则该数列的通项公式为a n =__________. 答案:2n -1解析:由a n +1=a n +2,知{a n }为等差数列,其公差为2,故a n =1+(n -1)×2=2n -1. (2)若数列{a n }满足a 1=1,a n +1-a n =n ,则数列{a n }的通项公式为a n =__________. 答案:1+n n -12解析:由a n +1-a n =n ,得a 2-a 1=1,a 3-a 2=2,…,a n -a n -1=n -1,各式相加,得a n-a 1=1+2+…+n -1=n -11+n -12=nn -12,故a n =1+n n -12.[典题2] 若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.(1)[证明] 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2.又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)[解] 由(1),可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12n -1=n -1-n2n n -1=-12n n -1.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -1,n ≥2.[题点发散1] 若将母题条件变为:数列{a n }的前n 项和为S n (n ∈N *),2S n -na n =n .求证:{a n}为等差数列.证明:∵2S n-na n=n,①∴当n≥2时,2S n-1-(n-1)a n-1=n-1,②①-②,得(2-n)a n+(n-1)a n-1=1,则(1-n)a n+1+na n=1,∴2a n=a n-1+a n+1(n≥2),∴数列{a n}为等差数列.[题点发散2] 若母题变为:已知数列{a n}中,a1=2,a n=2-1a n-1(n≥2,n∈N*),设b n=1a n-1(n∈N*).求证:数列{b n}是等差数列.证明:∵a n=2-1a n-1,∴a n+1=2-1a n.∴b n+1-b n=1a n+1-1-1a n-1=12-1a n-1-1a n-1=a n-1a n-1=1,∴{b n}是首项为b1=12-1=1,公差为1的等差数列.[点石成金] 等差数列的判定与证明方法n n34 117,a2+a5=22.(1)求数列{a n}的通项公式;(2)若数列{b n }满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c的值;若不存在,请说明理由.解:(1)设等差数列{a n }的公差为d ,且d >0,由等差数列的性质,得a 2+a 5=a 3+a 4=22, 所以a 3,a 4是关于x 的方程x 2-22x +117=0的解, 所以a 3=9,a 4=13,易知a 1=1,d =4, 故通项为a n =1+(n -1)×4=4n -3. (2)由(1)知,S n =n 1+4n -32=2n 2-n ,所以b n =S nn +c =2n 2-n n +c.解法一:所以b 1=11+c ,b 2=62+c,b 3=153+c(c ≠0). 由2b 2=b 1+b 3,解得c =-12.当c =-12时,b n =2n 2-nn -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.解法二:由b n =S nn +c=n 1+4n -32n +c=2n ⎝ ⎛⎭⎪⎫n -12n +c,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }为等差数列.考点3 等差数列的性质及应用等差数列的常用性质(1)通项公式的推广:a n =a m +________(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则____________. (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为________. (4)若{a n },{b n }是等差数列,公差为d ,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为________的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (7)S 2n -1=(2n -1)a n .(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项). 答案:(1)(n -m )d (2)a k +a l =a m +a n (3)2d (5)md等差数列的基本公式:通项公式;前n 项和公式.(1)等差数列{a n }中,a 2+a 3=1,a 5-2a 1=27,则a 5=________. 答案:13解析:设等差数列的公差为d ,则有2a 1+3d =1,4d -a 1=27,解得d =5,a 1=-7,所以a 5=a 1+4d =13.(2)等差数列{a n }的首项为1,公差为4,前n 项和为120,则n =________. 答案:8解析:a n =1+(n -1)×4=4n -3,所以S n =n 1+4n -32=120,解得n =8或n =-152(舍去).等差数列运算的两个方法:应用性质;巧妙设元.(1)在等差数列{a n }中,已知a 4+a 10=12,则该数列前13项和S 13=__________. 答案:78解析:由等差数列的性质与前n 项和公式,得S 13=13a 1+a 132=13a 4+a 102=78.(2)已知等差数列{a n }前三项的和为-3,前三项的积为8,则{a n }的通项公式是__________.答案:a n =-3n +5或a n =3n -7解析:设等差数列{a n }的前三项为a 2-d ,a 2,a 2+d ,由题意得⎩⎪⎨⎪⎧3a 2=-3,a 2-d a 2a 2+d =8,解得⎩⎪⎨⎪⎧a 2=-1,d =-3 或⎩⎪⎨⎪⎧a 2=-1,d =3,所以a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.[典题3] [2017·河南洛阳统考]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27[答案] B[解析] 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.[点石成金] 在等差数列{a n }中,数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.等差数列的性质是解题的重要工具.1.[2017·宁夏银川模拟]已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32.若a m =8,则m =( )A .8B .12C .6D .4答案:A解析:由a 3+a 6+a 10+a 13=32,得 (a 3+a 13)+(a 6+a 10)=32,即4a 8=32, ∴a 8=8,∴m =8.故选A.2.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案:60解析:∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60.考点4 等差数列前n 项和的最值问题[典题4] 在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16 D .S 17 [答案] A[解析]∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n n -12×(-2)=-n 2+30n=-(n -15)2+225.∴当n =15时,S n 取得最大值.[题点发散1] 若将条件“a 1=29,S 10=S 20”改为“a 1>0,S 5=S 12”,如何求解? 解:解法一:设等差数列{a n }的公差为d , 由S 5=S 12,得5a 1+10d =12a 1+66d , 解得d =-18a 1<0.所以S n =na 1+n n -12d=na 1+n n -12·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1.因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 解法二:设等差数列{a n }的公差为d , 同解法一得d =-18a 1<0.设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n=a 1+n -1·⎝ ⎛⎭⎪⎫-18a 1≥0,a n +1=a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 解法三:设等差数列{a n }的公差为d , 同解法一得d =-18a 1<0.由于S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[题点发散2] 若将条件“a 1=29,S 10=S 20”改为“a 3=12,S 12>0,S 13<0”,如何求解? 解:因为a 3=a 1+2d =12, 所以a 1=12-2d ,所以⎩⎪⎨⎪⎧S 12=12a 1+66d >0,S 13=13a 1+78d <0,即⎩⎪⎨⎪⎧144+42d >0,156+52d <0,解得-247<d <-3.故公差d 的取值范围为⎝ ⎛⎭⎪⎫-247,-3. 解法一:由d <0可知,{a n }为递减数列,因此,在1≤n ≤12中,必存在一个自然数n ,使得a n ≥0,a n +1<0, 此时对应的S n 就是S 1,S 2,…,S 12中的最大值.由于⎩⎪⎨⎪⎧S 12=6a 6+a 7>0,S 13=13a 7<0,于是a 7<0,从而a 6>0,因此S 6最大.解法二:由d <0可知{a n }是递减数列,令⎩⎪⎨⎪⎧a n =a 3+n -3d ≥0,a n +1=a 3+n -2d <0,可得⎩⎪⎨⎪⎧n ≤3-12d ,n >2-12d.由-247<d <-3,可得⎩⎨⎧n ≤3-12d <3+123=7,n >2-12d >2+12247=5.5,所以5.5<n <7,故n =6,即S 6最大.[题点发散3] 若将“a 1=29,S 10=S 20”改为“a 5>0,a 4+a 7<0”,如何求解?解:∵⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.[点石成金] 求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 的值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.1.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n =( )A .5B .6C .7D .8答案:B解析:依题意,得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0.又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,故选B.2.[2017·安徽望江中学模拟]设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n =( )A .5B .6C .5或6D .11 答案:C解析:由题意,得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,故选C.[方法技巧] 1.在遇到三个数成等差数列问题时,可设三个数为:(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.2.数列{a n }为等差数列.(1)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1. (2)若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1.3.若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. 4.若a m =n ,a n =m (m ≠0),则a m +n =0. [易错防范] 1.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.若对称轴取不到,需考虑最接近对称轴的自变量n (n 为正整数);若对称轴对应在两个正整数的中间,此时应有两个符合题意的n 值.真题演练集训1.[2016·新课标全国卷Ⅰ]已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97 答案:C解析:由等差数列性质知,S 9=9a 1+a 92=9×2a 52=9a 5=27, 解得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.2.[2015·北京卷]设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案:C解析:A ,B 选项易举反例.C 中若0<a 1<a 2,∴a 3>a 2>a 1>0,∵a 1+a 3>2a 1a 3,又2a 2=a 1+a 3,∴2a 2>2a 1a 3,即a 2>a 1a 3成立.D 中,若a 1<0,则(a 2-a 1)(a 2-a 3)=d ·(-d )=-d 2≤0,故D 选项错误.故选C.3.[2016·江苏卷]已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.答案:20解析:设等差数列{a n }公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+a 1+d 2=-3,5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧ a 1=-4,d =3,则a 9=a 1+8d =-4+8×3=20.4.[2016·新课标全国卷Ⅱ]S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n =⎩⎪⎨⎪⎧ 0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.课外拓展阅读巧用三点共线解等差数列问题1.等差数列的求解由等差数列与一次函数的关系可知:对于公差为d (d ≠0)的等差数列{a n },其通项公式为a n =dn +(a 1-d ),则点(n ,a n )(n ∈N *)共线,又d =a n -a m n -m(n ≠m ),所以d 为过(m ,a m ),(n ,a n )两点的直线的斜率.由此可用三点共线解决等差数列问题.[典例1] 若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q =________.[思路分析][解析] 解法一:设数列{a n }的公差为d ,因为a p =a q +(p -q )d ,所以q =p +(p -q )d ,即q -p =(p -q )d .因为p ≠q ,所以d =-1.所以a p +q =a p +(p +q -p )d =q +q (-1)=0.解法二:因为数列{a n }为等差数列,所以点(n ,a n )(n ∈N *)在一条直线上.不妨设p <q ,记点A (p ,q ),B (q ,p ),则直线AB的斜率k =p -q q -p=-1,如图所示, 由图知OC =p +q ,即点C 的坐标为(p +q,0),故a p +q =0.[答案] 0[典例2] 已知{a n }为等差数列,且a 100=304,a 300=904,求a 1 000.[思路分析][解] 因为{a n }为等差数列,则(100,304),(300,904),(1 000,a 1 000)三点共线,所以904-304300-100=a 1 000-9041 000-300, 解得a 1 000=3 004.2.等差数列前n 项和的求解在等差数列前n 项和公式的变形S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 中,两边同除以n 得S n n =d 2n +⎝ ⎛⎭⎪⎫a 1-d 2.该式说明对任意n ∈N *,所有的点⎝ ⎛⎭⎪⎫n ,S n n 都在同一条直线上,从而对m ,n ∈N *(m ≠n )有S n n -S m m n -m =d 2(常数),即数列⎩⎨⎧⎭⎬⎫S n n 是一个等差数列. [典例3] 已知在等差数列{a n }中,S n =33,S 2n =44,求这个数列的前3n 项的和S 3n .[解] 由题意知,⎝⎛⎭⎪⎫n ,33n ,⎝ ⎛⎭⎪⎫2n ,442n ,⎝ ⎛⎭⎪⎫3n ,S 3n 3n 三点在同一条直线上, 从而有442n -33n 2n -n =S 3n 3n -442n 3n -2n,解得S 3n =33. 所以该数列的前3n 项的和为33.。
2021届高考数学一轮复习第六章数列第2节等差数列及其前n项和教学案含解析新人教A版
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能利用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[常用结论与微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).5.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(老教材必修5P46AT2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(老教材必修5P68T8改编)在等差数列{a n }中a 3+a 4+a 5=6,则S 7=( ) A.8B.12C.14D.18解析 a 3+a 4+a 5=3a 4=6,∴a 4=2,S 7=12×7×(a 1+a 7)=7a 4=14.答案 C4.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2020·上饶模拟)已知等差数列{a n },a 10=10,其前10项和S 10=70,则公差d =( ) A.-29B.29C.-23D.23解析 因为S 10=12×10×(a 1+a 10)=12×10×(a 1+10)=70,所以a 1=4,因为a 10=a 1+9d =10,所以d =23.答案 D6.(2019·全国Ⅲ卷)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________. 解析 由a 1≠0,a 2=3a 1,可得d =2a 1, 所以S 10=10a 1+10×92d =100a 1,S 5=5a 1+5×42d =25a 1,所以S 10S 5=4. 答案 4考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2019·江苏卷)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.(2)(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n -5 B.a n =3n -10 C.S n =2n 2-8nD.S n =12n 2-2n解析 (1)法一 由S 9=27⇒9(a 1+a 9)2=27⇒a 1+a 9=6⇒2a 5=6⇒a 5=3,即a 1+4d =3. 又a 2a 5+a 8=0⇒2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1)2d =16.法二 同法一得a 5=3.又a 2a 5+a 8=0⇒3a 2+a 8=0⇒2a 2+2a 5=0⇒a 2=-3. ∴d =a 5-a 23=2,a 1=a 2-d =-5.故S 8=8a 1+8×(8-1)2d =16.(2)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .答案 (1)16 (2)A规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若 a 3=4,求{a n }的通项公式; (2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d .由S 9=-a 5得9a 1+9×82d =-(a 1+4d ),即a 1+4d =0.由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d , 故a n =(n -5)d ,S n =n (n -9)d2.由a 1>0知d <0,故S n ≥a n 等价于n (n -9)2≤n -5,即n 2-11n +10≤0,解得1≤n ≤10, 所以n 的取值范围是{n |1≤n ≤10,n ∈N }. 考点二 等差数列的判定与证明典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故数列{a n}的通项公式为a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.【迁移2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a nn=1, 又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴数列{a n }的通项公式为a n =n 2-25n .规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用【例3】 (1)(2019·安阳联考)在等差数列{a n }中,若a 2+a 8=8,则(a 3+a 7)2-a 5=( )A.60B.56C.12D.4(2)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 (1)∵在等差数列{a n }中,a 2+a 8=8, ∴a 2+a 8=a 3+a 7=2a 5=8,解得a 5=4, 所以(a 3+a 7)2-a 5=82-4=60.(2)由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 (1)A (2)B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)(2020·广东六校联考)等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值是( ) A.14B.15C.16D.17(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)依题意,由a 4+a 6+a 8+a 10+a 12=120,得5a 8=120,即a 8=24,所以a 9-13a 11=13(3a 9-a 11)=13(a 9+a 7+a 11-a 11)=13(a 9+a 7)=23a 8=23×24=16.(2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.答案 (1)C (2)A考点四 等差数列的最值问题 多维探究角度1 等差数列前n 项和的最值【例4-1】 (2019·北京卷)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解 (1)设{a n }的公差为d . 因为a 1=-10,所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n =6时,a n =0,当n <6时,a n <0; 所以S n 的最小值为S 5=S 6=-30.规律方法 求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值. 角度2 等差数列项的最值【例4-2】 (2020·淮北模拟)S n 是等差数列{a n }的前n 项和,S 2 020<S 2 018,S 2 019<S 2 020,则S n <0时n 的最大值是( ) A.2 019B.2 020C.4 037D.4 038解析 因为S 2 020<S 2 018,S 2 019<S 2 020,所以a 2 020+a 2 019<0,a 2 020>0.所以S 4 038=4 038(a 1+a 4 038)2=2 019(a 2 020+a 2 019)<0,S 4 039=4 039(a 1+a 4 039)2=4 039a 2 020>0,可知S n <0时n 的最大值是4 038. 答案 D规律方法 本题借助等差数列的性质求出S n <0中n 的取值范围,从而求出n 的最大值,这种题型要与S n 的最值区别开来.【训练4】 (1)(角度1)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( ) A.6B.7C.8D.9(2)(角度2)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.解析 (1)由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d2>0,所以前8项和为前n 项和的最小值.故选C.(2)设等差数列{a n }的公差为d ,因为a 3+a 7=36,所以a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11,当⎩⎪⎨⎪⎧a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,所以a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,所以a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12. 答案 (1)C (2)-12A 级 基础巩固一、选择题1.(2019·衡阳一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D2.(2020·河南名校联盟联合调研)设等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 8+a 13=2π21,则tan S 14=( ) A.-33B.33C.- 3D. 3解析 ∵{a n }是等差数列,且a 2+a 7+a 8+a 13=2π21,∴a 7+a 8=π21,∴S 14=14(a 1+a 14)2=7(a 7+a 8)=π3,∴tan S 14=tan π3= 3.答案 D3.(2020·武汉调研)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且对任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1),则S 10的值为( ) A.90B.91C.96D.100解析 ∵对任意n >1,n ∈N *,满足S n +1+S n -1=2(S n +1), ∴S n +1-S n =S n -S n -1+2, ∴a n +1-a n =2.∴数列{a n }在n ≥2时是等差数列,公差为2. 又a 1=1,a 2=2,∴S 10=1+9×2+9×82×2=91.故选B. 答案 B4.(2019·合肥质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数, 由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996, ∴8a 1+8×72×17=996,解之得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤. 答案 B。
最新-2021届高三数学理一轮总复习江苏专用课件:第六章第二节 等差数列及其前n项和 精品
=a1+(n-1)-631a1≥0,可得 n≤634=2113,所以数列
{an}的前 21 项都是正数,以后各项都是负数,故 Sn 取
最大值时,n 的值为 21.
答案:21
2.已知数列{an}的前 n 项和 Sn=n2-6n,则{|an|}的 前 6 项和 T6=________. 解析:由 Sn=n2-6n 得{an}是等差数列,且首项为-5, 公差为 2.所以 an=-5+(n-1)×2=2n-7,当 n≤3 时, an<0;当 n>3 时,an>0;所以 T6=-a1+(-a2)+(-a3) +a4+a5+a6=5+3+1+1+3+5=18. 答案:18
2.求等差数列前 n 项和 Sn 最值的 2 种方法 (1)函数法:利用等差数列前 n 项和的函数表达式 Sn= an2+bn,通过配方或借助图象求二次函数最值的方法求解. (2)邻项变号法:
nan=1,∴2an=an-1+an+1(n≥2),
∴数列{an}为等差数列.
[变式 3] 若母题变为:已知数列{an}中,a1=2,an=2-an1-1 (n≥2,n∈N*),设 bn=an-1 1(n∈N*).求证:数列{bn}是 等差数列.
证明:∵an=2-an1-1,∴an+1=2-a1n. ∴bn+1-bn=an+11-1-an-1 1 =2-a11n-1-an-1 1=aann--11=1, ∴{bn}是首项为 b1=2-1 1=1, 公差为 1 的等差数列.
考点一 等差数列的基本运算基础送分型考点——自主练透 [题组练透]
1.(2015·全国卷Ⅰ改编)已知{an}是公差为 1 的等差数列, Sn 为{an}的前 n 项和,若 S8=4S4,则 a10=________.
近年高考数学一轮复习第6章数列第2讲等差数列及其前n项和演练文(2021年整理)
2019高考数学一轮复习第6章数列第2讲等差数列及其前n项和分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第6章数列第2讲等差数列及其前n项和分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第6章数列第2讲等差数列及其前n项和分层演练文的全部内容。
第2讲等差数列及其前n项和一、选择题1.(2018·洛阳模拟)设等差数列{a n}的前n项和为S n,且a2+a7+a12=24,则S13=( )A.52 B.78C.104 D.208解析:选C.依题意得3a7=24,a7=8,S13=错误!=13a7=104,选C.2.若等差数列{a n}的前5项和S5=25,且a2=3,则a7=()A.12 B.13C.14 D.15解析:选B.设{a n}的公差为d,由S5=错误!⇒25=错误!⇒a4=7,所以7=3+2d⇒d=2,所以a7=a4+3d=7+3×2=13。
3.在单调递增的等差数列{a n}中,若a3=1,a2a4=错误!,则a1=( )A.-1 B.0C.错误!D.错误!解析:选B.由题知,a2+a4=2a3=2,又因为a2a4=错误!,数列{a n}单调递增,所以a2=12,a4=错误!。
所以公差d=错误!=错误!。
所以a1=a2-d=0。
4.设等差数列{a n}的前n项和为S n,则“a6+a7>0”是“S9≥S3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件解析:选A.法一:将它们等价转化为a1和d的关系式.a6+a7〉0⇒a1+5d +a1+6d>0⇒2a1+11d>0;S9≥S3⇒9a1+错误!≥3a1+错误!⇒2a1+11d≥0.法二:a6+a7〉0⇒a1+a12〉0,S9≥S3⇒a4+a5+…+a9≥0⇒3(a1+a12)≥0.5.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n 的最大值为( )A.S15B.S16C.S15或S16D.S17解析:选A.设{a n}的公差为d,因为a1=29,S10=S20,所以10a1+错误!d=20a1+错误!d,解得d=-2,所以S n=29n+错误!×(-2)=-n2+30n=-(n-15)2+225.所以当n=15时,S n取得最大值.6.(2018·张掖模拟)等差数列{a n}中,错误!是一个与n无关的常数,则该常数的可能值的集合为( )A.{1} B.错误!C.错误! D.错误!解析:选B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列及其前n 项和课时作业1.在等差数列{a n }中,已知a 2=2,前7项和S 7=56,则公差d =( ) A .2 B .3 C .-2 D .-3答案 B解析 由题意可得⎩⎪⎨⎪⎧a 1+d =2,7a 1+7×62d =56,即⎩⎪⎨⎪⎧a 1+d =2,a 1+3d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =3,选B.2.(2019·衡阳模拟)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A .6 B .12 C .24 D .48答案 D解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,∴由等差数列的性质可得a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.故选D. 3.(2020·荆州模拟)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A .15 B .30 C .31 D .64 答案 A解析 设等差数列{a n }的公差为d ,∵a 3+a 4+a 5=3,∴3a 4=3,即a 1+3d =1,又由a 8=8得a 1+7d =8,联立解得a 1=-174,d =74,则a 12=-174+74×11=15.故选A.4.(2019·山东济南调研)已知数列{a n }为等差数列,且满足a 2+a 8=8,a 6=5,则其前10项和S 10的值为( )A .50B .45C .55D .40 答案 B解析 因为数列{a n }为等差数列,且a 2+a 8=8,所以根据等差数列的性质得2a 5=8,所以a 5=4,又因为a 6=5,所以S 10=10(a 1+a 10)2=10(a 5+a 6)2=45.5.(2019·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( )A .9B .15C .18D .36答案 C解析 由等差数列的通项公式及性质,可得S 9=9(a 1+a 9)2=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C. 6.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=( ) A .27 B .36 C .45 D .54答案 D解析 ∵在等差数列{a n }中,2a 8=a 5+a 11=6+a 11, ∴a 5=6,故S 9=9(a 1+a 9)2=9a 5=54.故选D.7.(2019·东北三省三校联考)已知数列{a n }是等差数列,满足a 1+2a 2=S 5,下列结论中错误的是( )A .S 9=0B .S 5最小C .S 3=S 6D .a 5=0 答案 B解析 由题意知a 1+2(a 1+d )=5a 1+5×42d ,则a 5=0,∴a 4+a 6=0,∴S 3=S 6,且S 9=9a 5=0,故选B.8.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,且S n T n =5n +2n +3,则a 2+a 20b 7+b 15=( )A.10724 B.724C.14912D.1493答案 A 解析 由题知,a 2+a 20b 7+b 15=S 21T 21=10724. 9.(2019·洛阳统考)设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.故选C.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12=( )A.310B.13C.18D.19答案 A解析 令S 3=1,则S 6=3,∴S 9=1+2+3=6.S 12=S 9+4=10,∴S 6S 12=310.故选A. 11.已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 6D .S 6,S 7均为S n 的最大值答案 C解析 因为S 5<S 6,所以S 5<S 5+a 6,所以a 6>0,因为S 6=S 7,所以S 6=S 6+a 7,所以a 7=0,因为S 7>S 8,所以S 7>S 7+a 8,所以a 8<0,所以d <0且S 6,S 7均为S n 的最大值,所以S 9<S 6.故选C.12.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,m ≥2,m ∈N *,则m =( )A .3B .4C .5D .6答案 C解析 ∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.又S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1. 又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.13.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________. 答案19解析 由2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),得数列{a 2n }是等差数列,公差d =a 22-a 21=3,首项a 21=1,所以a 2n =1+3(n -1)=3n -2,∴a n =3n -2,∴a 7=19.14.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则a 1+a 2+…+a 51=________.答案 676解析 ∵a n +2-a n =⎩⎪⎨⎪⎧0,n 为奇数,2,n 为偶数,∴数列{a n }的奇数项为常数1,偶数项构成以2为首项,2为公差的等差数列,∴a 1+a 2+…+a 51 =(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26+⎝ ⎛⎭⎪⎫25×2+25×242×2=676. 15.(2019·广雅中学模拟)已知等差数列{a n }中,a 2=2,a 4=8,若abn =3n -1,则b 2019=________.答案 2020解析 由a 2=2,a 4=8,得公差d =8-22=3,所以a n =2+(n -2)×3=3n -4,所以a n +1=3n -1.又由数列{a n }的公差大于0,知数列{a n }为递增数列,所以结合abn =3n -1,可得b n =n +1,故b 2019=2020.16.(2020·武汉模拟)在数列{a n }中,a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{a n }的通项公式为a n =________,数列{b n }的前n 项和S n 的最小值为________.答案3n -13n -4 -13解析 由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,即b n -b n -1=1(n ≥2,n ∈N *).又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,∴b n =n -43,即1a n -1=n -43,∴a n =3n -13n -4.又b 1=-13<0,b 2=23>0,∴S n 的最小值为S 1=b 1=-13.17.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解 (1)设{a n }的公差为d ,由题意,得3a 1+3d =-15. 由a 1=-7,得d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1),得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.18.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解 (1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.19.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意的n ∈N *恒成立,求λ的取值范围. 解 (1)证明:当n =1时,S 1=2a 1-22,得a 1=4.S n =2a n -2n +1,当n ≥2时,S n -1=2a n -1-2n,两式相减得a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=1,又a 121=2,所以数列⎩⎨⎧⎭⎬⎫a n 2n 是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =n ·2n +2n.因为a n >0,所以不等式2n 2-n -3<(5-λ)a n 等价于5-λ>2n -32n .即λ<5-⎝ ⎛⎭⎪⎫2n -32n .记b n =2n -32n ,b 1=-12,b 2=14,当n ≥2时,b n +1b n =2n -12n +12n -32n =2n -14n -6,则b 3b 2=32,即b 3>b 2,又显然当n ≥3时,b n +1b n <1,所以(b n )max =b 3=38,所以λ<378. 20.(2019·唐山模拟)已知{a n }是公差为正数的等差数列,且a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若a n =b 1+b 23+b 35+…+b n2n -1,求数列{b n }的前n 项和S n .解 (1)∵{a n }是公差d >0的等差数列, ∴由a 3a 6=55,a 2+a 7=16=a 3+a 6, 解得a 3=5,a 6=11,∴⎩⎪⎨⎪⎧a 1+2d =5,a 1+5d =11,解得⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1.(2)∵a n =b 1+b 23+b 35+…+b n2n -1,∴a n -1=b 1+b 23+b 35+…+b n -12n -3(n ≥2,n ∈N *), 两式相减,得b n2n -1=2(n ≥2,n ∈N *), 则b n =4n -2(n ≥2,n ∈N *), 当n =1时,b 1=1,∴b n =⎩⎪⎨⎪⎧1,n =1,4n -2,n ≥2,∴当n ≥2时,S n =1+(n -1)(6+4n -2)2=2n 2-1.又n =1时,S 1=1,适合上式, ∴S n =2n 2-1.。