关于分光光度法测定水浑浊度的质量控制

关于分光光度法测定水浑浊度的质量控制
关于分光光度法测定水浑浊度的质量控制

紫外分光光度法测定蛋白质含量

上海百贺仪器科技有限公司提供www.southhk.cn 紫外分光光度法测定蛋白质含量 摘要: 考马斯亮兰G250与蛋白质结合,在0-1000ug/ml范围内,于波长595nm 处的吸光度与蛋白质含量成正比,可用于蛋白质含量的测定。考马斯亮兰G250 与蛋白质结合迅速,结合产物在室温下10分钟内较为稳定,是一种较好的蛋白 质定量测定方法。 1.实验部分 1.1仪器与试剂: Labtech UV POWER紫外分光光度计;玻璃比色皿一套;考马斯亮蓝G250; 牛血清蛋白;超纯水。 1.2试液的制备: 牛血清蛋白标准溶液(1000ug/ml)的制备称取100mg牛血清蛋白置100ml 容量瓶中,加入超纯水溶解并定容。 考马斯亮兰G250试剂称取100mg考马斯亮兰G250,溶于50ml95%的乙 醇后,加入120ml85%的磷酸,用水稀释至1升。 2.结果与讨论 2.1校正曲线的绘制 准确吸取1000ug/ml牛血清蛋白标准溶液0.0、0.02、0.04、0.06、0.08、0.1ml 分别加入到6只10ml试管中,然后用超纯水补充到0.1ml,各试管分别加入5ml 考马斯亮兰G250试剂,混合均匀后,即可依次在595nm处测定吸光度。以浓度 为横坐标,吸光度为纵坐标绘制校正曲线如下图,校正曲线方程为 A=0.613556C+0.001008,R=0.9994。

上海百贺仪器科技有限公司www.southhk.cn 2.2精密度 配制0.6mg/ml牛血清蛋白的考马斯亮兰溶液连续进样6次,得到吸光度的 相对标准偏差。 表1精密度测定结果 次数123456RSD% A0.26260.26220.26200.26280.26290.26260.13 2.3稳定性 取1mg/ml牛血清蛋白标准溶液每十分钟测定一次,50分钟内的吸光度变化 如下表2。 表2稳定度测定结果 时间(min)A1A2A3A平均 00.55110.55230.55160.5517 100.52040.51840.51680.5185 200.49100.49010.49030.4905 300.47650.47160.47210.4734 400.45240.44750.44400.4480 500.39820.39350.40310.3983 3.结论 该方法测定快速、简便,干扰物少,是目前灵敏度较高的蛋白质含量测定 的紫外分光光度法。

紫外分光光度法计算

第20章 吸光光度法 思 考 题 1. 什么叫单色光复色光哪一种光适用于朗伯-比耳定律 答:仅具有单一波长的光叫单色光。由不同波长的光所组成光称为复合光。朗伯--比耳定律应适用于单色光。 2. 什么叫互补色与物质的颜色有何关系 答:如果两种适当的单色光按一定的强度比例混合后形成白光,这两种光称为互补色光。当混合光照射物质分子时,分子选择性地吸收一定波长的光,而其它波长的光则透过,物质呈现透过光的颜色,透过光与吸收光就是互补色光。 3. 何谓透光率和吸光度 两者有何关系 答:透光率是指透射光强和入射光强之比,用T 表示 T = t I I 吸光度是吸光物质对入射光的吸收程度,用A 表示,A εbc =,其两者的关系 lg =-A T 4. 朗伯-比耳定律的物理意义是什么 什么叫吸收曲线 什么叫标准曲线 答:朗伯--比耳定律是吸光光度法定量分析的理论依据,即吸光物质溶液对光的吸收程度与溶液浓度和液层厚度之间的定量关系。数学表达式为 lg A T εbc =-= 吸收曲线是描述某一吸光物质对不同波长光的吸收能力的曲线,即在不同波长处测得吸光度,波长为横坐标,吸光度为纵坐标作图即可得到吸收曲线。 标准曲线是描述在一定波长下,某一吸光物质不同浓度的溶液的吸光能力的曲线,吸光度为纵坐标,浓度为横坐标作图即可得到。 5. 何谓摩尔吸光系数质量吸光系数两者有何关系 答:吸光系数是吸光物质吸光能力的量度。摩尔吸光系数是指浓度为 mol ·L ,液层度为1cm 时,吸光物质的溶液在某一波长下的吸光度。用ε表示,其单位 11cm mol L --??。 质量吸光系数是吸光物质的浓度为1g 1L -?时的吸光度,用a 表示。其单位 11cm g L --?? 两者的关系为 εM a =? M 为被测物的摩尔质量。 6. 分光光度法的误差来源有哪些 答:误差来源主要有两方面,一是所用仪器提供的单色光不纯,因为单色光不纯时,朗伯—比耳定律中吸光度和浓度之间的关系偏离线性;二是吸光物质本身的化学反应,其结果同样

水质 硫酸盐 铬酸钡分光光度法

本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 HJ 中华人民共和国环境保护行业标准 HJ/T342─2007 水质 硫酸盐的测定 铬酸钡分光光度法(试行) Water quality—Determination of sulfate—barium chromate spectrophotometry (发布稿) 2007-03-10 发布 2007-05-01 实施 国家环境保护总局发 布

HJ/ T 342—2007 目次 前言 (Ⅱ) 1适用范围 (1) 2原理 (1) 3试剂 (1) 4仪器 (1) 5干扰的消除 (1) 6步骤 (2) 7结果的计算 (2) 8精密度和准确度 (2)

HJ/T 342—2007 前 言 为了规范《地表水环境质量标准》(GB3838-2002)的实施工作,制定本试行标准。 本标准规定了地表水、地下水中硫酸盐的铬酸钡分光光度测定方法。 本标准适用于地表水、地下水中硫酸盐的测定。 本标准为首次制订。 本标准由国家环境保护总局科技标准司提出。 本标准由国家环境保护总局水和废水监测分析方法编委会组织中国环境监测总站等单位起草。 本标准国家环境保护总局2007年3月10日批准。 本标准自2007年5月1日起实施。 本标准由国家环境保护总局解释。

HJ/T 342─2007 水质 硫酸盐的测定铬酸钡分光光度法 1 适用范围 本标准适用于一般地表水、地下水中含量较低硫酸盐的测定。本方法适用的浓度范围为8~200mg/L:本方法经取13个河、湖水样品进行检验,测定浓度范围为8~85mg/L:相对标准偏差0.15%~7%:加标回收率97.9%~106.8%。 2原理 在酸性溶液中,铬酸钡与硫酸盐生成硫酸钡沉淀,并释放出铬酸根离子。溶液中和后多余的铬酸钡及生成的硫酸钡仍是沉淀状态,经过滤除去沉淀。在碱性条件下,铬酸根离子呈现黄色,测定其吸光度可知硫酸盐的含量。 3 试剂 本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。 3.1 铬酸钡悬浊液:称取19.44g铬酸钾(K2CrO4)与2 4.44g氯化钡(BaCl2·2H2O),分别溶于1L蒸馏水中,加热至沸腾。将两溶液倾入同一个3L烧杯内,此时生成黄色铬酸钡沉淀。待沉淀下降后,倾出上层清液,然后每次用约1L蒸馏水洗涤沉淀,共需洗涤5次左右。最后加蒸馏水至1L,使成悬浊液,每次使用前混匀。每5mL铬酸钡悬浊液可以沉淀约48mg硫酸根(SO42-)。 3.2 (1+l)氨水。 3.3盐酸溶液:2.5mol/L。 3.4 硫酸盐标准溶液:称取1.4786g无水硫酸纳(Na2SO4, 优级纯)或1.814lg无水硫酸钾(K2SO4, 优级纯),溶于少量水,置1000mL容量瓶中,稀释至标线。此溶液1.00mL含1.00mg硫酸根(SO42-)。 4仪器 4.1 比色管:50mL。 4.2 锥形瓶:150mL。 4.3 加热及过滤装置。 4.4 分光光度计。 5干扰的消除 水样中碳酸根也与钡离子形成沉淀。在加入铬酸钡之前,将样品酸化并加热以除去碳酸盐。

新项目方法验证总结-GB5750.6 - 铝-铬天青S分光光度法

**** 方法验证报告 方法名称:《生活饮用水标准检验方法金属指标》GB/T5750.6- 2006 铝铬天青S分光光度法 项目负责人: 报告编写人: 报告日期:

目录 1方法概要 (3) 1.1目的 (3) 1.2测定原理 (3) 2 仪器与化学试剂 (3) 2.1仪器 (3) 2.2试剂 (3) 3简要操作步骤 (3) 4方法确认程序 (4) 4.1 标准曲线的绘制: (4) 4.2 方法检出限: (4) 4.3方法精密度实验 (5) 4.4方法准确度实验: (6) 5评价与验证结论 (7) 5.1评价 (7) 5.1.1空白值最低检出限评价 (7) 5.1.2精密度评价 (7) 5.1.3准确度评价 (7) 5.2结论 (7)

1方法概要 1.1目的 根据实验室的检测能力和条件以及检测检验机构资质认定评审准则的要求,确认开展铝《生活饮用水标准检验方法金属指标》GB/T5750.6-2006 项目的检测能力,通过试验进行 分析总结,编制此方法验证报告。 1.2测定原理 在pH6.7~7.0范围内,铝在聚乙二醇锌基苯醚和溴代十六烷基吡啶的存在下与铬天青S 反应生成蓝绿色的四元胶输,比色定量。 2 仪器与化学试剂 2.1仪器 3简要操作步骤 取25.0mL于50mL具塞比色管中。 另取50mL比色管8支,分别加入铝标准使用溶液0mL,0.20 mL,0.50mL,1.00mL,2.00mL,3.00mL,4.00 mL和5.00 mL,加纯水至25mL。 向各管滴加1滴对硝基酚溶液,混匀,滴加氨水至浅黄色,加硝酸溶液至黄色消失,再

多加2滴。 加3.0 mL 铬天青S 溶液,混匀后加1.0 mL 乳化剂OP 溶液,2.0 mLCPB 溶液,3.0 mL 缓冲液,加纯水稀释至50 mL ,混匀,放置30min 。 于620nm 波长处,用2cm 比色皿以试剂空白为参比,测量吸光度。 绘制工作曲线,从曲线上查得样品中硫酸盐质量。用(1)式计算。 绘制标准曲线,从曲线上查出水样管中铝的质量。 计算 v m )ρ( Al -----------------------------(1) 式中:ρ(Al )------水样中铝的质量浓度,单位为毫克每升(mg/L ) m-----从标准曲线上查得的铝的质量,单位为毫克(μg ) V------水样体积,单位为毫克(mL ) 4方法确认程序 4.1 标准曲线的绘制: 取50mL 比色管8支,分别加入铝标准溶液0mL ,0.20mL ,0.50mL ,1.00mL , 2.00mL ,3.00mL ,4.00 mL 和5.00mL 。各加纯水至25mL 。 4.2 方法检出限: 参考《环境监测 分析方法标准制修订技术导则》(HJ 168-2010),按照样品分析的全部步骤,若能测试目标物质,重复7次空白试验,将各测定结果换算为样品中的浓度或含量,计算7次平行测定的标准偏差,按HJ 168-2010 A.1.1中公式(A.1)计算方法检出限。 若空白中未检出目标物质,参考《环境监测 分析方法标准制修订技术导则》(HJ 168-2010),为了能反映分析方法在整个分析处理过程的误差, 配置浓度为预期方法检出限3倍(一般规定是2~5倍)的样品,按照给定分析方法的全过程进行处理和测定,共进行7次平行测定,计算7次平行测试的标准偏差,按照HJ 168-2010 A.1.1中公式(A.2)(A.3)计算出检

紫外-可见分光光度法测定有色溶液 (2)

紫外-可见分光光度法测有色溶液最大吸收波波长 一、实验目的 1.学习紫外-可见分光光度法的原理; 2.掌握紫外-可见分光光度法测定的实验技术; 3.了解掌握U-3010型紫外-可见分光光度仪的构造及使用方法。 二、实验原理 1.紫外-可见吸收光谱法(称紫外-可见分光光度法)以溶液中物质的分子或离 子对紫外和可见光谱区辐射能的选择性吸收为基础而建立起来的一类分析法。根据最大吸收波长可做定性分析;根据朗伯-比尔定律(标准曲线法和标准加入法)可做定量分析。紫外-可见分光光度法定性分析原理:根据吸收曲线中吸收峰的数目、位置、相对强度以及吸收峰的形状进行定性分析。 2.紫外-可见分光光度法定量分析原理,根据朗伯-比耳定律:A=εbc,当入 射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。定量分析常用的方法是标准曲线法即只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。 3.仪器由五个部分组成:即光源、单色器、吸收池、检测器和信号显示记录装 置。 三、仪器与试剂 日立U-3010型紫外-可见分光光度仪;吸量管;乙醇;待测溶液;烧杯等。 四、实验步骤 1.接通电源,启动计算机,打开主机电源开关,启动工作站并初始化仪器,预 热半小时。 2.在工作接口上选择测量项目为光谱扫描,设置扫描参数(起点:650nm,终 点:250nm,速度:中,间隔:1.0nm,单次扫描) 3.将两个均装有无水乙醇的1cm石英比色皿放入测量池中,进行基线扫描。 4.基线做好后,按下面的顺序进行操作:做Baseline→换样(换上待测样品置 于Sample池)→进入Analysis Method对相关的参数进行设定→Sample命名→Ready→Measure进行测量,寻找待测溶液的最大吸收波长,再在最大吸收波长处分别测定待测溶液的吸光度。

实验1 高吸光度示差分析法

实验二高吸光度示差分析法 一、目的: 通过标准曲线的绘制及试样溶液的测定,了解高吸光度示差分析法的基本原理,方法优点。掌握721型分光光度计的使用方法。 二、原理: 普通吸光光度法是基于测量试样溶液与试剂空白溶液(或溶剂)相比较的吸光度,从相同条件下所作的标准曲线来计算被测组份的含量,这种方法的准确度一般不会优于1~2%,因此,它不适合于高含量组份的测定。 为了提高吸光光度法测定的准确度,使其适合于高含量组分的测定,可采用高吸光度示差分析法。示差法与普通吸光光度法的不同之处,在于用一个待测组份的标准溶液代替试剂空白溶液作为参比溶液,测量待测量溶液的吸光度。它的测定步骤如下: (1)在仪器没有光线通过时(接受器上无光照射时)调节透光率为0,这与比色法或普通分光光度法相同。 (2)将一个比待测溶液(浓度为C+△C)稍稀的参比溶液(浓度为C)放在仪器光路中,调节透光率为100%。 (3)将待测量溶液(或标准溶液)推入光路中,读取表现吸光度A f。 表观吸光度A f实际上是由△C引起的吸收大小,可表达为: A f=ab△c 上式说明,待测溶液(或标准溶液)与参比溶液的吸光度之差与这两次溶液的浓度差成正比。 无论普通吸光度或高吸光度示差法,只要符合比尔定律,而且测量误差仅仅是由于透光率(或吸光度)读数的不确定所引起的,则可以方便地计算出分析的

误差。 仪器刻度上透光率读数改变数(dT )所引起的浓度误差dc 为绝对误差,它与透光率有关,其关系式容易由比耳定律推得: A f =ab △c=k △c lgT=-A f =-k △c 0.43lnT=-k △c KT dc 43 .0 ·dT 式中k 为标准曲线(A ~C )的斜率。实验中三条曲线的三个k 很接近。根据k 值及上述关系可以计算出实验中各点的绝对误差(假设透光率读数误差为l%,即dT=0.01)。 对于化学工作者来说,更有意义的是浓度的相对误差(c dc ),或者相对百分误差(c dc ×100)。浓度相对百分误差与参比溶液的浓度关系密切。随着有色参比溶液浓度的增加(或A 的增加),相对百分误差也随之减小。当所用参比溶液的A=1.736时,最低的相对百分误差也可减小至0.25%。由此可见了,差示法中高吸光度法可达到容量分析和重量分析的准确度。 三、仪器与试剂 721型分光光度计(附2只1厘米比色皿) 0~10ml 微量滴定管1支(刻度准确至0.005ml ) 25ml 容量瓶×16 0.2500M Cr (NO 3)3 四、实验步骤

废气中硫酸雾的测定-铬酸钡分光光度法

废气中硫酸雾的测定-铬酸钡分光光度法

1.原理 用玻璃纤维滤筒进行等速采样,用水浸取,除去阳离子。在弱酸性溶液中,样品溶液中的硫酸根离子与铬酸钡悬浊液发生以下交换反应: SO42-+BaCrO4─→BaSO4↓+CrO42- (黄色) 在氨-乙醇溶液中,分离除去硫酸钡及过量的铬酸钡,反应释放出的黄色铬酸根离子与硫酸根浓度成正比,根据颜色深浅,用分光光度法测定。 2.干扰及消除 样品中有钙、锶、镁、锆、钍等金属阳离子共存时对测定有干扰,通过阳离子树脂柱交换处理后可除去干扰。 测定范围:5~120mg/m3。 3.仪器 ①酸式滴定管:25ml。 ②玻璃漏斗:直径60mm。 ③中性定量滤纸。 ④玻璃棉。 ⑤电炉或电热板。 ⑥烟尘采样器。

⑦过氯乙烯滤膜、中速定量滤纸、慢速定量滤纸。 ⑧紫外或近紫外分光光度计。 4.试剂 ①玻璃纤维滤筒。 ②阳离子交换树脂(732型等均可)200g。 ③氢氧化铵溶液C(NH4OH)=6.0mol/L:量取160ml浓氨水,用水稀释至400ml。 ④氯化钙-氨溶液:称取1.1g氯化钙,用少量1mol/L盐酸溶液溶解后,加6.0mol/L氢氧化铵溶液至400ml。若浑浊应过滤。 ⑤酸性铬酸钡悬浊液:称取0.50g铬酸钡于200ml含有0.42ml浓盐酸和14.7ml冰乙酸的水中,得悬浊液。贮存于聚乙烯塑料瓶中,使用前充分摇匀。 ⑥硫酸钾标准溶液:称取1.778g硫酸钾(优级纯,105~110℃烘干2h),溶解于水,移入1000ml容量瓶中,用水稀释至标线,摇匀。此溶液每毫升相当于含1000μg硫酸。临用时,用水稀释成每毫升含100.0μg 硫酸的标准溶液。 ⑦偶氮胂Ⅲ指示剂:称取0.40g偶氮胂Ⅲ,溶解于100ml水中,放置过夜后取上清液贮于棕色瓶中,在冷暗处保存,可使用一个月。 5.采样 按国家有关污染源监测技术规范规定的采样方法,用玻璃纤维滤筒,等速采样5~30min。 6.步骤

紫外分光光度法测定蛋白质含量实验报告.docx

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl 溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次五、数据处理与结果分析

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1) 2nh3+h2so4——(nh4)2so4 (2) (nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1. 试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正

铬酸钡分光光度法

铬酸钡光度法 1.方法原理 在酸性溶液中,铬酸钡与硫酸盐生成铬酸钡沉淀,并释放出铬酸根离子。溶液中和多余的铬酸钡及生成的硫酸钡仍是沉淀状态,经过滤除去沉淀。在碱性条件下,铬酸根离子呈现黄色,测定其吸光度可知硫酸盐的含量。 2.干扰及消除 水样中碳酸根也与钡离子形成沉淀。在加入铬酸钡之前,将样品酸化并加热以除去碳酸盐。 3.方法的适用范围 本法适用于测定硫酸盐含量较低的清洁水样。 经取13个河、湖水样进行检验,测定浓度范围为8~15mg/L;相对标准偏差0.15%~7%; 加标回收率97.9%~106.8%。 4.仪器 ①比色管:50ml ②锥形瓶:250ml ③加热及过滤装置 ④分光光度计 5.试剂 ①铬酸钡悬浊液:称取19.44g铬酸钾与24.44g氯化钡,分别溶于1L蒸馏水中,加热 至沸腾。将两溶液倾入同一个3L烧杯内,此时生成黄色铬酸钡沉淀。待沉淀下降后,倾出上层清液,然后每次用约1L蒸馏水洗涤沉淀,共需洗涤5次左右。最后加蒸馏水至1L,使成悬浊液,每次使用前混匀。每5ml铬酸钡悬浊液可以沉淀约48mg硫酸根。 ②(1+1)氨水 ③ 2.5mol/L盐酸溶液 ④硫酸盐标准溶液:称取1.4786g优级纯无水硫酸钠或1.8141g无水硫酸钾,溶于少量 水,置1000ml容量瓶中,稀释至标线。此溶液1.00ml含1.00mg硫酸根。 6.步骤 ①分取50ml水样,置于150ml锥形瓶中 ②另取150ml锥形瓶八个,分别加入0、0.25、1.00、2.00、4.00、6.00、8.00及10.00ml 硫酸根标准溶液,加蒸馏水至50ml。 ③向水样及标准溶液中各加1ml 2.5mol/L盐酸溶液,加热煮沸5min左右。取下后再各 加2.5ml铬酸钡悬浊液,再煮沸5min左右。 ④取下锥形瓶,稍冷后,向各瓶逐滴加入(1+1)氨水至呈柠檬黄色,再多加2滴。 ⑤待溶液冷却后,用慢速定性滤纸过滤,滤液收集于50ml比色管内(如滤液浑浊,应 重复过滤至透明)。用蒸馏水洗涤锥形瓶及滤纸三次,滤液收集于比色管中,用蒸馏水稀释至标线。 ⑥在420nm波长,用10mm比色皿测量吸光度,绘制校准曲线。 7.计算 硫酸根=(M/V)*1000 式中:M—由校准曲线查得的硫酸根量(mg) V—取水样体积(ml)

铝 生活饮用水 标准检验方法 金属指标 铝的铬天青S分光光度法

生活饮用水标准检验方法金属指标铝铬天青S分光光度法 1.范围 本标准规定了用铬天青S分光光度法测定生活饮用水及其水源水中的铝。 本法适用于生活饮用水及其水源水中铝的测定。 本法的最低检测质量为0.20μg,若取25mL水样,则最低检测质量浓度为 0.008mg/L。 水中铜、锰、及铁干扰测定。1mL抗坏血酸(100g/L)可消除25μg铜、20μg锰的干扰。2mL巯基乙酸醇(10g/L)可消除25μg铁的干扰。 2.原理 在pH6.7~7.0范围内,铝在聚乙二醇辛基苯醚(OP)和溴代十六烷基吡啶(CPB)的存在下与铬天青S反应生成蓝绿色的四元胶束,比色定量。 3.试剂 3.1铬天青S溶液(1g/L) 3.2乳化剂OP溶液(3+100) 3.3溴代十六烷基吡啶(3g/L) 3.4乙二胺-盐酸缓冲液(pH6.7~7.0) 3.5氨水(1+6) )=0.5mol/L] 3.6硝酸溶液[c(HNO 3 3.7铝标准储备溶液[ρ(Al)=1mg/mL] 3.8铝标准使用溶液[ρ(Al)=1μg/mL] 3.9对硝基酚乙醇溶液(1.0g/L) 4.仪器 4.1具塞比色管:50mL,使用前需经硝酸(1+9)浸泡除铝。 4.2酸度计 4.3分光光度计 5.分析步骤 5.1取水样25.0mL于50mL具塞比色管中。

5.2另取50mL 比色管8支,分别加入铝标准使用溶液 0mL,0.20mL,0.50mL,1.00mL,2.00mL,3.00mL,4.00mL 和5.00mL ,加纯水至25mL 。 5.3向各管滴加1滴对硝基酚溶液,混匀,滴加氨水至浅黄色,加硝酸溶液至黄色消失,再多加2滴。 5.4加3.0mL 铬天青S 溶液,混匀后加1.0mL 乳化剂OP 溶液,2.0mLCPB 溶液,3.0mL 缓冲液,加纯水稀释至50mL ,混匀,放置30min 。 5.5于620nm 波长处,用2cm 比色皿以试剂空白为参比,测量吸光度。 5.6绘制标准曲线,从曲线上查出水样管中铝的质量。 6. 水样中铝的质量浓度计算 V m Al )(ρ 式中: )(ρAl ——水样中铝的质量浓度,单位为毫克每升(mg/L ) m ——从标准曲线上查的水样管中铝的质量,单位为微克(μg ) V ——水样体积,单位为毫升(mL ) 7. 精密度和准确度 5个实验室对浓度为20μg/L 和160μg/L 的水样进行测定,相对标准偏差均小于5%,回收率为94%~106%。

分光光度法测定叶绿素含量

一、实验目的 1.了解植物组织中叶绿素的分布及性质。 2.掌握测定叶绿素含量的原理和方法。 二、实验原理 叶绿素广泛存在于果蔬等绿色植物组织中,并在植物细胞中与蛋白质结合成叶绿体。当植物细胞死亡后,叶绿素即游离出来,游离叶绿素很不稳定,对光、热较敏感;在酸性条件下叶绿素生成绿褐色的脱镁叶绿素,在稀碱液中可水解成鲜绿色的叶绿酸盐以及叶绿醇和甲醇。高等植物中叶绿素有两种:叶绿素a 和b ,两者均易溶于乙醇、乙醚、丙酮和氯仿。 叶绿素的含量测定方法有多种,其中主要有: 1.原子吸收光谱法:通过测定镁元素的含量,进而间接计算叶绿素的含量。 2.分光光度法:利用分光光度计测定叶绿素提取液在最大吸收波长下的吸光值,即可用朗伯—比尔定律计算出提取液中各色素的含量。 叶绿素a 和叶绿素b 在645nm 和663nm 处有最大吸收,且两吸收曲线相交于652nm 处。因此测定 提取液在645nm 、663nm 、652nm 波长下的吸光值,并根据经验公式可分别计算出叶绿素a 、叶绿素b 和总叶绿素的含量。 三、仪器、原料和试剂 仪器 分光光度计、电子顶载天平(感量0.01g)、研钵、棕色容量瓶、小漏斗、定量滤纸、吸水纸、擦境纸、滴管。 原料 新鲜(或烘干)的植物叶片 试剂 1. 96%乙醇(或80%丙酮) 2. 石英砂 3. 碳酸钙粉 四、操作步骤 取新鲜植物叶片(或其它绿色组织)或干材料,擦净组织表面污物,去除中脉剪碎。称取剪碎的新鲜样品2g ,放入研钵中,加少量石英砂和碳酸钙粉及3mL95%乙醇,研成均浆,再加乙醇10mL ,继续研磨至组织变白。静置3~5min 。 取滤纸1张置于漏斗中,用乙醇湿润,沿玻棒把提取液倒入漏斗,滤液流至100mL 棕色容量瓶中;用少量乙醇冲洗研钵、研棒及残渣数次,最后连同残渣一起倒入漏斗中。 用滴管吸取乙醇,将滤纸上的叶绿体色素全部洗入容量瓶中。直至滤纸和残渣中无绿色为止。最后用乙醇定容至100mL ,摇匀。 取叶绿体色素提取液在波长665nm 、645nm 和652nm 下测定吸光度,以95%乙醇为空白对照。 五、计算 按照实验原理中提供的经验公式,分别计算植物材料中叶绿素a 、b 和总叶绿素的含量 叶绿素a= (12.7 A 665 -2.69 A 645)× W V ?1000 叶绿素b=(12.7 A 645 - 2.69A 665)× W V ?1000 总叶绿素a=(20.0A 645 + 8.02 A 665 )× W V ?1000 或总叶绿素a= W V A ??10005.34652

紫外可见分光光度法含量测定

【含量测定】照紫外-可见分光光度法(附录V A)测定。 1.仪器与测定条件:室温:____℃相对湿度:____% 分析天平编号:;水浴锅编号:; 紫外可见分光光度计编号:; 2.对照品溶液的制备: 取西贝母碱对照品适量,精密称定,加三氯甲烷制成每1ml含_______mg的溶液,即得。 3. 供试品溶液的制备: 取本品粉末(过三号筛)约______g,精密称定,置具塞锥形瓶中,加浓氨试液3ml,浸润1小时。加三氯甲烷-甲醇(4:1)混合溶液40ml,置80℃水浴加热回流2小时,放冷,滤过,滤液置50ml量瓶中,用适量三氯甲烷-甲醇(4:1)混合溶液洗涤药渣2~3次,洗液并入同一量瓶中,加三氯甲烷-甲醇(4:1)混合溶液至刻度,摇匀,即得。 4.标准曲线的制备: 精密量取对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、1.0ml,置25ml具塞试管中,分别补加三氯甲烷至10.0ml,精密加水5ml、再精密加0.05%溴甲酚绿缓冲液(取溴甲酚绿0.05g,用0.2mol/L氢氧化钠溶液6ml使溶解,加磷酸二氢钾1g,加水使溶解并稀释至100ml,即得)2ml,密塞,剧烈振摇,转移至分液漏斗中,放置30分钟。取三氯甲烷液,用干燥滤纸滤过,取续滤液,以相应的试剂为空白。 5.测定法: 照紫外-可见分光光度法(附录ⅤA),在nm波长处测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。依法测定吸光度,从标准曲线上读出供试品溶液中含西贝母碱的重量,计算,即得。 6.结果与计算 6.1 标准曲线制备:

对照品批号 纯 度 S 对照品来源 干燥条件 对照品称重W 对(mg) 各浓度点稀释倍数f 对 溶液浓度C 对(ug/ml) 吸光度A 对 线性回归方程 A=( )C +/-( ) r =( ) 计算公式: W S C f ?= 对对对 C 对= 6.2 样品测定: 水分Q 取样量W 样(g ) 样品稀释倍数f 样 样品吸光度A 样 样品平均吸光度A 样 浓度C(ug/ml) 含量X (%) 平均含量X (%) 计算公式:() %100Q 110W f C X 6 ?-???= 样样 样 X 1= X 2= 7.本品按干燥品计算,含总生物碱以西贝母碱(C 27H 43NO 3)计,不得少于0.050%。 结果: 规定 检验人: 检验日期: 复核人: 复核日期:

差示分光光度法测定高含量的二氧化硅

差示分光光度法测定高含量的二氧化硅 (作者:余建华,毛杏仙本信息发布于2009年08月11日,共有183人浏览) [字体:大中小] 二氧化硅是水泥及原材料化学分析的常检项目,由于材质、含量差别很大,因此关于二氧化硅的测定方法很多。根据二氧化硅含量的不同分为三类,含SiO2量较高(Wsio2≥95%)的材质,多采用重量法;含SiO2为常量(Wsio25%~95%)的,多采用容量法;含SiO2量较低(Wsio2<5%)的,一般采用硅钼蓝比色法测定。这三种方法各有特点,重量法和容量法理论上准确度较高方法可靠,但是整个操作流程相对较复杂,费时费力测定周期长;用比色法测定,适用范围很小。 用硅钼蓝光度法测定高含量SiO2,难于准确测定,主要是由于随SiO2含量的升高在制取母液时硅酸易产生聚合,标准曲线易产生弯曲等,使测定结果受到影响。在这种情况下,应用差示分光光度法,可使测定的准确度大为提高。这一方法的实质,是用已知浓度的标准溶液代替常用的水或空白溶液作参比来绘制工作曲线,也就是借增加参比液的吸光度提高待测溶液的吸光度读数的准确度,从而降低光度法的测定误差。本试验根据待测试样的SiO2含量估算范围不同,采取分段比色、减少称样量、浸取试样时以盐酸逆酸化法避免硅酸聚合、选取2~3个基体成分尽量与试样相近,二氧化硅含量比试样稍低和稍高的标样为参比校准标准曲线等多种手段,消除或减少测量误差,提高测量的准确性和稳定性,实现了常量二氧化硅的快速测定。 1 试验部分 1.1主要试剂与仪器 721型分光光度计;容量瓶;镍坩埚;马弗炉等; 氢氧化钾(分析纯);无水乙醇(分析纯);盐酸(V/V):1/1; 钼酸铵溶液(50g/L):量取500ml蒸馏水于塑料杯中,加入25g钼酸铵,搅拌至完全溶解并过滤,贮于塑料瓶中备用; 钼蓝显色剂:将30g草酸、30g硫酸亚铁铵溶于500ml水中,搅拌溶解后,缓缓的加入l00ml浓硫酸,用水稀释至l000ml,搅拌,备用。 1.2测定方法原理 测定时,调节吸光度至∞;吸光度为零的点用浓度C1稍低于试样溶液的标准溶液来调定。然后测定一系列大于Cl的已知溶液的标准溶液的吸光度,并按浓度与吸光度的对应关系,绘制工作曲线和测定试样溶液的吸光度。 设透过空白溶液、第一个标准溶液(C1)和第二个标准溶液(C2)的光强度依次为I0、I1和I2,对应于C1和C2的吸光度为A1,A3,ε为摩尔吸光系数,根据比耳定律:

分光光度法测定

分光光度法測定[Co(NH3)5Cl]2+的水合反應機制的研究 王淩華 (中原大學化三甲學號04101248) 摘要:根據beer’s law,吸收度與濃度成正比及一級反應反應速率通式可求得反應速率,通過反應速率之間的關係對比[Co(NH3)5Cl]2+水合反應可能的反應機制,從而得出其正確的反應原理。 關鍵字:分光光度計;鈷錯合物;反應速率;一級反應 1 簡介 錯合物在我們生活不可缺少在工業生産中,我們可以通過生成配合物來改變物質的溶解度,從而與其它離子分離或是消除分析實驗中會對結果造成干擾的因素,比如配位催化、制鏡、提取金屬、材料先驅物、硬水軟化等;在生物學中,很多生物分子都是配合物,並它們可與重金屬離子配合,使其轉化為毒性很小的配位化合物,從而達到解毒的目的。因此我們通過分光光度法測得Co化合物水解的反應速率,控制反應的溫度、濃度等條件,根據反應可能的機制對比可知Co錯合物水解的具體步驟,從而真正認識此類反應的本質,達到控制此類反應的結果,用以簡化工業生産。 2 原理 2.1 [Co(NH3)5Cl]2+的製備

[Co(NH3)5Cl]2+的製備是通過在[Co(NH3)4CO3]NO3的溶液中分別加入一定量的鹽酸、氨水、鹽酸,其中配合基團分別被取代之後生成[Co(NH3)5Cl]2+的沉澱析出從而得到產物,反應方程式如下: [Co(NH3)4CO3]+ 3)4(H2O)Cl]2+ + CO2 + Cl- (1) [Co(NH3)4(H2O)Cl]2+ + NH33)5(H2O)]3+ + Cl- (2) [Co(NH3)5(H2O)]3+ [Co(NH3)5Cl]2+↓+ H2O + 3H+ (3) 2.2 水和反應可能的反應機制 反應方程式:[Co(NH3)5Cl]2+ + H2O → [Co(NH3)5(H2O)] 3+ + Cl-(4)在鈷錯和物的水合反應在酸性條件下,以H2O取代Cl-的反應機制一般來説,[Co(NH3)5Cl]2+的水合反應機制可能有3種可能情況。 一种是S N1离解机理,即在反应中首先是Co- Cl键断裂, Cl-配体离去, 而后H2O分子很快进入配合物中Cl-配体的位置; [Co(NH3)5Cl]2+的反應速率R= k1[Co(NH3)5Cl]2+ (5) 一种是S N2缔合机理,在这种反应中水分子首先进入配合物形成短暂的七配位中间体,然后中间体很快失去Cl-而形成产物。 [Co(NH3)5Cl]2+反應速率R= k2[Co(NH3)5Cl]2+[H2O] (5) 由於反應在水溶液中進行, 水作為溶劑其濃度與[ Co(NH3)5Cl] 2+的濃度相比是大大過量的,在實際反應中所消耗的水是非常小的, 故可認為在反應過程中水的濃度保持不變為一常數。 [Co(NH3)5Cl]2+反應速率R= k o bs[Co(NH3)5Cl]2+ (k o bs = k2[H2O]) (6) 第三種是酸催化反應由H+加到Cl-上H+與Cl-結合後,Co-HCl鍵斷裂,HCl脫離此錯合物,而空出的配位座由H2O取代。

紫外分光光度法测定未知物

紫外分光光度法测定未知物 1.仪器 1.1紫外分光光度计(UV-1801型);配石英比色皿(1cm)2个 1.2容量瓶(100mL):10个;容量瓶(250mL)1个 1.3吸量管(10mL、5mL):各1支 1.4移液管(20mL、25mL、50mL):各1支 2.试剂 2.1标准溶液(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分别配成1mg/mL的标准溶液,作为储备液。 2.2未知液:浓度约为(40~60ug/mL)。(其必为给出的五种物质之一) 3.实验操作 3.1比色皿配套性检查 石英比色皿装蒸馏水,以一只比色皿为参比,在测定波长下调节透射比为100%,测定其余比色皿的透射比,其偏差应小于0.5%,可配成一套使用。 3.2未知物的定性分析 将五种标准储备液均稀释成10ug/mL的试液(配制方法由选手自定)。以蒸馏水为参比,于波长200~350nm范围内扫描五种溶液,绘制吸收曲线,根据所得到的吸收曲线对照标准谱图,确定被测物质的名称,并依据吸收曲线确定测定波长。五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参考考考考附图附图附图附图。。。。 3.3未知物定量分析 根据未知液吸收曲线上测定波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液3份,进行平行测定。 推荐方法 3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液50.00mL,在250mL容量瓶中定容(此溶液的浓度为200ug/mL)。再分别准确移取1、2、4、6、8、10mL上述溶液,在100mL容量瓶中定容(浓度分别为2、4、8、12、16、20 ug/mL)。准确移取20.00mL维生素C未知液,在100mL容量瓶中定容,于

差示分光光度法

4.5 分光光度测定方法 中文词条名:差示分光光度法 英文词条名:differential spectrophotometry 分光光度法中,样品中被测组分浓度过大或浓度过小(吸光度过高或过低)时,测量误差均较大。为克服这种缺点而改用浓度比样品稍低或稍高的标准溶液代替试剂空白来调节仪器的100%透光率(对浓溶液)或0%透光率(对稀溶液)以提高分光光度法精密度、准确度和灵敏度的方法,称为差示分光光度法。差示分光光度法又可分高吸光度差示法,低吸光度差示法,精密差示分光光度法等。 4.5.2 差示分光光度法 吸光度A在0.2-0.8范围内误差最小。超出此范围,如高浓度或低浓度溶 液,其吸光度测定误差较大。尤其是高浓度溶液,更适合用差示法。 一般分光光度测定选用试剂空白或溶液空白作为参比,差示法则选用一已知浓度的溶液作参比。该法的实质是相当于透光率标度放大。 高吸收法在测定高浓度溶液时使用。选用比待测溶液浓度稍低的已知浓度溶液作标准溶液,调节透光率为100%。

低吸收法在测定低浓度溶液时使用。选用比待测液浓度稍高的已知浓度溶液作标准溶液,调节透光率为0。 最精密法是同时用浓度比待测液浓度稍高或稍低的两份已知溶液作 标准溶液,分别调节透光率为0或100%。 设试样浓度为,以溶剂作参比时,其透光率为,吸光度为。若选浓度为(其以溶剂为参比时的透光率为,吸光度为)的已知溶液作参比,调节透光率为100%。根据吸收定律,有: 溶剂作参比时,;(4.14) ;(4.15) 差示法,用已知浓度的溶液作参比时, (4.16) ,(4.17) (4.16)式为差示分光光度法的基本关系式。

分光光度法

第二节分光光度法 (一)基础知识 分类号:P2-O 一、填空题 1.分光光度法测定样品的基本原理是利用朗伯—比尔定律,根据不同浓度样品溶液对光信号具有不同的,对待测组分进行定量测定。 答案:吸光度(或吸光性,或吸收) 2.应用分光光度法测定样品时,校正波长是为了检验波长刻度与实际波长的,并通过适当方法进行修正,以消除因波长刻度的误差引起的光度测定误差。 答案:符合程度 3.分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用涮洗,或用浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO3 二、判断题 1.分光光度计可根据使用的波长范围、光路的构造、单色器的结构、扫描的机构分为不同类型的光度计。( ) 答案:正确 2.应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20%~65%或吸光值在0.2~0.7之间时,测定误差相对较小。( ) 答案:正确 3.分光光度法主要应用于测定样品中的常量组分含量。( ) 答案:错误 正确答案为:分光光度法主要应用于测定样品中的微量组分。 4.应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误 正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于0.005,否则需进行校正。 5.应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误 正确答案为:摩尔吸光系数与比色皿厚度无关。 三、选择题 1.利用分光光度法测定样品时,下列因素中不是产生偏离朗伯—比

分光光度法考核题

分光光度法 姓名:工号:成绩: 一、填空题(每空2分,共8分) 1.分光光度法测定样品的基本原理是利用朗伯-比尔定律,根据不同浓度样品溶液对光信号具有不同的,对待测组分进行定量测定。 2.应用分光光度法测定样品时,校正波长是为了检验波长刻度与实际波长的,并通过适当方法进行修正,以消除因波长刻度的误差引起民的光度测定误差。 3.分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤,可用涮洗,或用浸泡,注意浸泡时间不宜过长,以防比色皿脱胶损坏。 二、判断题(每题2分,共10分) 1.分光光度计可根据使用的波长范围、光路的构造、单色器的结构、扫描的机械分为不同类型的光度计。() 2.应用分光光度法进行试样测定,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差,一般来说,透光度在20%-65%或吸光值在0.2~0.7之间时。测定误差相对较小。( ) 3.分光光度法主要应用于测定样品中的常量组分含量。() 4.应分光光度法进行样品测定时,同组比色皿之间的差值应小于测定误差。() 5.应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。() 三、选择题(每题2分,共20分) 1.利用分光光度法测定样品时,下列因素中不是产生偏离朗伯-比尔定律的主要原因。() A. 所用试剂的纯度不够的影响 B. 非吸收光的影响 C. 非单色光的影响 D.被测组分发生解离、缔合等化学因素 2.分光光度计波长准确度是指单色光最大强度的波长值与波长指示值。 A.之和 B.之差 C.乘积 3.分光光度计吸光度的准确性是反映仪器性能的重要指示,一般常用标准溶液进行吸光度校正。() A.碱性重铬酸钾 B. 酸性得铬酸钾 C. 高锰酸钾 4.分光光度计通常使用的比色皿具有性,使用前应做好标记。() A.选择 B.渗透 C.方向 5.使用分光光度法测试样品,校正比色皿时,应将注入比色皿中,以其中吸收最小的比色皿为参比,测定其他比色皿的吸光度。() A. 纯净蒸馏水 B. 乙醇 C. 三氯甲烷 6.朗伯-比尔定律A=kCL中,摩尔吸光系数k值表示该物质对某波长光的吸收能力愈强,比色测定的灵敏度就愈高。() A.愈大 B.愈小 C.大不一样 7.用紫外分光光度法测定样品时,比色皿应选择材质的。() A.石英 B.玻璃 8.一般常把nm波长的光称为紫外光。() 9.一般常把nm波长的光称为可见光。() A.200~800 B.400(或380)~800(或780) C. 400~860 10.一般分光光度计吸光度的读数最多有位有效数字。() A. 3 B.4 C.2 11.朗伯-比尔定律A=kCL中,摩尔吸光系数k值与无关。() A.入射光的波长 B.显色溶液温度 C.测定时的取样体积 D.有色溶液的性质 四、问答题(每题5分,共50分) 1.分光光度法的环境监测中常用的方法,简述分光光度法的主要特点。

相关文档
最新文档