立体几何棱柱、棱锥和球练习题
高中数学第八章立体几何初步8.3.1棱柱棱锥棱台的表面积和体积同步练习含解析第二册

课时素养评价二十二棱柱、棱锥、棱台的表面积和体积(15分钟35分)1.正方体的表面积为96,则正方体的体积是()A.48B.64 C。
16 D。
96【解析】选B.设正方体棱长为a则6a2=96,a=4,V正方体=a3=64。
2.长方体三个面的面积分别为2,6和9,则长方体的体积是()A.6B。
3C。
11 D。
12【解析】选 A.设长方体长、宽、高分别为a,b,c,不妨令ab=2,ac=6,bc=9,相乘得(abc)2=108,所以V=abc=6。
3.正四棱柱的底面积为P,过相对侧棱截面的面积为Q,则它的体积是()A。
Q B.Q C。
Q D。
Q【解析】选 D.设正四棱柱的底面边长、高分别为a、h,则P=a2,Q=ah.所以V=a2h=a·ah=·=Q.4。
已知一个正六棱锥的底面边长为1,侧棱长为,那么它的体积为() A。
6 B. C.2D。
2【解析】选B。
因为正六棱锥的高h==2,所以V=Sh=×6××2=。
5.已知正四棱台两底面边长分别为4 cm,8 cm,侧棱长为8 cm,则它的侧面积为.【解析】作出正四棱台的一个侧面如图,设E,F分别为AD,BC 的中点,过D作DG⊥BC于点G.由题知AD=4 cm,BC=8 cm,CD=8 cm,得DE=2 cm,FC=4 cm,则GC=2 cm,在Rt△DGC中,DG==2(cm),即斜高为2cm,所以所求侧面积为4××(4+8)×2=48(cm2)。
答案:48cm26。
如图,棱锥的底面ABCD是一个矩形,AC与BD交于点M,VM 是棱锥的高。
若VM=4 cm,AB=4 cm,VC=5 cm,求锥体的体积。
【解析】因为VM是棱锥的高,所以VM⊥MC.在Rt△VMC中,MC===3(cm),所以AC=2MC=6(cm)。
在Rt△ABC中,BC===2(cm).S底=AB·BC=4×2=8(cm2),所以V锥=S底h=×8×4=(cm3)。
高中立体几何练习题

高中立体几何练习题几何学是数学中非常重要的一个分支,而立体几何则是其中的一个重要部分。
在高中阶段,学生需要掌握各种与立体几何相关的概念和定理,并且能够运用这些知识解决实际问题。
本文将为大家提供一些高中立体几何的练习题,以帮助大家巩固知识和提高解题能力。
练习题一:三棱柱1. 一个三棱柱的底面是一个等边三角形,边长为8cm,高度为10cm。
求该三棱柱的体积和表面积。
2. 一个三棱柱的体积是72cm³,底面边长为6cm。
求该三棱柱的高度和表面积。
练习题二:四棱柱和四棱锥1. 一个正四棱柱的底面是一个边长为4cm的正方形,高度为6cm。
求该四棱柱和与之相似的正四棱锥的体积比值。
2. 一个四棱柱的底面是一个边长为10cm的正方形,高度为8cm。
求该四棱柱和与之相似的四棱锥的表面积比值。
练习题三:球体和圆柱1. 一个半径为4cm的球从中间切割,得到两个半球。
求这两个半球的表面积之和。
2. 一个圆柱的底面半径为3cm,高度为10cm。
在底面上画一个直径,求这个直径与圆柱的侧面交点处的高度和侧面的面积。
练习题四:棱台和棱锥1. 一个棱台的上底是一个边长为6cm的正三角形,下底是一个边长为12cm的正六边形,高度为8cm。
求该棱台的体积和表面积之和。
2. 一个棱台的上底是一个边长为8cm的正方形,下底是一个边长为12cm的正六边形,高度为10cm。
求该棱台的体积和表面积的比值。
以上仅为一些高中立体几何的练习题,希望能够帮助大家巩固知识并提高解题能力。
在解答这些题目时,可以根据已学习的定理和公式进行计算,并注意单位和精度的问题。
同时也要灵活运用几何思维和建模能力,将实际问题转化为几何图形,从而更好地解决问题。
祝各位同学在立体几何学习中取得好成绩!。
专题12 立体几何小题压轴练(原卷版)

【一专三练】 专题12 立体几何小题压轴练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·山东济宁·统考一模)已知直三棱柱111ABC A B C -,D 为线段11A B 的中点,E为线段1CC 的中点,1A E 过1AC E △的内切圆圆心,且1AD DC ⊥,CA =,2AB =,则三棱锥D ABC -的外接球表面积为( )A .27π8B .274πC .27π2D .27π 2.(2023春·湖北武汉·高三华中师大一附中校考期中)在正四棱台1111ABCD A B C D -中,112AB A B =,1AA =M 为棱11B C 的中点,当正四棱台的体积最大时,平面MBD 截该正四棱台的截面面积是( ).AB C .D .3.(2023·湖北武汉·华中师大一附中校联考模拟预测)在三棱锥D ABC -中,ABC V 是以AC 为底边的等腰直角三角形,DAC △是等边三角形,AC =,又BD 与平面ADCD ABC -外接球的表面积是( )A .8πB .12πC .14πD .16π4.(2023秋·湖南湘潭·高三校联考期末)点,M N 分别是棱长为2的正方体1111ABCD A B C D -中棱1,BC CC 的中点,动点P 在正方形11BCC B (包括边界)内运动.若1//PA 面AMN ,则1PA 的长度范围是( )A .⎡⎣B .C .⎤⎥⎦D .[]2,35.(2023春·湖南·高三统考阶段练习)正方体1111ABCD A B C D -的棱长为1,点P 在三棱锥1C BCD -的表面上运动,且1A P =P 轨迹的长度是( )A BC D 6.(2023·广东梅州·统考一模)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF P 平面ABCD ,四边形ABFE ,CDEF 为两个全等的等腰梯形,122EF AB ==,且AE =则此刍甍的外接球的表面积为( )A .60πB .64πC .68πD .72π7.(2023·广东·校联考模拟预测)已知四棱锥P ABCD -的五个顶点都在球面O 上,底面ABCD 是边长为4的正方形,平面PAD ⊥平面ABCD ,且PA PD ==,则球面O 的表面积为( )A .39πB .40πC .41πD .42π8.(2023·广东深圳·深圳中学校联考模拟预测)在矩形ABCD 中,已知24AB AD ==,E 是AB 的中点,将ADE V 沿直线DE 翻折成1A DE △,连接1A C ,当二面角1A DE C --的平面角的大小为60︒时,则三棱锥1A CDE -外接球的表面积为( )A .56π3B .18πC .19πD .53π3二、多选题9.(2023·浙江温州·统考二模)蜜蜂是自然界的建筑大师,在18世纪初,法国数学家马拉尔迪指出,蜂巢是由许许多多类似正六棱柱形状的蜂房(如图)构成,其中每个蜂房的底部都是由三个全等的菱形构成,每个菱形钝角的余弦值是13-,则( )A .AB P 平面11EDD E B .AB EF⊥C .蜂房底部的三个菱形所在的平面两两垂直D .该几何体的体积与以六边形111111A B C DEF 为底面,以1BB 为高的正六棱柱的体积相等10.(2023春·江苏扬州·高三统考开学考试)在四面体ABCD 的四个面中,有公共棱AC的两个面全等,1AD =,CD =,90CDA ∠=︒,二面角B AC D --大小为θ,下列说法中正确的有( )A .四面体ABCD 外接球的表面积为3πB .四面体ABCDC .若AD AB =,AD AB ⊥,则120θ=°D .若AD BC =,120θ=°,则BD =11.(2023春·江苏南京·高三南京市第五高级中学校考阶段练习)已知正四棱台1111ABCD A B C D -的上下底面边长分别为4,6E 是11A B 的中点,则( )A .正四棱台1111ABCD ABCD -B .平面1BC D ⊥平面11AA C CC .AE ∥平面1BCD D .正四棱台1111ABCD A B C D -的外接球的表面积为104π12.(2023秋·辽宁葫芦岛·高三统考期末)在正方体1AC 中,M 为AB 中点,N 为BC 中点,P 为线段1CC 上一动点(不含C )过M ,N ,P 的正方体的截面记为α,则下列判断正确的是( )A .当P 为1CC 中点时,截面α为六边形B .当112CP CC <时,截面α为五边形C .当截面α为四边形时,它一定是等腰梯形D .设1DD 中点为Q ,三棱锥Q PMN -的体积为定值13.(2023春·江苏苏州·高三统考开学考试)六面体1111ABCD A B C D -中,底面ABCD 、1111D C B A 分别是边长为4和2的正方形,侧面11CDD C 、侧面11BCC B 均是直角梯形,且13CC =,1CC CD ⊥.若该六面体为台体,下列说法正确的是( )A .六面体1111ABCD ABCD -的体积为28B .异面直线1DD 与1BB 的夹角的余弦值为913C .二面角1B AB D --D .设P 为上底面上一点,且AP CP ⊥,则P 的轨迹为一个圆14.(2023·山东·沂水县第一中学校联考模拟预测)已知圆锥顶点为S ,高为1,底面圆O 的直径AB长为C 为底面圆周上不同于,A B 的任意一点,则下列说法中正确的是( )A .圆锥SO的侧面积为B .SAC V 面积的最大值为32C .圆锥SO 的外接球的表面积为9πD .若AC BC =,E 为线段AC 上的动点,则SE BE +15.(2023·湖北·校联考模拟预测)如图,在正四面体ABCD 中,棱AB 的中点为M,棱CD 的中点为N ,过MN 的平面交棱BC 于P ,交棱AD 于Q ,记多面体CAMPNQ 的体积为1V ,多面体BDMPNQ 的体积为2V ,则( )A .直线MQ 与PN 平行B .AQ BP AD BC =C .点C 与点D 到平面MPNQ 的距离相等D .12V V =16.(2023春·湖北武汉·高三华中师大一附中校考期中)已知异面直线a 与b 所成角为60 ,平面α与平面β的夹角为80 ,直线a 与平面α所成的角为20 ,点P 为平面α、β外一定点,则下列结论正确的是( )A .过点P 且与直线a 、b 所成角都是60 的直线有4条B .过点P 且与平面α、β所成角都是30 的直线有4条C .过点P 且与平面α、β所成角都是40 的直线有3条D .过点P 与平面α成60 角,且与直线a 成60 的直线有3条17.(2023春·湖南·某同学参加综合实践活动,设计了一个封闭的包装盒.包装盒如图所示,是由等高的半个圆柱和14个圆柱拼接而成,其中四边形ABCD 是边长为4的正方形,点G 是弧CD 上的动点,且,,,C E D G 四点共面.下列说法正确的有( )A .若点G 为弧CD 的中点,则平面BFD ⊥平面BCGB .存在点G ,使得BG DF∥C .存在点G ,使得直线CF 与平面BCG 所成的角为60D .当点G 到平面BDF 的距离最大时,三棱锥G BDF -外接球的半径R =18.(2023春·江苏南通·高三海安高级中学校考阶段练习)如图的六面体中,CA =CB =CD =1,AB =BD =AD =AE =BE =DE )A .CD ⊥平面ABCB .AC 与BE 所成角的大小为π3C .CE D .该六面体外接球的表面积为3π19.(2023·湖南岳阳·统考二模)在中国共产党第二十次全国代表大会召开期间,某学校组织了“喜庆二十大,永远跟党走,奋进新征程,书画作品比赛.如图①,本次比赛的冠军奖杯由一个铜球和一个托盘组成,若球的体积为4π3;如图②,托盘由边长为4的正三角形铜片沿各边中点的连线垂直向上折叠而成,则下列结论正确的是( )A .直线AD 与平面BEF 所成的角为π6B .经过三个顶点,,A BC 的球的截面圆的面积为π4C .异面直线AD 与CF 所成的角的余弦值为58D .球离球托底面DEF 120.(2023·广东·高三校联考阶段练习)如图,矩形ABCD 中,4AB =,2BC =,E 为边AB 的中点,沿DE 将ADE V 折起,点A 折至1A 处(1A ∉平面ABCD ),若M 为线段1A C 的中点,平面1A DE 与平面DEBC 所成锐二面角α,直线1A E 与平面DEBC 所成角为β,则在ADE V 折起过程中,下列说法正确的是( )A .存在某个位置,使得1BM A D⊥B .1A EC △面积的最大值为C .sin αβ=D .三棱锥1A EDC -体积最大时,三棱锥1A EDC -的外接球的表面积16π21.(2023·广东深圳·统考一模)如图,已知正三棱台111ABC A B C -的上、下底面边长分别为2和3,侧棱长为1,点P 在侧面11BCC B 内运动(包含边界),且AP 与平面11BCC B,则( )A .CP 1B .存在点P ,使得⊥AP BCC .存在点P ,存在点11Q B C ∈,使得1AP A Q∥D .所有满足条件的动线段AP 22.(2023·江苏南通·二模)如图,正三棱锥A -PBC 和正三棱锥D -PBC 的侧棱长均为BC = 2.若将正三棱锥A -PBC 绕BC 旋转,使得点A ,P 分别旋转至点A P '',处,且A ',B ,C ,D 四点共面,点A ',D 分别位于BC 两侧,则( )A .A D CP '⊥B .//PP '平面A 'BDCC .多面体PP A BDC ''的外接球的表面积为6πD .点A ,P 旋转运动的轨迹长相等23.(2023·广东江门·统考一模)勒洛Franz Reuleaux (1829~1905),德国机械工程专家,机构运动学的创始人.他所著的《理论运动学》对机械元件的运动过程进行了系统的分析,成为机械工程方面的名著.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是( )A .勒洛四面体能够容纳的最大球的半径为2B .勒洛四面体被平面ABC 截得的截面面积是(2πC .勒洛四面体表面上交线AC 的长度为2π3D 224.(2023秋·浙江·高三浙江省永康市第一中学校联考期末)正方体1111ABCD A B C D -的棱长为1,中心为O ,以O 为球心的球与四面体11AB CD 的四个面相交所围成的曲线的总O 的半径为( )A B C D 三、填空题25.(2023·浙江金华·浙江金华第一中学校考模拟预测)已知矩形ABCD 在平面α的同一侧,顶点A 在平面上,4AB =,BC =且AB ,BC 与平面α所成的角的大小分别为30°,45°,则矩形ABCD 与平面α所成角的正切值为______.26.(2023春·江苏南通·高三校考开学考试)在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =,M 为侧棱1BB 的中点,N 在侧面矩形11ADD A 内(异于点1D ),则三棱锥1N MCD -体积的最大值为____________.27.(2023秋·江苏南京·高三南京市第一中学校考期末)在三棱锥-P ABC 中,AC BC PC ==,且30APC BPC ACB ∠=∠=∠=︒,则直线PC 与平面ABC 所成角的余弦值为__________.28.(2023·山东聊城·统考一模)已知正四棱柱1111ABCD A B C D -的体积为16,E 是棱BC 的中点,P 是侧棱1AA 上的动点,直线1C P 交平面11EB D 于点P ',则动点P '的轨迹长度的最小值为______.29.(2023春·湖北武汉·高三华中师大一附中校考阶段练习)蹴鞠(如图所示),又名蹴球,蹴圆,筑球,踢圆等,蹴有用脚蹴、踢、蹋的含义,鞠最早系外包皮革、内实米糠的球因而蹴鞠就是指古人以脚蹴、蹋、踢皮球的活动,类似于今日的足球.2006年5月20日,蹴鞠作为非物质文化遗产经国务院批准已列入第一批国家非物质文化遗产名录.已知某鞠(球)的表面上有四个点A ,B ,C ,P ,且球心О在PC 上,4AC BC ==,AC BC ⊥,tan tan PAB PBA ∠=∠=__________.30.(2023春·湖南·高三校联考阶段练习)在正四棱锥S ABCD -中,M 为SC 的中点,过AM 作截面将该四棱锥分成上、下两部分,记上、下两部分的体积分别为12,V V ,则21V V 的最大值是___________.。
人教版高中数学必修二《第八章 立体几何初步》同步练习及答案解析

人教版高中数学必修二《第八章立体几何初步》同步练习《8.1 基本几何图形》同步练习第1课时棱柱、棱锥、棱台一、选择题1.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A.B.C.D.2.一个棱锥的各条棱都相等,那么这个棱锥必不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥3.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个4.用一个平面去截一个四棱锥,截面形状不可能的是 ( )A.四边形 B.三角形 C.五边形 D.六边形5.(多选题)给出下列命题,其中假命题是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形;B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;D.棱台的侧棱延长后交于一点,侧面是等腰梯形.6.(多选题)正方体的截面可能是()A.钝角三角形B.直角三角形C.菱形D.正六边形二、填空题7.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.8.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________cm.9.下列说法中正确的为________(填序号).(1)棱柱的侧棱长相等,侧面都是平行四边形:(2)各侧面都是正方形的四棱柱一定是正方体;(3)正棱锥的侧面是等边三角形;(4)有两个面互相平行,其余各面都是等腰梯形的几何体是棱台.10.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.三、解答题11.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.12.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a,则每个面的三角形面积为多少?《8.1 基本几何图形》同步练习答案解析第1课时棱柱、棱锥、棱台一、选择题1.下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是( )A .B .C .D .【答案】B 【解析】将其折叠起来,变成正方体后的图形中,相邻的平面中三条线段是平行线,排除A ,C ;相邻平面只有两个是空白面,排除D ;故选B2.一个棱锥的各条棱都相等,那么这个棱锥必不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥【答案】D【解析】正六棱锥的底面是个正六边形,正六边形共由6个等边三角形构成,设每个等边三角形的边长为 r ,正六棱锥的高为h ,正六棱锥的侧棱长为 l ,由正六棱锥的高h 、底面的半径r 、侧棱长l 构成直角三角形得,222h r l += ,故侧棱长 l 和底面正六边形的边长r 不可能相等.故选D.3.下列几何体中棱柱有( )A.5个B.4个C.3个D.2个【答案】D【解析】由棱柱的定义及几何特征,①③为棱柱.故选D.4.用一个平面去截一个四棱锥,截面形状不可能的是 ( )A.四边形 B.三角形 C.五边形 D.六边形【答案】D【解析】根据一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形,而四棱锥最多只有5个面,则截面形状不可能的是六边形,故选D.5.(多选题)给出下列命题,其中假命题是()A.棱柱的侧棱都相等,侧面都是全等的平行四边形;B.用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;C.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;D.棱台的侧棱延长后交于一点,侧面是等腰梯形.【答案】ABD【解析】对于A,棱柱的侧面不一定全等,故错误;对于B,由棱台的定义可知只有当平面与底面平行时,所截部分才是棱台,故错误;对于C,若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直,比如正方体中共点的三个相邻平面,故正确;对于D,棱台的侧面不一定是等腰三角形,故错误;故选ABD .6.(多选题)正方体的截面可能是()A.钝角三角形B.直角三角形C.菱形D.正六边形【答案】CD【解析】 如图所示截面为三角形ABC ,OA =a ,OB =b ,OC =c ,∴222222222,,AC a c AB a b BC b c =+=+=+, ∴222202AB AC BC cos CAB AB AC +-∠==>⋅ ∴∠CAB 为锐角,同理∠ACB 与∠ABC 也为锐角,即△ABC 为锐角三角形,∴正方体的截面若是三角形,则一定是锐角三角形,不可能是钝角三角形和直角三角形,A 、B 错误;若是四边形,则可以是梯形(等腰梯形)、平行四边形、菱形、矩形、正方形,但不可能是直角梯形,C 正确;正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,如图为正六边形,故若是六边形,则可以是正六边形,D 正确.故选:CD .二、填空题7.一棱柱有10个顶点,其所有的侧棱长的和为60 cm ,则每条侧棱长为________cm.【答案】12【解析】该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,∴每条侧棱长为12 cm.8.如图,M 是棱长为2 cm 的正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,沿正方体表面从点A 到点M 的最短路程是________cm.【答案】 13【解析】 由题意,若以BC 为轴展开,则A ,M 两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm ,3 cm ,故两点之间的距离是13 cm.若以BB 1为轴展开,则A ,M 两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17cm.故沿正方体表面从点A到点M的最短路程是13 cm.9.下列说法中正确的为________(填序号).(1)棱柱的侧棱长相等,侧面都是平行四边形:(2)各侧面都是正方形的四棱柱一定是正方体;(3)正棱锥的侧面是等边三角形;(4)有两个面互相平行,其余各面都是等腰梯形的几何体是棱台.【答案】(1)【解析】(1)正确,由棱柱定义可知,棱柱的侧棱相互平行且相等,所以侧面均为平行四边形;(2)不正确,上、下底面是菱形,各侧面是全等的正方形的四棱柱不一定是正方体;(3)不正确,正棱锥的侧面都是等腰三角形,不一定是等边三角形;(4)不正确,用反例去检验,如图,显然错误图.故答案为:(1)10.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.【答案】5 6 9【解析】面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.三、解答题11.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.【答案】见解析【解析】过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC -A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)12.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A ,B ,C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?【答案】(1)三棱锥 (2)见解析【解析】(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2.《8.1 基本几何图形》同步练习第2课时 圆柱、圆锥、圆台、球一、选择题1.下列命题中,正确的是( )①在圆柱上、下底面圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A .①②B .②③C .②④D .③④ 2.圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )A .B .C .D .3.已知圆柱的轴截面是正方形,其面积为Q ,则它的一个底面的面积为( )A .QB .Q πC .4Q πD .2Q π 4.下列平面图形中,通过围绕定直线l 旋转可得到如图所示几何体的是( )A .B .C .D .5.(多选题)下列说法中正确的是( )A .正棱锥的所有侧棱长相等B .圆柱的母线垂直于底面C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形6.(多选题)下列结论中错误的是( )A .半圆弧以其直径为轴旋转一周所形成的曲面叫做球B .直角三角形绕一边旋转得到的旋转体是圆锥C .夹在圆柱的两个平行截面间的几何体还是一个旋转体D .圆锥截去一个小圆锥后剩余的部分是圆台二、填空题7.如图所示的几何体是由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是______.(填序号)8.下列命题中正确的是________(填序号).①以直角三角形的一边所在直线为旋转轴,将直角三角形旋转一周所得到的旋转体是圆锥;②以直角梯形的一腰所在直线为旋转轴,将直角梯形旋转一周所得到的旋转体是圆台; ③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在直线为旋转轴,将等腰三角形旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.9.如图是一个几何体的表面展开图形,则这个几何体是 .10.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆半径为 cm ,面积为 cm 2.三、解答题9.如图,四边形ABCD 为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.10.一个圆台的母线长为12cm ,两底面面积分别为24cm π和225cm π.(1)求圆台的高;(2)求截得此圆台的圆锥的母线长.《8.1 基本几何图形》同步练习及答案解析第2课时圆柱、圆锥、圆台、球一、选择题1.下列命题中,正确的是()①在圆柱上、下底面圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.A.①②B.②③C.②④D.③④【答案】C【解析】①:若上下底面各取的点的连线能平行于轴,则是母线,反之则不是,错误;②:母线的定义,显然正确;③:圆台可看做是由平行于圆锥底面的平面截圆锥得到的,根据圆锥母线的定义可知错误;④圆柱的母线都平行于轴,故也相互平行,正确;只有②④两个命题是正确的.故选C.2.圆柱体被平面截成如图所示的几何体,则它的侧面展开图是()A.B.C.D.【答案】D【解析】结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A,B,C错误.故选:D.3.已知圆柱的轴截面是正方形,其面积为Q ,则它的一个底面的面积为( )A .QB .Q πC .4Q πD .2Q π 【答案】C【解析】圆柱的轴截面一边为高,另一边为底面的直径,由轴截面为正方形可知,高与,所以底面的面积为2ππ4Q ⋅=⎝⎭. 4.下列平面图形中,通过围绕定直线l 旋转可得到如图所示几何体的是( )A .B .C .D .【答案】B【解析】A.是一个圆锥以及一个圆柱; C.是两个圆锥; D. 一个圆锥以及一个圆柱;所以选B.5.(多选题)下列说法中正确的是( )A .正棱锥的所有侧棱长相等B .圆柱的母线垂直于底面C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形【答案】ABD【解析】对于A ,根据正棱锥的定义知,正棱锥的所有侧棱长相等,故A 正确;对于B ,根据圆柱是由矩形绕其一边旋转而成的几何体,可知圆柱的母线与底面垂直,故B 正确;对于C ,直棱柱的侧面都是矩形,但不一定全等,故C 错误;对于D ,圆锥的轴截面是全等的等腰三角形,故D 正确.故选:ABD 。
高中数学 第八章 立体几何初步 8.3.1 棱柱、棱锥、棱台的表面积和体积习题(含解析)新人教A版必

8.3简单几何体的表面积与体积8.3.1棱柱、棱锥、棱台的表面积和体积课后篇巩固提升基础达标练1.(多选题)长方体ABCD-A1B1C1D1的长、宽、高分别为3,2,1,则()A.长方体的表面积为20B.长方体的体积为6C.沿长方体的表面从A到C1的最短距离为3D.沿长方体的表面从A到C1的最短距离为22×(3×2+3×1+2×1)=22,A错误.长方体的体积为3×2×1=6,B正确.如图①所示,在长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1.在表面上求最短距离可把几何体展开成平面图形,如图②所示,将侧面ABB1A1和侧面BCC1B1展开,则有AC1=,即当经过侧面ABB1A1和侧面BCC1B1时的最短距离是;如图③所示,将侧面ABB1A1和底面A1B1C1D1展开,则有AC1==3,即当经过侧面ABB1A1和底面A1B1C1D1时的最短距离是3;如图④所示,将侧面ADD1A1和底面A1B1C1D1展开,则有AC1==2,即当经过侧面ADD1A1和底面A1B1C1D1时的最短距离是2.因为3<2,所以沿长方体表面从A到C1的最短距离是3,C正确,D不正确.2.如图所示,正方体ABCD-A1B1C1D1的棱长为1,则三棱锥D-ACD1的体积是()A. B. C. D.1D-ACD1的体积等于三棱锥D1-ACD的体积,三棱锥D1-ACD的底面ACD是直角边长为1的等腰直角三角形,高D1D=1,∴三棱锥D-ACD1的体积为V=×1×1×1=.3.一个正四棱锥的底面边长为2,高为,则该正四棱锥的表面积为()A.8B.12C.16D.20=2,所以该四棱锥的表面积为22+4××2×2=12.4.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为()A.3πB.C.πD.1,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为,故底面积为()2=2;四棱锥的高为1,则四棱锥的体积为×2×1=.故几何体的体积为2×.5.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为()A. B. C. D.,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为,三条侧棱两两垂直,所以此三棱锥的体积为.6.(2020全国高一课时练习)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是.ABCD-A1B1C1D1的体积为120,所以AB·BC·CC1=120,因为E为CC1的中点,所以CE=CC1,由长方体的性质知CC1⊥底面ABCD,所以CE是三棱锥E-BCD的底面BCD上的高,所以三棱锥E-BCD的体积V=AB·BC·CE=AB·BC·CC1=×120=10.7.正四棱柱的一条体对角线长为9,表面积为144,适合这些条件的正四棱柱有个.a,高为h,由题意得这个方程组有两个解,所以适合条件的正四棱柱有2个.8.已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是,表面积是.V=4×6×3+×4×3×3=90,表面积S=2(4×6+4×3+6×3)-3×3+×4×3×2+×3+3×4=138.9.在正四棱锥S-ABCD中,点O是底面中心,SO=2,侧棱SA=2,则该棱锥的体积为.侧棱SA=2,高SO=2,∴AO==2,因此,底面正方形的边长AB=AO=4,底面积为AB2=16.该棱锥的体积为V=AB2·SO=×16×2=.10.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,则它的深度为 cm.S',S.由V=(S++S')h,得h==75(cm).能力提升练1.(2020某某某某检测)我国古代名著《X丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭,令上方六尺,问亭方几何?”大致意思为“有一个正四棱锥下底面边长为二丈,高三丈,现从上面截去一段,使之成为正四棱台状方亭,且正四棱台的上底面边长为六尺,问该正四棱台的体积是多少立方尺?”(注:1丈=10尺)()A.1 946立方尺B.3 892立方尺C.7 784立方尺D.11 676立方尺,正四棱锥的高为30,所截得正四棱台的下底面棱长为20,上底面棱长为6, 设棱台的高为OO1=h,由△PA1O1∽△PAO可得,解得h=21,可得正四棱台的体积为×21×(62+202+6×20)=3892(立方尺),故选B.2.(2020某某某某检测)如图所示,在上、下底面对应边的比为1∶2的三棱台中,过上底面的一边A1B1和AC,BC的中点F,E作一个平面A1B1EF,记平面分三棱台两部分的体积为V1(三棱柱A1B1C1-FEC),V2两部分,那么V1∶V2=.h,上底面的面积是S,则下底面的面积是4S,∴V棱台=h(S+4S+2S)=Sh,V1=Sh,∴.∶43.(2020全国高一课时练习)如图,AA1,BB1,CC1相交于点O,形成两个顶点相对、底面水平的三棱锥容器,AO=A1O,BO=B1O,CO=C1O.设三棱锥高均为1,若上面三棱锥中装有高度为0.5的液体,且液体能流入下面的三棱锥,则液体流下去后液面高度为.,流下去后,液体上方空出的三棱锥的体积为三棱锥体积的.设空出的三棱锥的高为x,则,所以x=,所以液面高度为1-.-4.已知一个三棱柱的三视图如图所示,求这个三棱柱的侧面积.,该三棱柱的底面为正三角形,各侧面为矩形,侧棱长为4cm,如图所示.因为正三角形ABC和正三角形A'B'C'的高为2cm,所以正三角形ABC的边长AB==4(cm).故三棱柱的侧面积为S侧=4×4×3=48(cm2).5.一个正三棱锥P-ABC的底面边长为a,高为h.一个正三棱柱A1B1C1-A0B0C0的顶点A1,B1,C1分别在三条棱上,A0,B0,C0分别在底面△ABC上,何时此三棱柱的侧面积取到最大值?O,连接PO,图略,则PO为三棱锥的高,设A1,B1,C1所在的底面与PO交于O1点,则,令A1B1=x,而PO=h,则PO1=x,于是OO1=h-PO1=h-x=h.所以所求三棱柱的侧面积为S=3x·h(a-x)x=.当x=时,S有最大值为ah,此时O1为PO的中点,即A1,B1,C1分别是三条棱的中点.素养培优练在正三棱台ABC-A1B1C1中,已知AB=10,棱台一个侧面梯形的面积为,O1,O分别为上、下底面正三角形的中心,连接A1O1,AO并延长,分别交B1C1,BC于点D1,D,∠D1DA=60°,求上底面的边长.AB=10,∴AD=AB=5,OD=AD=.设上底面的边长为x(x>0),则O1D1=x.如图所示,连接O1O,过D1作D1H⊥AD于点H,则四边形OHD1O1为矩形,且OH=O1D1=x.∴DH=OD-OH=x,在Rt△D1DH中,D1D==2x.∵四边形B1C1CB的面积为(B1C1+BC)·D1D,∴(x+10)×2x,即40=(x+10)(10-x),∴x=2,故上底面的边长为2.。
立体几何《球》 专题(提高题)(题目及答案)

《球》【类型1:求长度】1、设正三棱锥A BCD -的所有顶点都在球O 的球面上,1BC =,,E F 分别是,AB BC 的中点,EF DE ⊥,则球O 的半径为2、点S 、A 、B 、C 2的同一球面上,点S 到平面ABC 的距离为12,3AB BC CA ===则点S 与ABC ∆中心的距离为( )A 3B 2C .1D .123、已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =.若3OM ON ==,则两圆圆心的距离MN = .4、高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为5、(2013年辽宁卷)已知三棱柱111C B A ABC - 的6个顶点都在球O 的球面上,若AB = 3,AC = 4 ,AB AC ⊥ 121=AA ,则球O 的半径为( )A 317B .210C .132D .3106、已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=32,则球心到平面ABC的距离为()A.1 B.2C.3D.27、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.2C.3D.28、已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________.9、(2013年天津卷)已知一个正方体的所有顶点在一个球面上. 若球的体积为92, 则正方体的棱长为______.【类型2:求面积】1、在四面体ABCD 中,若AB CD ==2AC BD ==,AD BC ==ABCD 的外接球的表面积为( )A .2πB .4πC .6πD .8π2、四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________.3、已知点A 、B 、C 、D 均在球O 上,AB =BC =错误!未找到引用源。
空间立体几何练习题(含答案)
第一章 空间几何体 [基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )3.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.5.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长 分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A BC D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的主视图 左视图 俯视图C 底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
立体几何专题7:棱锥
立体几何专题7:棱锥一.选择题(共12小题)1.(2011•闸北区二模)以下四个命题:①正棱锥的所有侧棱相等;②直棱柱的侧面都是全等的矩形;③圆柱的母线垂直于底面;④用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形.其中,真命题的个数为( )A .4B .3C .2D .1答案:B .2.(2004•浦东新区校级模拟)若正棱锥底面边长与侧棱长相等,则该棱锥一定不是( )A .三棱锥B .四棱锥C .五棱锥D .六棱锥 答案:D .3.给出下列命题:①有一条侧棱与底面两边垂直的棱柱是直棱柱;②底面为正多边形的棱柱为正棱柱;③顶点在底面上的射影到底面各顶点的距离相等的棱维是正棱锥;④A 、B 为球面上相异的两点,则通过A 、B 的大圆有且只有一个.其中正确命题的个数是( )A .0个B .1个C .2个D .3个 答案:A .4.(2021春•浦东新区校级月考)有一个正三棱锥和一个正四棱锥,它们的所有棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,这个组合体是( )A .平行六面体B .四棱柱C .斜三棱柱D .四棱锥 答案:C .5.(2019•浦东新区校级模拟)《九章算术》中将四个面都是直角三角形的四面体称为“鳖臑”,则以正方体1111ABCD A B C D 的顶点为顶点的“鳖臑”的个数为( )A .12B .24C .48D .58答案:B .6.(2014•浦东新区三模)下列命题中错误的是( )A .正棱锥的所有侧棱长相等B .圆柱的母线垂直于底面C .直棱柱的侧面都是全等的矩形D .用经过旋转轴的平面截圆锥,所得的截面一定是全等的等腰三角形答案:C .7.(2013•西湖区校级模拟)对于四面体ABCD ,给出下列命题:①相对棱AB 与CD 所在的直线异面;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在直线异面;④分别作出三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.其中正确命题的个数为( )A .1B .2C .3D .4 答案:C .8.(2011•上海二模)在棱长为1的正四面体1234A A A A 中,记12||(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则ij a 不同取值的个数为( )A .6B .5C .3D .2答案:C .9.(2010•大观区校级三模)长度分别为2、x 、x 、x 、x 、x 的六条线段能成为同一个四面体的六条棱的充要条件是( )A .233x >B .323x <<C .32333x <<D .1x >答案:A .10.(2007•丰台区二模)正三棱锥V ABC -的底面边长为2a ,E 、F 、G 、H 分别是VA 、VB 、BC 、AC 的中点,则四边形EFGH 面积的取值范围是( )A .(0,)+∞B .23(,)3a +∞C .26(,)3a +∞D .21(,)2a +∞ 答案:B .11.(2004•浦东新区校级模拟)若一个四面体的棱长为1或2,则这样的四面体的个数( )A .2B .3C .4D .5答案:D .12.(2021•宝山区校级模拟)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ∆的面积为()f x ,则()f x 的图象大致为( )A .B .C .D .答案:A.二.填空题(共22小题)13.(2019•闵行区校级模拟)如果圆锥的底面积为π,母线长为2,那么该圆锥的高为_______ 答案:3.14.(2018春•浦东新区期末)三棱锥V ABC-的底面ABC与侧面VAB都是边长为a的正三角形,则棱VC的长度的取值范围是_______答案:(0,3)a15.(2018•上海模拟)如图,正四棱锥P ABCD-中所有棱长均相等,则侧棱与底面所成角的大小为_______答案:45︒.16.(2016秋•普陀区校级期中)设E、F、G、H分别是空间四边形ABCD的边AB、BC、CD、DA的中点,则四边形EFGH的形状一定是______________答案:平行四边形17.(2008秋•浦东新区校级月考)正四棱锥的底面边长为2,侧棱与底面成45︒角,则此四棱锥的侧面积为_______答案:4318.(2004•浦东新区校级模拟)在四棱锥的四个侧面中,直角三角形最多可有_______个.答案:4.19.(2020春•浦东新区校级期中)已知一个正四面体的棱长为2,则它的高是_______答案:263.20.(2019春•嘉定区期末)棱长为2的正四面体的高为_______答案:233.21.(2019春•闵行区校级期末)侧棱长为23的正三棱锥V ABC-中,40AVB BVC CVA∠=∠=∠=︒,过点A作截面AEF,则截面AEF∆周长的最小值为_______答案6.22.(2017•徐汇区校级模拟)如果一个四面体的三个面是直角三角形,下列三角形:(1)直角三角形;(2)锐角三角形;(3)钝角三角形;(4)等腰三角形;(5)等腰直角三角形.那么可能成为这个四面体的第四个面是______________.(填上你认为正确的序号)答案:(1)(2)(4)(5).23.(2014春•金山区校级期末)边长分别为a、b的矩形,按图中所示虚线剪裁后,可将两个小矩形拼接成一个正四棱锥的底面,其余恰好拼接成该正四棱锥的4个侧面,则ba的取值范围是_______答案:1(2,).25.(2011•普陀区一模)在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的四面体的以下判断中,所有正确的结论是_______(写出所有正确结论的编号)①能构成每个面都是等边三角形的四面体;②能构成每个面都是直角三角形的四面体;③能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体.答案:①②③.26.(2010•福建模拟)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是_______①等腰四棱锥的腰与底面所成的角都相等;②等腰四棱锥的侧面与底面所成的二面角都相等或互补;③等腰四棱锥的底面四边形必存在外接圆;④等腰四棱锥的各顶点必在同一球面上.答案:②27.(2008秋•闵行区校级月考)给出下列命题:①底面是正多边形且侧棱和底面成等角的棱锥是正棱锥;②侧棱都相等的棱锥是正棱锥;③侧棱和底面成等角的棱锥是正棱锥;④侧面和底面所成二面角都相等的棱锥是正棱锥,其中正确命题的是_______答案:①.28.(2021春•奉贤区期中)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为_______答案:514+. 29.(2021春•浦东新区校级期中)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是_______ 答案:(0,62)+.30.(2020•新课标Ⅰ)如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠=_______答案:14-. 31.(2017秋•汕头期末)在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且有BD CD ⊥,2AB BD ==,1CD =,点P 是AC 上的一个动点,则三角形PBD 的面积的最小值为_______答案:255.33.(2015春•上海校级期中)已知三棱锥底面是正三角形,给出下列条件:①三条侧棱长相等;②三个侧面都是等腰三角形;③三条侧棱两两垂直;④三个侧面与底面所成角相等;⑤三个侧面都是等边三角形.其中使三棱锥成为正三棱锥的充要条件的有_______答案:①④.34.(2006•黄浦区二模)已知四面体ABCD,沿棱AB、AC、AD剪开,铺成平面图形,得到△123A A A(如图),试写出四面体ABCD应满足的一个性质:_______答案:四面体是正四面体;或者四面体的三个角B,C,D处的三个角的和都是180 .。
第三关 以棱柱、棱锥与球的组合体为背景的选择题-高考数学备考优生百日闯关系列(原卷版)
专题一 压轴选择题第三关 以棱柱、棱锥与球的组合体为背景的选择题【名师综述】球作为立体几何中重要的旋转体之一,成为考查的重点.要熟练掌握基本的解题技巧.还有球的截面的性质的运用,特别是其它几何体的内切球与外接球类组合体问题,以及与球有关的最值问题,更应特别加以关注的.试题一般以小题的形式出现,有一定难度.解决问题的关键是画出正确的截面,把空间“切接”问题转化为平面“问题”处理.类型一 四面体的外接球问题典例1.已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若ABC 的面积为,ABC S OBC 的面积为,OBC S PBC 的面积为PBC S ,满足2ABC OBC PBC S S S ⋅=△△△,当,,PAB PBC PAC 的面积之和的最大值为8时,则三棱锥P ABC -外接球的体积为( )A .43πB .83πC .163πD .323π 【来源】山西省晋中市2022届高三上学期1月适应性调研数学(理)试题【举一反三】在四边形ABCD 中(如图1所示),AB AD =,45ABD ∠=,2BC BD CD ===,将四边形ABCD 沿对角线BD 折成四面体A BCD '(如图2所示),使得90A BC ∠=',E ,F ,G 分别为棱BC ,A D ',A B '的中点,连接EF ,CG ,则下列结论错误的是( ).A .A C BD '⊥B .直线EF 与CG 45C .C ,E ,F ,G 四点不共面D .四面体A BCD '外接球的表面积为8π【来源】陕西省2022届高三上学期元月联考理科数学试题类型二 三棱柱的外接球问题典例2.已知各顶点都在同一球面上的正四棱柱的底边长为a ,高为h ,球的体积为86π,则这个正四棱柱的侧面积的最大值为( ) A .482 B .242 C .962 D .122【来源】内蒙古包头市2020-2021学年高三上学期期末考试数学(文)试题【举一反三】在平面内,已知动点P 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,12BB π=,90ABC ∠=︒,点M 为AB 的中点,点P 在三棱柱内部或表面上运动,且2PA PM =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =( )A .12B .13C .14D .15【来源】贵州省贵阳市2021届高三适应性考试数学(理)试题(一)类型三 四棱锥的外接球问题典例3.在四棱锥P ABCD -中,底面ABCD 为等腰梯形,PB ⊥底面ABCD .若1PB AB CD AD ====, 2BC =,则这个四棱锥的外接球表面积为( )A .3πB .4πC .5πD .6π【来源】四川省成都市第七中学2021-2022学年高三下学期入学考试文科数学试题【举一反三】已知四棱锥P ABCD -中,底面ABCD 是矩形,侧面PAD 是正三角形,且侧面PAD ⊥底面ABCD ,2AB =,若四棱锥P ABCD -82π,则该四棱锥的表面积为( ) A .3B .63C .83D .103【来源】山西省吕梁市2021届高三上学期第一次模拟数学(理)试题类型四 几何体的内切球问题典例4.已知正三棱柱111ABC A B C -的体积为54,6AB =,记三棱柱111ABC A B C -的外接球和内切球分别为球1O ,球2O ,则球1O 上的点到球2O 上的点的距离的最大值为( )A .3B 153C 153D 153【来源】江西省乐平市第一中学2021届高三上学期联考理科数学试题【举一反三】由棱长都为1的4个正四面体和1个正八面体,组合成一个正四面体,再将此正四面体削切、打磨成最大的球,则该球体积为( )A 6B 6C .354D 646 【来源】湖南省长沙市雅礼中学2020届高三下学期5月质量检测文科数学试题【精选名校模拟】1.已知三棱锥P ABC -的各个顶点都在球O 的表面上,PA ⊥底面ABC ,AB AC ⊥,6AB =,8AC =,D 是线段AB 上一点,且2AD DB =.过点D 作球O 的截面,若所得截面圆面积的最大值与最小值之差为25π,则球O 的表面积为( )A .128πB .132πC .144πD .156π【来源】湖北省武汉市武昌区2020-2021学年高三上学期1月质量检测数学试题2.已知直四棱柱1111ABCD A B C D -,其底面ABCD 是平行四边形,外接球体积为36π,若1AC BD ⊥,则其外接球被平面11AB D 截得图形面积的最小值为( )A .8πB .24310πC .8110πD .6π【来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查理科数学试题3.已知三棱锥P ABC -的底面是正三角形,PA a =,点A 在侧面PBC 内的射影H 是PBC 的垂心,当三棱锥P ABC -体积最大值时,三棱锥P ABC -的外接球的表面积为( )A .343aB .23a πC .332a πD .212a【来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测理科数学试题4.在三棱锥P ABC -中,22AB AC ==,120BAC ∠=,26PB PC ==,25PA =,则该三棱锥的外接球的表面积为( )A .40πB .20πC .80πD .60π【来源】江西省名校2021届高三上学期第二次联考数学(理)试题5.已知直三棱柱111ABC A B C -的底面是正三角形,23AB =,D 是侧面11BCC B 的中心,球O 与该三棱柱的所有面均相切,则直线AD 被球O 截得的弦长为( )A .1010B .105C .31010D .31056.如图,在三棱锥P ABC -,PAC △是以AC 为斜边的等腰直角三角形,且22CB =,6AB AC ==,二面角P AC B --的大小为120︒,则三棱锥P ABC -的外接球表面积为( )A 510B .10πC .9πD .(423π+7.已知三棱锥P ABC -的顶点P 在底面的射影O 为ABC 的垂心,若2ABC OB PBC C S S S ⋅=,且三棱锥P ABC -的外接球半径为3,则PAB PBC PAC S S S ++△△△的最大值为( )A .8B .10C .18D .22【来源】吉林省梅河口市第五中学2020-2021学年高三上学期第三次月考数学(理)试题8.已知三棱锥P ABC -的各顶点都在同一球面上,且PA ⊥平面ABC ,若该棱锥的体积为233,2AB =,1AC =,60BAC ∠=︒,则此球的表面积等于( )A .5πB .8πC .16πD .20π【来源】河南省河南大学附属中学2021-2022学年高三上学期11月月考数学文科试题9.我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱111ABC A B C -为一个“堑堵”,底面ABC 是以AB 为斜边的直角三角形且5AB =,3AC =,点P 在棱1BB 上,且1PC PC ⊥,当1APC 的面积取最小值时,三棱锥P ABC -的外接球表面积为( )A .45π2B 455πC .30πD .45π【来源】江西宜春市2021届高三上学期数学(文)期末试题10.在菱形ABCD 中,3A π=,3AB =△ABD 沿BD 折起到△PBD 的位置,二面角P BD C--的大小为23π,则三棱锥P BCD -的外接球的表面积为( ) A .23πB .27πC .72πD .112π 【来源】山西省长治市第二中学校2021届高三上学期9月质量调研数学(文)试题多选题11.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑(biēnào ).如图,三棱锥D ABC -为一个鳖臑,其中DA ⊥平面ABC ,AB BC ⊥,2DA AB BC ===,AM DC ⊥,M 为垂足,则( )A .AM ⊥平面BCDB .DC 为三棱锥D ABC -的外接球的直径C .三棱锥M ABD -的外接球体积为43πD .三棱锥M ABC -的外接球体积与三棱锥M ABD -的外接球体积相等【来源】河北省张家口市2022届高三上学期期末数学试题12.已知边长为a 的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,下列说法正确的是( )A .在翻折的过程中,直线AD ,BC 始终不可能垂直B .在翻折的过程中,三棱锥D ABC -体积最大值为38a C .在翻折过程中,三棱锥D ABC -表面积最大时,其内切球表面积为2(1483)a π-D .在翻折的过程中,点D 在面ABC 上的投影为D ,E 为棱CD 上的一个动点,ED '3 【来源】江苏省南京市第二十九中学2021-2022学年高三上学期12月月考数学试题。
空间几何体的表面积和体积经典例题(教师讲义打印一份)
空间几何体的表面积和体积一.课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2016年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.要点精讲1.多面体的面积和体积公式表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。
2.旋转体的面积和体积公式表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。
四.典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海豚教育个性化简案学生姓名:年级:高二科目:数授课日期:月日上课时间:时分------ 时分合计:小时【教学目标】1、了解棱柱和棱锥的概念,周围棱柱、正棱锥的有关性质,能进行有关角和距离的运算。
2、了解球、球面的概念, 掌握球的性质及球的表面积、体积公式,3、理解球面上两点间距离的概念, 了解与球的有的内接、外切几何问题的解法.【重难点导航】1.……棱柱棱锥的定义与认识2.……柱体和椎体的体积和表面积计算3.……球体的体积与表面积【教学简案】棱柱、棱锥、球体【教学流程】知识回顾——典型例题讲解——随堂练习——真题演练——易错题分析——课后反思总结【作业布置】习题一张【教学反馈】授课教师评价:今日学生课堂表现符合共项(大写)审核人签字(姓名、日期)□准时上课:无迟到和早退现象□今天所学知识点全部掌握:教师任意抽查一知识点,学生能完全掌握□上课态度认真:上课期间认真听讲,无任何不配合老师的情况□海豚作业完成达标:全部按时按量完成所布置的作业,无少做漏做现象课前:课后:学生签字:教师签字:备注:请交至行政前台处登记、存档保留,隔日无效(可另附教案内页)大写:壹贰叁肆签章:海豚教育个性化教案(真题演练及错题汇编)【题目来源】【2011·四川14】本题知识点总结如图,半径为R 的球O 中有一内接圆柱.,(1)当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________. (2)当圆柱的体积最大时,圆柱的侧面积为【错题汇编】本题易错点总结1.设正六棱锥的底面边长为1,侧棱长为5,那么它的体积为( )()A 63 ()B 23 ()C 3 ()D 22.正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面正方形ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角为 ( )()A 4π ()B 3π ()C 2π()D 与P 点的位置有关3.正三棱锥V ABC -中,1AB =,侧棱,,VA VB VC 两两互相垂直,则底面中心到侧面的距离为 ( )()A 22 ()B 23 ()C 26()D 364.一个长方体全面积是20cm 2,所有棱长的和是24cm ,则长方体的对角线长为【标题】 棱柱、棱锥和球体【棱柱和棱锥】【知识要点】:1. 叫棱柱 2.正棱柱的性质有 3. 叫正棱锥 4.正棱锥的性质有P ={四棱柱},Q ={平行六面体},R ={长方体},M ={正方体},N ={正四棱柱} S ={直平行六面体},这六个集合之间的关系是【课前预习】:1.给出下列命题:①底面是正多边形的棱锥是正棱锥; ②侧棱都相等的棱锥是正棱锥;③侧棱和底面成等角的棱锥是正棱锥;④侧面和底面所成二面角都相等的棱锥是正棱锥,其中正确命题的个数是( ) ()A 0 ()B 1 ()C 2 ()D 32.如果三棱锥S ABC -的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S 在底面的射影O 在ABC ∆内,那么O 是ABC ∆的( )()A 垂心 ()B 重心 ()C 外心 ()D 内心3.已知三棱锥D ABC -的三个侧面与底面全等,且3AB AC == ,2BC =,则以BC 为棱,以面BCD与面BCA 为面的二面角的大小是( )()A 4π ()B 3π ()C 2π ()D 32π4.已知长方体ABCD A B C D ''''-中,棱5AA '=,12AB =,那么直线B C ''和平面A BCD ''的距离是5.三棱柱111ABC A B C -,侧棱1BB 在下底面上的射影平行于AC ,如果侧棱1BB 与底面所成的角为030,160B BC ∠=,则ACB ∠的余弦为【例题分析】:例1.正四棱锥S ABCD -中,高26SO =,两相邻侧面所成角为γ ,23tan 23γ=, (1)求侧棱与底面所成的角。
(2)求侧棱 长、底面边长和斜高。
GF E D C 1B 1A 1CB A【例2】.如图正三棱柱111ABC A B C -中,底面边长为a ,侧棱长为22a ,若经过对角线1AB 且与对角线1BC 平行的平面交上底面于1DB 。
(1)试确定D 点的位置,并证明你的结论;(2)求平面1AB D 与侧面1AB 所成的角及平面1AB D 与底面所成的角; (3)求1A 到平面1AB D 的距离。
例3.如图,已知三棱锥P ABC -的侧面PAC 是底角为045的等腰三角形,PA PC =,且该侧面垂直于底面,90ACB ∠=,10,6AB BC ==,113B C =,(1)求证:二面角A PB C --是直二面角; (2)求二面角P AB C --的正切值;(3)若该三棱锥被平行于底面的平面所截,得到一个几何体111ABC A B C -,求几何体111ABC A B C -的侧面积.PC 1C BAA 1B 1【类题1】如图,已知斜三棱柱111ABC A B C -的底面边长分别是10AB AC cm ==,12BC cm =,侧棱113AA cm =,顶点1A 与下底面各个顶点的距离相等,求这个棱柱的全面积.【类题2】如图,已知PO 为正三棱锥P ABC -的高,AB a =,侧面与底面成α角,过O 点作平面平行于PC 和AB ,得截面EFGH .(1)求证:PC AB ⊥;(2)截面EFGH 的面积.【类题3】正三棱柱111ABC A B C -中,底面边长为a ,在侧棱1BB 上截取2aBD =,在侧棱1CC 上截取CE a =,过,,A D E 作棱柱的截面,(1)求证:截面ADE ⊥侧面11ACC A ;(2)求截面ADE 与底面ABC 所成的角。
A BE PGH FCA 1C 1B 1AB C【球体的表面积和体积】【主要知识】:1.球的表面积 ;球的体积公式 ;2.球的截面的性质: .【课前预习】:1.一个凸多面体的顶点数为20,棱数为30,则它的各面多边形的内角和为 ( )()A 2160 ()B 5400 ()C 6480 ()D 72002.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积是 ( )()A 3π ()B 4π ()C 33π ()D 6π3.正四面体的中心到底面的距离与这四面体的高的比是 ( )()A 21 ()B 31 ()C 41 ()D 614.地球表面上从A 地(北纬45,东经120)到B 地(北纬45,东经30)的最短距离为(球的半径为R )( )()A 4R π ()B R π ()C 3R π ()D 2Rπ 5.设,,,P A B C 是球O 面上的四点,且,,PA PB PC 两两互相垂直,若PA PB PC a ===则球心O 到截面ABC的距离是 .【例题分析】:【例1】.已知三棱锥P ABC -内接于球, 三条侧棱两两垂直且长都为1, 求球的表面积与体积.【例2】.在北纬60圈上有甲、乙两地,它们的纬度圆上的弧长等于2R π(R 为地球半径),求甲,乙两地间的球面距离。
【例3】.如图,球心到截面的距离为半径的一半,BC 是截面圆的直径,D 是圆周上一点,CA 是球O 的直径, (1) 求证:平面ABD ⊥平面ADC ;(2) 如果球半径是13,D 分BC 为两部分, 且:1:2BD DC =,求AC 与BD 所成的角; (3) 如果:3:2BC DC =,求二面角B AC D --的大小。
海豚教育个性化作业作业布置日期: 作业回收日期:1.给出下列命题:①正四棱柱是正多面体;②正四棱柱是简单多面体;③简单多面体是凸多面体;④以正四面体各面的中心为顶点的四面体仍然是正四面体;其中正确的命题个数为 ( )()A 1个 ()B 2个 ()C 3个 ()D 4个2.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 ( ) ()A 2a π ()B 22a π ()C 23a π ()D 24a π3.以正方体的顶点为顶点作正四面体,则正方体的表面积与正四面体的表面积之比为( )()A 3:1 ()B 1:3 ()C 3:2()D 3:24.地球半径为R ,A 、B 两地均在北纬45°圈上,两地的球面距离为3R π,则,A B 两地的经度之差的绝对值为 ( )()A 3π ()B 2π ()C 32π ()D 4π5.棱长为1的正方体的八个顶点都在同一个球的表面上,则这个球的表面积为 ( )()A 2π ()B 3π ()C 332π ()D 12π 6.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为 ( ) ()A31()B 33()C 32 ()D 36 7.如图,,,A B C 是表面积为48π的球面上三点,2,4,60AB BC ABC ==∠=,O 为球心,则直线OA 与截面ABC 所成的角是 ( )()A 3arcsin6 ()B 3arccos 6 ()C 3arcsin 3()D 3arccos 38.球面上三点,,A B C 组成这个球的一个截面的内接三角形,18,24,30AB BC AC ===, 且球心到该截面的距离为球的半径的一半,(1) 求球的体积; (2) 求,A C 两点的球面距离。