4.1 线段的比(1)--
九年级数学北师大版上册 第4章《4.1 成比例线段》教学设计 教案

课题 4.1.1 线段的比和成比例线段单元第四单元学科数学年级九学习目标1.知道两条线段的比的概念并且会计算两条线段的比.2.知道成比例线段的定义.3.熟记比例的性质并会应用.重点会求两条线段的比,成比例线段的定义,比例的性质.难点会求两条线段的比,注意线段长度的单位要统一.教学过程教学环节教师活动学生活动设计意图导入新课教师课件出示图片师:观察下面几幅图片,你能发现什么?学生观察图片,回答问题。
相同点:形状相同不同点:大小不相同通过用幻灯片展示生活的的图片,引入本章的学习内容——相似图形,初步感知相似图形,引发学生思考相似图形的特征,激发学生的求知欲及学习兴趣.为新课的学习做好情感铺垫.讲授新课你能在下面这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?学生先自主观察这些图形的特点,然后在小组内交流自己的看法,交通过以上引导性问题引导学生共同总结出:对于形状相同而大小不同的两个图形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的。
在这个过程中,两个图形上的相应线段也被“放大”或“缩小”,因此,对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.两条线段的比A B C Dm n两条线段的比就是它们长度的比,即AB:CD=m:n也可以表示为:AB m= CD n如果把mn表示成比值k,那么ABCD=k,或AB=k·CD,两条线段的比实际上就是两个数的比.ABC D EA'B'C'D'E'如图,五边形ABCDE与五边形A′B′C′D′E′形状相同,AB=5cm,A′B′=3cm,AB:A′B′=5 :3,53就是线段AB与A′B′的比,这个比值刻画流后借助多媒体展示自己的成果。
教师利用多媒体出示两条线段的比的定义,强调相关要点,明确两条线段的比实际上就是两个数的比,接着出示下面实例进一步加深学生对两条线段的比的认识.教师引导学生结合图形分析形,可以用相应线段长度的比来描述它们的大小关系,适时引出两条线段的比的概念.通过两个五边形对应边的比,具体说明线段的比的意义,进一步巩固对概念的理解.通过方格纸上两个四边形对应边了这两个五边形的大小关系.【做一做】如图,设小方格的边长为1,四边形ABCD 与四边形EFGH的顶点都在格点上,那么AB, AD, EF, EH的长度分别是多少?教师出示答案:AB=8 AD=210EF=4 EH=10分别计算AB AD AB EF,,,EF EH AD EH的值,你发现了什么?AB8==2 EF4AD210==2 EH10AB8210==AD5210EF4210==EH510总结归纳四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a c=b d,那么这四条线段a,b,c,d叫作成比例线段,简称比例线段. AB,EF,AD,EH是成比例线段,AB,AD,EF,EH也是成比例线段.【议一议】题意,明确图中两四边形的四条边的长度可以通过观察或勾股定理得出.给学生充足的时间计算.学生在教师的引导下总结归纳.的比值的计算,引导学生发现这四组对应线段的比相等,进而引出比例线段的概念.课堂练习 1.在1:1 000 000的地图上,A ,B 两地之间的距离是5 cm ,则A ,B 两地之间的实际距离是( B ) A .5 km B .50 km C .500 km D .5 000 km2.已知线段AB ,在BA 的延长线上取一点C ,使CA =3AB ,则线段CA 与线段CB 的比为( A ) A .3:4 B .2:3 C .3:5 D .1:23.下列四组线段中,是成比例线段的是( C ) A .3 cm ,4 cm ,5 cm ,6 cm B .4 cm ,8 cm ,3 cm ,5 cm C .5 cm ,15 cm ,2 cm ,6 cm D .8 cm ,4 cm ,1 cm ,3 cm4.已知a b =23(a ≠0,b ≠0),下列变形错误的是( B ) A.a 2=b 3B .2a =3b C.b 3=a 2D .3a =2b 5.如图,在□ABCD 中,DE ⊥AB 于点E ,BF ⊥AD ,交AD 的延长线于点F.(1)AB ,BC ,BF ,DE 这四条线段是否成比例?如果不是,请说明理由;如果是,请写出比例式.解:AB ,BC ,BF ,DE 这四条线段成比例. ∵在▱ABCD 中,DE ⊥AB ,BF ⊥AD , ∴S ▱ABCD =AB ·DE =AD ·BF.∵BC =AD ,∴AB ·DE =BC ·BF ,即AB BC =BFDE.学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.(2)若AB=10,DE=2.5,BF=5,求BC的长.解:∵AB·DE=BC·BF,∴10×2.5=5BC,解得BC=5.6.【2020·金昌】生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2 m,则a约为( A )A.1.24 mB.1.38 mC.1.42 mD.1.62 m课堂小结本节课你学到了什么?1.线段的比如果选用同一长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB:CD=m:n.2.成比例线段四条线段a,b,c,d,如果a与b的比等于c与d的比,即a c=b d,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.3.基本性质如果a c=b d,那么ad=bc.如果ad=bc (a, b, c, d都不等于0),那么a c=b d 课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,培养自我反馈,自主发展的意识.板书课题:4.1.1 线段的比和成比例线段一、线段的比二、成比例线段三、基本性质。
浙教版数学九年级上册4.1《比例线段》教案1

浙教版数学九年级上册4.1《比例线段》教案1一. 教材分析《比例线段》是浙教版数学九年级上册第四章的第一节内容。
本节主要让学生了解比例线段的定义、性质和应用,培养学生运用比例线段解决实际问题的能力。
教材通过引入实际问题,引导学生探索比例线段的性质,进而得出比例线段的定义,并通过例题和练习题使学生掌握比例线段的应用。
二. 学情分析九年级的学生已经具备了一定的几何知识,对线段、射线、直线等概念有了一定的了解。
但是,对于比例线段这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要引导学生通过实际问题探索比例线段的性质,从而理解比例线段的定义。
三. 教学目标1.理解比例线段的定义及其性质。
2.学会运用比例线段解决实际问题。
3.培养学生的几何思维能力和解决实际问题的能力。
四. 教学重难点1.重点:比例线段的定义及其性质。
2.难点:运用比例线段解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生探索比例线段的性质。
2.启发式教学法:在教学过程中,教师引导学生思考、讨论,从而培养学生的问题解决能力。
3.实践性教学法:通过例题和练习题,使学生掌握比例线段的运用。
六. 教学准备1.教具:黑板、粉笔、投影仪、PPT等。
2.学具:学生每人一份比例线段的相关练习题。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,如“在一条直线上,两点间的距离是否相等?”引发学生的思考,进而引导学生探索比例线段的性质。
2.呈现(10分钟)教师通过PPT展示比例线段的定义及其性质,让学生初步了解比例线段的概念。
3.操练(10分钟)教师提出一些有关比例线段的问题,让学生分组讨论、解答。
例如:“已知线段AB和线段BC的长度比为2:3,求线段AC的长度。
”通过解答这些问题,学生能够更好地理解比例线段的性质。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
练习题包括判断题、选择题和解答题,题型多样,难度适中。
九年级上册数学 4.1线段的比和比例的基本性质

(2)已知线段a、b、c满足关式
a b
b c
,
且b=5,那么ac=__2_5___.
如果线段a、b、c满足关式
ab bc
,
那么b是a、c的比例中项,且b2=ac.
• 2、反过来如果ad=bc,那么a,b,c,d
四个数成比例,即 a c 吗 ?
bd
由ad=bc,得出
ac bd
是有条件的,
1、如果a,b,c,d四个数成比例,即 a c , bd
那么ad=bc吗?
由等式的基本性质:
在 a c 两边同乘以bd,得ad=bc.
bd
两外项之积=两内项之积。 交叉相乘积相等
(1)a,b,c,d 是成比例线段,其中 a = 3 , b = 2 ,c = 9 ,则d 的长____6_____.
即a,b,c,d都不等于0
解: a, b, c, d都不等于0,
两边同时除以bd得:
ad bc bd bd
整理得:a c bd
两边同时除以dc得到
的比例式是什么?a b cd
d c或d b ba ca 或b d或b a
ac dc 或c d或c a
ab db
1.如果2x=5y,那么
n
CD
五边形 ABCDE与五边 形A’B’C’D’E’形状相同, AB=5cm,A’B’=3cm。 请问:线段AB与线段 A’B’的比是多少?
◎这个比值刻画了两个五边形大小关系
注: 1、线段的比要统一单位长度。 2、线段的比是一个正数,无单位
已知线段a=30cm,b=60cm,c=0. 15m ,d=30cm. (1)求线段a与线段b的比; (2)求线段c与线段d的比;
初中数学八年级下册《相似图形4.1线段的比》

其中a,b分别叫做这个线段比的前项和后项.
如果把 m 表示成比值k, 那么 a k,或a k b.
n
b
如何理解
两条线段的比
• 实践出真知: • ①若a=148 mm,
b=220 mm,求a∶b; • ②若a=148 mm,
b=22 cm,求 a∶b.
解 : 1. a 148mm 37 ;
八年级数学(下)第四章 相似图形
§4.1线段的比(1)
阳泉市义井中学 高铁牛
开启 智慧
这棵大树有多高?
• 小敏思考后,她只 用一根卷尺, 测出 了大树影子BC,自
己的身高A1 B1及影 子B1 C1三个数据, 然后通过计算,立 刻得出了树高AB. 你能行吗?这里需 要什么知识?
A
A1
C
B
C1 B1
是生活告诉小敏树高的
积累就是知识
是生活告诉小敏树高的
同一时刻物高 与影长成比例 小敏高=1.5米 影长=0.5米
树高=9?米 树影长=3米
随堂练习 主动学习
p92
才是快乐的
• 已知:C为线段AB 上一点, AC∶CB=5∶3.
• 求:AC∶AB及 AB∶CB的值.
• 解:设一份为k,这样AC=5k, CB=3k,则AB=8k
合作
实践经验
什么叫做两条 线段的比呢
• 请同学们测量课本封面相邻两边a,b的长. • 如:a=14.8cm,b=22cm.
a与b的比是多少?a 14.8cm 37 b 22cm 55
如果选用一个长度单位量得两条线段a ,b 的长度分别
为m ,n .那么两条线段的比a:b=m:n或 a m bn
A
128 27
4.1比例线段(1)

a c ad bc b d
(a,b,c,d都不为零)
16:10
判一判
填一填
1、判断下列四个数能否成比例。 2,4,8,10 ( 不成比例 )
2、已知三个数 2,4,8,请你再添一个数, 使这四个数能成比例,则 这个数是 16、4或1 。
2x=4×8 4x=2×8 x=16 x=4
8x=4×2 x=1
16:10
为什么现在的液晶电视机看电视, 图像变得扁了?
你的液晶电视屏幕比例(宽与高之比)是 16 : 9 的, 而电视输出信号是 的,所以图像会变扁。
4:3
用数学的眼光来分析:图像变扁是因为
不相等 16 : 9与4 : 3的比值 (填相等或不相等)
9 16 4
3
4 : 3 12 : 9 9 4 12 或 3 9
16:10
算一算 3、求下列比例式中的 x(课内练习 1 ) x x 1 ( 2) (1)4 : 3 5 : x 3 2
解: 4 x 5 3 解: 3( x 1) 2 x 15 3x 3 2 x x 4 x3
把等比的形式转化成等积的形式。
16:10
猜一猜
验一验
例1 根据下列条件,求a : b的值 a b (1) 2a 3b (2) 5 4
2a 5b (3) 0 .6 2
2a 5b a 3 (3) 4a 3b 0.6 2 b 4
等比 等积 等比
?
16:10
7 a 3 ab 课内练习2、若 , 则 = ; b 4 b 4
归纳与运用
a c 已知 ,判断下列比例式是否成立, 例 2、 b d 并说明理由。
ab cd (1) b d
4.1比例线段(1)

2x 3y z 求 的值 x 3y z
探究活动
在平面直角坐标系中,过点(a,b)和 坐标原点的直线是一个怎样的正比例函 数的图像? 如果a,b,c,d四个数成比例,你认为点(a, b),点(c,d)和坐标原点在一条直线上吗? 请说明理由.
课堂小结: 比例有如下性质: a c ad bc (a,b,c,d均不为零) b d
,判断下列比例式是否
ab cd (1) b d a ac ( 2) b bd
设比值 k
比例式变形的常用方法: 利用等式性质
试一试:
已知
a 3 b 4
ab 求(1) b
(2)
ab b
(3) 2a b
a 2b
的值
x y z 且xyz≠0 想一想:已知 2 3 4
已知ab=cd,请写出有关a,b,c,d成立的
比例式. (至少写4个)
试一试:
1. 根据下列条件,求a:b的值.
a b (1) 2 a 3b ( 2) 5 4
2. 求下列比例式中的 x.
x x 1 (1) 4 : 3 5 : x ( 2) 3 2
3、已知
成立,并说明理由:
a c b d
13,9,2,6 2 12, 6 , 10, 33, 3, 2 ,2
5
你能换一个数使(3)成比例吗?
做一做
a c 利用等式性质,你能从 推导出 b d ad=bc 吗?
比例有如下性质: a c ad bc (a,b,c,d均不为零) b d
反过来呢?
试一试: 练习:
9︰12 = 6︰8 =
3 4 3 4
4、1、1成比例线段(1) -21—22学年北师大版九年级数学上册

的值。
2 3
2、小明认为:
a (1)如果b
c d
b
d
0, c
d
0
那么
b
a
a
d
c
c
。
(2)如果a b c d
b
d
,那么 a c bd
。
这两个结论正确吗?为什么?
(1)✔ (2)✔ 合比性质的应用
2、(1)证明:∵ a c a b 0, c d 0
bd ∴ ad bc
在等式两边同时加ac 即 ad +ac bc ac
所以研究相似图形,先要学习线段的比和 比例线段的有关知识.
讲授新课
一 线段的比
A
m
BC nD
如果选用同一个长度单位 量得两条线段AB,CD的
长度分别是m、n,那么这两条线段的比就是两条线
段的长度比。
记作:AB: CD m : n(或 AB m) CD n
其中,AB、CD分别叫做这个线段比的前项、后项。
c
a
b
求k的值.
解:当a+b+c≠0时,由 a+b b+c c+a k ,
c ab
得 a+b b+c+c+a k ,
a+b+c
则k=2;
易错点
当a+b+c=0时,则有a+b=-c.
此时 k= c c 1
a+b c
综上所述,k的值是2或-1.
课堂练习
1、已知
a b
c d
=
2 3
b
d
0
a+c ,b d
∴ AB BC CA AB 3 .
4.1成比例线段(1)

第30 课时课题:成比例线段(1)学习目标:了解线段的比和比例线段的概念,会求两条线段比;理解并掌握比例的基本性质,能用比例的基本性质解决一些实际问题2水平目标:通过自主,合作探究新知的过程能感受观察,分析,归纳等获取知与课堂活动重点:成比例线段的理解和应用。
难点:应用比例的基本性质解决实际问题。
导学过程活动1 独学教材77页前三段内容完成知识点一和知识点二知识点一:形状相同的图形形状相同的图形是指两个图形形状完全(),但()并不一定相同。
知识点二:两条线段的比如果选用同一个长度单位量得两条线段AB、CD的长度分别是m、n,那么这两条线段的比就是它们()的比,即AB:CD=m:n或写成nmCDAB=线段AB,CD分别叫做这个线段比的()项和()项,如果把nm表示成比值K,那么kCDAB=,或•=kAB()思考:(1)求两条线段的比时,两条线段的长度单位有什么要求?(2针对演练1(考察)某地图册上靖边县到户县的直线距离AB=8cm,而靖边县到户县的实际直线距离CD=400km,求CDAB。
解:活动2:二人对学教材77页做一做完成知识点三如下图所示,设小方格的边长为1,四边形ABCD与四边形EFGH的顶点都在格点上,(1)通过数格子或利用勾股定理可求得AB=______,AD=______,EF=_____,EH=_____;(2)由(1)中结果,可计算出______;______,______,______,====EHEFADABEHADEFAB所以:;知识点三:成比例线段四条线段a,b,c,d中,如果a与b的比等于c与d的比,即____________,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段;注意:(1)成比例的线段是指()条线段的关系,而不是两条线段的关系。
(2)在比例式a:b=c:d中,b,c叫作两()项,a,d叫作两()项,其中d叫作a,b,c的()项。
(3)如果cbba=,那么b叫做a和c的()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
C
B
你真棒
小结
拓展
悟出一个新自己
一个生活常识:在同一时刻,物高与影长成比 例. 线段的比. 将所学知识网络化. 要养成用一双数学眼睛去观察生活. 与同伴谈谈你的收获与体会.
独立 作业
知识的升华
习题4.1 1,2,3题. 祝你成功!
下课了!
结束寄语
数学使人聪明
如何理解两条线段的比 结论: 1.两条线段的比就 是长度的比,它是 实践出真知: 一个数,它没有单位. 2.两条线段的比是 ①若a=148 mm, b=220 mm,求a∶b; 有顺序的; 3.两条线段比与所 ②若a=148 mm, b=22 cm,求 a∶b. 选的长度单位无关. 4.求两条线段比时. a 148mm 37 解 : 1. ; 如果单位不同.那么 b 220mm 55 必须先化成同一单 a 148mm 148mm 37 位.再求它们的比 . 2. .
b 22cm 220mm 55
在某市城区地图(比例尺1:9000)上,新安大街 图上长度与光华大街的图上长度分别是16cm,10cm. (1)新安大街与光华大街的实际长度各是多少米?
解:新安大街的实际长度是:16cm×9000=14000cm=1440m 光华大街的实际长度是:10cm×900=9000cm=900m
同一时刻物高 与影长成比例 小敏高=1.5米 影长=0.5米
树高=? 9米 树影长=3米
主动学习 才是快乐的学习
已知:C为线段 AB上一点, AC∶CB=5∶3. 求:AC∶AB及 AB∶CB的值. 解:设一份为k,这样 AC=5k,CB=3k,则AB=8k ∴AC∶AB=5k∶8k=5∶8, AB∶CB=8k∶3k=8∶3.
A
B E C
5 3 D AE 3 3. BC 10 6
拓展知识 我能行
• 如图,P为线段AB 上一点 • AB-BC=10cm, BC∶AC=3∶5. • 求:AC的长. 解:设BC=3x,AC=5x,则 AB=5x+3x=8x. AB-BC=8x-3x=5x=10. x=2. AC=5x=5×2=10(cm)
4.1 线段的比(1)
这棵大树有多高?
小敏思考后,她只 用一根卷尺, 测出 了大树影子BC,自 己的身高A1 B1及 影子B1 C1三个数 据,然后通过计算, 立刻得出了树高 AB.你能行吗?这 里需要什么知识?
A
A1
C
B
C1 B1
交流讨论
如何把学校的平面图在施工图 纸上反应出来?
想一想,你能胜任这项工作吗?
欣赏
说说你对上例的理解 和感悟
北京
根据例题 的结论,试 计算某市 到首都的 实际距离? 某市到首 都的实际 距离约 438km.
1.2cm
某市
1:36 500 000
积累就是知识
是生活告诉小敏树高的
积累就是知识
是生活告诉小敏树高的
积累就是知识
是生活告诉小敏树高的
积累就是知识
是生活告诉小敏树高的
中国自然景观卫星影像图
1:18 700 000
思 考 分 析
这幅 图片 中的 实际 自然 景观 有多 大?
为解决这些问题,需要……
系统地学习相似图形的一些相关知识. 为此,我们先来学习线段的比.
师生,生生 合作
☞
什么叫做两条线段的比呢
请同学们测量课本封面相邻两边a,b的长. 如:a=14.8cm,b=22cm.
a 14.8cm 37 a与b的比是多少? b 22cm 55
如果选用一个长度单位量得两条线段a ,b 的长度分别
a m 为m ,n .那么两条线段的比a:b=m:n或 b n
其中a,b分别叫做这个线段比的前项和后项.
m a 如果把 表示成比值k , 那么 k , 或a k b. 网络体系
• 如图,在平行四 解:在Rt△ABE中,B=300 ∴AB=2AE. 边形ABCD中, ∵BC=AD=10,E是BC中点, ∠B=30°, AD=10.AE为BC边 ∴BE=5,由勾股定理可得 上的高,垂足E为 5 3 AE ; BC中点. 3 • 求:AE∶BC.
(2)新安大街与光华大街的图上长度之比是多少? 它们的实际长度之比呢?
解:新安大街与光华大街的图上长度之比是16:10=8:5 新安大街与光华大街的实际长度之比是1440:900=8:5
(3)通过以上的解答,你能发现什么?
新安大街的图上长度 光华大街的图上长度
新安大街的实际长度
光华大街的实际长度
例题