2020年高中三年级数学下期末试卷(带答案)(1)
2020年高中三年级数学下期末试题附答案(1)

2020年高中三年级数学下期末试题附答案(1)一、选择题1.如果42ππα<<,那么下列不等式成立的是( )A .sin cos tan ααα<<B .tan sin cos ααα<<C .cos sin tan ααα<<D .cos tan sin ααα<<2.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形3.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i4.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤5.函数()sin(2)2f x x π=-的图象与函数()g x 的图象关于直线8x π=对称,则关于函数()y g x =以下说法正确的是( )A .最大值为1,图象关于直线2x π=对称B .在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C .在3,88ππ⎛⎫-⎪⎝⎭上单调递增,为偶函数 D .周期为π,图象关于点3,08π⎛⎫⎪⎝⎭对称 6.当1a >时, 在同一坐标系中,函数xy a-=与log a y x =-的图像是( )A .B .C .D .7.在如图的平面图形中,已知1,2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u v u u u v u u u v u u u v则·BC OM u u u vu u u u v的值为A .15-B .9-C .6-D .08.已知,a b rr 是非零向量且满足(2)a b a -⊥r r r ,(2)b a b -⊥,则a r 与b r 的夹角是( )A .6π B .3π C .23π D .56π 9.已知非零向量AB u u u v 与AC u u uv 满足0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭u u u v u u u vu u u v u u u v u u u v 且12AB AC AB AC ⋅=u u u v u u u v u u u v u u u v ,则ABC V 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能10.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .3211.在△ABC 中,AB=2,AC=3,1AB BC ⋅=u u u r u u u r则BC=______ A 3B 7C 2D 2312.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42a A =,且C 为锐角,则ABC ∆面积的最大值为________.14.计算:1726cos()sin 43ππ-+=_____. 15.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.16.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.17.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.18.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且2EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.19.在体积为9的斜三棱柱ABC —A 1B 1C 1中,S 是C 1C 上的一点,S —ABC 的体积为2,则三棱锥S —A 1B 1C 1的体积为___.20.()sin 5013=oo________________.三、解答题21.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,连接BD ,其中DA DP =,BA BP =.(1)求证:PA BD ⊥;(2)若DA DP ⊥,060ABP ∠=,2BA BP BD ===,求二面角D PC B --的正弦值.22.如图:在ABC ∆中,10a =,4c =,5cos 5C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.23.在ABC △中,BC a =,AC b =,已知a ,b 是方程22320x x -+=的两个根,且2cos()1A B +=. (1)求角C 的大小; (2)求AB 的长.24.已知函数()()2f x x 2a 1x 2alnx(a 0)=-++>.()1求()f x 的单调区间;()2若()f x 0≤在区间[]1,e 上恒成立,求实数a 的取值范围.25.商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (1) 求的值;(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈L ,且{}n a 为正项等比数列,12a =,324b b =+. (1)求数列{}n a 与{}n b 的通项公式; (2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】分别作出角α的正弦线、余弦线和正切线,结合图象,即可求解. 【详解】如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT , 很容易地观察出OM MP AT <<,即cos sin tan ααα<<. 故选C.【点睛】本题主要考查了三角函数线的应用,其中解答中熟记三角函数的正弦线、余弦线和正切线,合理作出图象是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.2.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==o .所以180454590A =--=o o o o . 所以ABC ∆为等腰直角三角形.故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.3.B解析:B 【解析】 【分析】利用复数的运算法则解得1i z =-+,结合共轭复数的概念即可得结果. 【详解】∵复数z 满足21ii z=-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.4.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1aa a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.5.B解析:B 【解析】 【分析】先求出函数y=g(x)的解析式,再利用三角函数的图像和性质对每一个选项逐一分析判断. 【详解】设点P(x,y)是函数()y g x =图像上的任意一点,则点Q (x ,)4y π-+在函数y=f(x)的图像上,sin[2(-x+)]sin 2()42y x g x ππ=-=-=,对于选项A,函数y=g(x)的最大值为1,但是()012g π=≠±,所以图象不关于直线2x π=对称,所以该选项是错误的;对于选项B,()()g x g x -=-,所以函数g(x)是奇函数,解222+22k x k ππππ-≤≤得+44k x k ππππ-≤≤,)k Z ∈(,所以函数在0,4π⎛⎫⎪⎝⎭上单调递减,所以该选项是正确的; 对于选项C,由前面分析得函数y=g(x)的增区间为3[+,]()44k k k Z ππππ+∈,且函数y=g(x)不是偶函数,故该选项是错误;对于选项D,函数的周期为π,解2,,2k x k x ππ=∴=所以函数图像的对称中心为,0)(k Z)2k π∈(,所以该选项是错误的. 故选:B 【点睛】本题主要三角函数的解析式的求法,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D 【解析】 【分析】根据指数型函数和对数型函数单调性,判断出正确选项. 【详解】由于1a >,所以1xxa y a-=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合. 故选:D. 【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.7.C解析:C【解析】分析:连结MN ,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN ,由2,2BM MA CN NA ==u u u u v u u u v u u u v u u u v可知点,M N 分别为线段,AB AC 上靠近点A 的三等分点,则()33BC MN ON OM ==-u u u v u u u u v u u u v u u u u v ,由题意可知:2211OM ==u u u u v ,12cos1201OM ON ou u u u v u u u v ⋅=⨯⨯=-,结合数量积的运算法则可得:()2333336BC OM ON OM OM ON OM OM ⋅=-⋅=⋅-=--=-u u u v u u u u v u u u v u u u u v u u u u v u u u v u u u u v u u u u v .本题选择C 选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.8.B解析:B 【解析】 【分析】利用向量垂直求得222a b a b ==⋅r rr r ,代入夹角公式即可.【详解】设,a b rr 的夹角为θ;因为(2)a b a -⊥r r r,(2)b a b -⊥,所以222a b a b ==⋅r r r r , 则22|2,|2a a b b a b =⋅⋅=r r r r r r ,则2212cos ,.23aa b a b aπθθ⋅===∴=r rr r r r 故选:B 【点睛】向量数量积的运算主要掌握两点:一是数量积的基本公式cos a b a b θ⋅=r r r r;二是向量的平方等于向量模的平方22a a =r r . 9.C解析:C 【解析】 【分析】AB AB u u u v u u u v 和AC AC u u u vu u uv 分别表示向量AB u u u v 和向量AC u u u v 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅=⎪⎝⎭u u u v u u u vu u u v u u u v u u u v 表示A ∠平分线所在的直线与BC 垂直,可知ABC V 为等腰三角形,再由12AB AC AB AC ⋅=u u u v u u u v u u uv u u u v 可求出A ∠,即得三角形形状。
2020年高中三年级数学下期末试卷(及答案)(1)

2020年高中三年级数学下期末试卷(及答案)(1)一、选择题1.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0 B .1C .2D .32.若满足sin cos cos A B Ca b c==,则ABC ∆为( ) A .等边三角形 B .有一个内角为30°的直角三角形 C .等腰直角三角形D .有一个内角为30°的等腰三角形3.已知F 1,F 2分别是椭圆C :22221x y a b+= (a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .2,13⎡⎫⎪⎢⎣⎭B .13⎡⎢⎣⎦C .1,13⎡⎫⎪⎢⎣⎭D .10,3⎛⎤ ⎥⎝⎦4.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6}B .{3,5,6}C .{1,3,5,6}D .{1,2,3,4}5.若不等式222424ax ax x x +-<+ 对任意实数x 均成立,则实数a 的取值范围是( ) A .(22)-,B .(2)(2)-∞-⋃+∞,, C .(22]-,D .(2]-∞,6.已知a r 与b r均为单位向量,它们的夹角为60︒,那么3a b -r r 等于( )A BC D .47.已知函数()(3)(2ln 1)xf x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是( )A .(,)e +∞B .2(,2)e eC .2(2,)e +∞D .22(,2)(2,)e e e +∞U8.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则 A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-9.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10B .20C .40D .8010.不等式2x 2-5x -3≥0成立的一个必要不充分条件是( )A .1x <-或4x >B .0x …或2x -…C .0x <或2x >D .12x -…或3x …11.样本12310,?,?,? a a a a⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 12.在等比数列{}n a 中,44a =,则26a a ⋅=( ) A .4B .16C .8D .32二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.15.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 16.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.17.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的值为 .18.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.19.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 20.已知集合P 中含有0,2,5三个元素,集合Q 中含有1,2,6三个元素,定义集合P+Q 中的元素为a+b ,其中a ∈P ,b ∈Q ,则集合P+Q 中元素的个数是_____.三、解答题21.如图,已知四棱锥P ABCD -的底面为等腰梯形,//AB CD ,AC BD ⊥,垂足为H ,PH 是四棱锥的高.(Ⅰ)证明:平面PAC ⊥平面PBD ; (Ⅱ)若AB 6=,APB ADB ∠=∠=60°,求四棱锥P ABCD -的体积. 22.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?23.如图,矩形ABCD 和菱形ABEF 所在的平面相互垂直,ABE 60∠=︒,G 为BE 的中点.(Ⅰ)求证:AG ⊥平面ADF ;(Ⅱ) 求AB 3=BC 1=,求二面角D CA G --的余弦值.24.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.25.某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示(1)由折线图可以看出,可用线性回归模型拟合月利润y (单位:百万元)与月份代码x 之间的关系,求y 关于x 的线性回归方程,并预测该公司2019年3月份的利润;(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,A B 两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料损坏的年限不同,现对,A B 两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表: 使用寿命/材料类型 1个月 2个月 3个月 4个月 总计 A 20 35 35 10 100 B10304020100如果你是甲公司的负责人,你会选择采购哪款新型材料? 参考数据:6196ii y==∑ 61371i i i x y ==∑参考公式:回归直线方程ˆˆˆybx a =+,其中()()()()1122211ˆ=n niii ii i nniii i x x y y x y nxyb x x xnx ====---=--∑∑∑∑26.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =u u u v u u u u v.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的. 【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等. 故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.2.C解析:C 【解析】 【分析】由正弦定理结合条件可得tan tan 1B C ==,从而得三角形的三个内角,进而得三角形的形状. 【详解】由正弦定理可知sin sin sin A B Ca b c ==,又sin cos cos A B C a b c==, 所以cos sin ,cos sin B B C C ==,有tan tan 1B C ==.所以45B C ==o .所以180454590A =--=o o o o . 所以ABC ∆为等腰直角三角形. 故选C. 【点睛】本题主要考查了正弦定理解三角形,属于基础题.3.C解析:C 【解析】 如图所示,∵线段PF 1的中垂线经过F 2,∴PF 2=12F F =2c ,即椭圆上存在一点P ,使得PF 2=2c. ∴a-c≤2c≤a+c.∴e=1[,1)3c a ∈.选C. 【点睛】求离心率范围时,常转化为x,y 的范围,焦半径的范围,从而求出离心率的范围。
2020-2021高中三年级数学下期末试卷及答案(1)

2020-2021高中三年级数学下期末试卷及答案(1)一、选择题1.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( ) A .14B .13C .12D .232.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( ) A .甲B .乙C .丙D .丁4.在ABC V 中,若 13,3,120AB BC C ==∠=o ,则AC =( ) A .1 B .2C .3D .45.设集合,,则=( )A .B .C .D .6.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( )A .B .C .D .7.在样本的频率分布直方图中,共有11个小长方形,若中间一个长方形的面积等于其他十个小长方形面积的和的,且样本容量是160,则中间一组的频数为( ) A .32B .0.2C .40D .0.258.样本12310,?,?,? a a a a ⋅⋅⋅的平均数为a ,样本12310,?,?,? b b b b ⋅⋅⋅的平均数为b ,那么样本1122331010,? ,,? ,?,,?,? a b a b a b a b ⋅⋅⋅的平均数为( )A .()a b +B .2()a b +C .1()2a b + D .1()10a b + 9.已知复数z 满足()12i z +=,则复数z 的虚部为( ) A .1B .1-C .iD .i -10.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m αP ,m n ⊥,则n α⊥; ②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④11.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34y x =?C .35y x =±D .53y x =±12.把红、黄、蓝、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是 A .对立事件 B .互斥但不对立事件 C .不可能事件D .以上都不对二、填空题13.函数log (1)1(01)a y x a a =-+>≠且的图象恒过定点A ,若点A 在一次函数y mx n =+的图象上,其中,0,m n >则12m n+的最小值为 14.如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.15.已知圆台的上、下底面都是球O 的截面,若圆台的高为6,上、下底面的半径分别为2,4,则球O 的表面积为__________.16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为33,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 . 17.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.现有抛物线22(0)y px p =>,如图一平行于x 轴的光线射向抛物线,经两次反射后沿平行x 轴方向射出,若两平行光线间的最小距离为4,则该抛物线的方程为__________.18.已知1OA =u u u r ,3OB =u u u r ,0OA OB •=u u u r u u u r,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB =+u u u r u u u r u u u r ,(,)m n R ∈,则mn=__________.19.34331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 20.在区间[﹣2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为,则m= _________ .三、解答题21.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程; (2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t=+⎧⎨=-+⎩(t 为参数)距离的最小值.22.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积. 23.在△ABC 中,a =7,b =8,cos B = –17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.24.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过两圆交点的直线的极坐标方程.25.如图:在ABC ∆中,10a =,4c =,5cos 5C =-.(1)求角A ;(2)设D 为AB 的中点,求中线CD 的长.26.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由题意,求得(),()P AB P A 的值,再由条件概率的计算公式,即可求解. 【详解】记事件A 表示“第一次正面向上”,事件B 表示“第二次反面向上”, 则P(AB)=,P(A)=,∴P(B|A)==,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2.A解析:A 【解析】 【分析】当3λ=-时,两条直线是平行的,但是若两直线平行,则3λ=-或1λ=,从而可得两者之间的关系. 【详解】当3λ=-时,两条直线的方程分别为:6410x y ++=,3220x y +-=,此时两条直线平行;若两条直线平行,则()()2161λλλ⨯-=--,所以3λ=-或1λ=,经检验,两者均符合,综上,“3λ=-”是“直线()211x y λλ+-=与直线()614x y λ+-=平行” 的充分不必要条件,故选A. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.3.C解析:C 【解析】 【分析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 【详解】由题意得乙、丙均不跑第一棒和第四棒, ∴跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意; 当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意. 故跑第三棒的是丙. 故选:C . 【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,是基础题.4.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.5.B解析:B 【解析】 试题分析:集合,故选B.考点:集合的交集运算.6.D解析:D 【解析】 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1xy a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.7.A解析:A 【解析】试题分析:据已知求出频率分布直方图的总面积;求出中间一组的频率;利用频率公式求出中间一组的频数.解:设间一个长方形的面积S 则其他十个小长方形面积的和为4S ,所以频率分布直方图的总面积为5S 所以中间一组的频率为所以中间一组的频数为160×0.2=32 故选A点评:本题考查频率分布直方图中各组的面积除以总面积等于各组的频率.注意频率分布直方图的纵坐标是.8.C解析:C 【解析】 【分析】 【详解】由题意可知1210121010,10a a a a b b b b +++=+++=L L ,所以所求平均数为()121012101210121012020202a a ab b b a a a b b b a b +++++++++++++=+=+L L L L考点:样本平均数9.B解析:B 【解析】设,,z a bi a b R =+∈() ,由()1i 22z z i z +=⇒=--()2a bi i a bi ⇒+=--(),2a bi b a i ⇒+=-+-() ,2a b b a =-⎧⇒⎨=-⎩ 1b ⇒=- ,故选B. 10.A解析:A 【解析】 【分析】根据空间中点、线、面位置关系,逐项判断即可. 【详解】①若m αP ,m n ⊥,则n 与α位置关系不确定;②若n αP ,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m P β,n β⊂,n αP 时,平面α,β平行; ④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题. 综上,为真命题的是②③④. 故选A 【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.11.A解析:A 【解析】 【分析】依据题意作出图象,由双曲线定义可得1122PF F F c ==,又直线PF 2与以C 的实轴为直径的圆相切,可得2MF b =,对2OF M ∠在两个三角形中分别用余弦定理及余弦定义列方程,即可求得2b a c =+,联立222c a b =+,即可求得43b a =,问题得解. 【详解】依据题意作出图象,如下:则1122PF F F c ==,OM a =, 又直线PF 2与以C 的实轴为直径的圆相切, 所以2OM PF ⊥, 所以222MF c a b =-=由双曲线定义可得:212PF PF a -=,所以222PFc a =+, 所以()()()()22222222cos 2222c a c c b OF M c c a c ++-∠==⨯⨯+整理得:2b a c =+,即:2b a c -= 将2c b a =-代入222c a b =+,整理得:43b a =, 所以C 的渐近线方程为43b y x x a =±=± 故选A 【点睛】本题主要考查了双曲线的定义及圆的曲线性质,还考查了三角函数定义及余弦定理,考查计算能力及方程思想,属于难题.12.B解析:B 【解析】 【分析】本题首先可以根据两个事件能否同时发生来判断出它们是不是互斥事件,然后通过两个事件是否包含了所有的可能事件来判断它们是不是对立事件,最后通过两个事件是否可能出现来判断两个事件是否是不可能事件,最后即可得出结果., 【详解】因为事件“甲分得红牌”与事件“乙分得红牌”不可能同时发生,所以它们是互斥事件,因为事件“甲分得红牌”与事件“乙分得红牌”不包含所有的可能事件,所以它们不是对立事件,所以它们是互斥但不对立事件,故选B . 【点睛】本题考查了事件的关系,互斥事件是指不可能同时发生的事件,而对立事件是指概率之和为1的互斥事件,不可能事件是指不可能发生的事件,考查推理能力,是简单题.二、填空题13.8【解析】∵函数(且)的图象恒过定点A∴当时∴又点A 在一次函数的图象上其中∴又∴∴(当且仅当时取)故答案为8点睛:本题主要考查了基本不等式基本不等式求最值应注意的问题(1)使用基本不等式求最值其失误解析:8 【解析】∵函数log 11a y x =-+()(0a >,且1a ≠)的图象恒过定点A , ∴当2x =时,1y =,∴()21A ,,又点A 在一次函数y mx n =+的图象上,其中0mn >,∴21m n +=,又0mn >,∴0m >,0n >,∴()12124 248n mm n m n m n m n+=+⋅+=++≥(),(当且仅当122n m ==时取“=”),故答案为8.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.14.【解析】【分析】将平移到和相交的位置解三角形求得线线角的余弦值【详解】过作过作画出图像如下图所示由于四边形是平行四边形故所以是所求线线角或其补角在三角形中故【点睛】本小题主要考查空间两条直线所成角的【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,1122,23BC C D BD ===,故16cos 22223C BD ∠==⨯⨯.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.15.【解析】【分析】本道题结合半径这一条件利用勾股定理建立等式计算半径即可【详解】设球半径为R 球心O 到上表面距离为x 则球心到下表面距离为6-x 结合勾股定理建立等式解得所以半径因而表面积【点睛】本道题考查 解析:80π【解析】 【分析】本道题结合半径这一条件,利用勾股定理,建立等式,计算半径,即可。
2020年福州市高中三年级数学下期末试题(附答案)

2020年福州市高中三年级数学下期末试题(附答案)一、选择题1.若正实数x ,y 满足141x y +=,且234y x a a +>-恒成立,则实数a 的取值范围为( )A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.已知向量a v ,b v满足a =v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( )A.2 B.3 CD.4 3.在二项式n 的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16B .14C .512D .134.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( ) A .20种 B .30种 C .40种 D .60种5.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为A.2 BCD.26.设集合{1,2,3,4,5,6}U =,{1,2,4}A =,{2,3,4}B =,则()C U A B ⋃等于( ) A .{5,6} B .{3,5,6} C .{1,3,5,6} D .{1,2,3,4}7.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=- 8.某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数为( )A .7B .8C .9D .109.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A.4 B .532 C.2 D.210.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin 2n n n b a π+=,记数列{}n b 的前n 项和为n T,则2017T =( ) A .2016 B .2017 C .2018 D .201911.已知a R ∈,则“0a =”是“2()f x x ax =+是偶函数”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件12.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C 的渐近线的距离为3c ,则双曲线的渐近线方程为() A .3y x =±B .2y x =±C .y x =±D .2y x =± 二、填空题 13.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 14.设0a >,若对于任意满足8m n +=的正数m ,n ,都有1141a m n ++≤,则a 的取值范围是______.15.在ABC V 中,60A =︒,1b =,面积为3,则sin sin sin a b c A B C++=++________. 16.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______. 17.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r 的值为 . 18.如图,圆C (圆心为C )的一条弦AB 的长为2,则AB AC ⋅u u u r u u u r =______.19.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.20.函数232x x --的定义域是 .三、解答题21.若0,0a b >>,且11ab a b+=(1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.22.己知数列的前n 项和为,且.(1)求数列的通项公式; (2)设,求数列的前n 项和. 23.已知()ln x e f x a x ax x=+-. (1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x +---≥在[1,)+∞上恒成立,求b 的取值范围.24.已知函数()3f x ax bx c =++在点2x =处取得极值16c -. (1)求,a b 的值;(2)若()f x 有极大值28,求()f x 在[]3,3-上的最小值.25.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?26.已知函数()32f x x ax bx c =+++,过曲线()y f x =上的点()()1,1P f 处的切线方程为31y x =+.(1)若函数()f x 在2x =-处有极值,求()f x 的解析式;(2)在(1)的条件下,求函数()y f x =在区间[]3,1-上的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44y x +≥,从而得到关于a 的不等式,解不等式求得结果.【详解】 由题意知:1442444y y x y x x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04y x >424x y y x ∴+≥=(当且仅当44x y y x =,即4x y =时取等号) 44y x ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.2.D解析:D【解析】【分析】 根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】 由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,a b a b a b ⋅∴<>===r r r r r r本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.3.C解析:C【解析】【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果【详解】因为n 前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82r rr r n n T C x r -+>∴=∴=⋅=Q L , 当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.4.A解析:A【解析】【分析】【详解】根据题意,分析可得,甲可以被分配在星期一、二、三;据此分3种情况讨论,计算可得其情况数目,进而由加法原理,计算可得答案.解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A 42=12种安排方法,甲在星期二有A 32=6种安排方法,甲在星期三有A 22=2种安排方法,总共有12+6+2=20种;故选A .5.C解析:C【解析】【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可.【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠, 设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以5BE a =, 则55tan BE a EAB AB ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.6.A解析:A【解析】【分析】先求并集,得到{1,2,3,4}A B ⋃=,再由补集的概念,即可求出结果.【详解】因为{1,2,4}A =,{2,3,4}B =,所以{1,2,3,4}A B ⋃=,又{1,2,3,4,5,6}U =,所以()C {5,6}U A B ⋃=.故选A.【点睛】本题主要考查集合的并集与补集的运算,熟记概念即可,属于基础题型.7.C解析:C【解析】【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果.【详解】因为()a i i b i +=+,即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-,故选C.【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.8.D解析:D【解析】试题分析:因为210:270:3007:9:10,=所以从高二年级应抽取9人,从高三年级应抽取10人.考点:本小题主要考查分层抽样的应用.点评:应用分层抽样,关键是搞清楚比例关系,然后按比例抽取即可.9.C解析:C【解析】试题分析:先求得M (2,32,3)点坐标,利用两点间距离公式计算得CM=2,故选C .考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用.点评:简单题,应用公式计算. 10.A解析:A【解析】【分析】由2n S n n =-得到22n a n =-,即n b =2(1)cos 2n n π-,利用分组求和法即可得到结果. 【详解】由数列{}n a 的前n 项和为2n S n n =-,当1n =时,11110a S ==-=;当2n …时,1n n n a S S -=-22(1)(1)22n n n n n ⎡⎤=-----=-⎣⎦,上式对1n =时也成立,∴22n a n =-, ∴cos 2n n n b a π==2(1)cos 2n n π-, ∵函数cos 2n y π=的周期242T ππ==, ∴()2017152013T b b b =++++L (26b b +)2014b ++L()()3720154820162017b b b b b b b +++++++++L L02(152013)0=-+++++L 2(3+72015)045042016+++=⨯=L ,故选:A.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,利用分组法求数列的和,主要考查学生的运算能力和转化能力,属于中档题.11.C解析:C【解析】因为()2f x x ax =+是偶函数,所以22()()20f x x ax f x x ax ax -=-==+∴= 所以0a =.所以“0a =”是“()2f x x ax =+是偶函数”的充要条件.故选C. 12.A解析:A【解析】【分析】利用双曲线C :()222210,0x y a b a b -=>>,求出a ,b 的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=,可得:=,可得b c =,b a =C 的渐近线方程为y =. 故选A .【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题.二、填空题13.【解析】【分析】由题意可得运用累加法和裂项相消求和可得再由不等式恒成立问题可得恒成立转化为最值问题可得实数的取值范围【详解】解:由题意数列中即则有则有又对于任意的不等式恒成立即对于任意的恒成立恒成立 解析:(,1]-∞-【解析】【分析】由题意可得11111(1)1n n a a n n n n n n +-==-+++,运用累加法和裂项相消求和可得11n a n ++,再由不等式恒成立问题可得232t a ≤-⋅恒成立,转化为最值问题可得实数t 的取值范围.【详解】解:由题意数列{}n a 中,1(1)1n n na n a +=++,即1(1)1n n na n a +-+= 则有11111(1)1n n a a n n n n n n +-==-+++ 则有11111111n n n n n n a a a a a a n n n n n n ++--⎛⎫⎛⎫⎛=-+-+- ⎪ ⎪ ++--⎝⎭⎝⎭⎝2211122n a a a a n -⎫⎛⎫+⋯+-+ ⎪⎪-⎝⎭⎭ (11111111121n n n n n n ⎛⎫⎛⎫⎛⎫=-+-+-+⋯+ ⎪ ⎪ ⎪+---⎝⎭⎝⎭⎝⎭11)12221n -+=-<+ 又对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立, 即232t a ≤-⋅对于任意的[2,2]a ∈-恒成立,21t a ∴⋅≤,[2,2]a ∈-恒成立,∴2211t t ⋅≤⇒≤-,故答案为:(,1]-∞-【点睛】本题考查了数列递推公式,涉及数列的求和,注意运用裂项相消求和和不等式恒成立问题的解法,关键是将1(1)1n n na n a +=++变形为11111n n a a n n n n +-=-++. 14.【解析】【分析】由题意结合均值不等式首先求得的最小值然后结合恒成立的条件得到关于a 的不等式求解不等式即可确定实数a 的取值范围【详解】由可得故:当且仅当即时等号成立故只需又则即则的取值范围是【点睛】在 解析:[)1,+∞【解析】【分析】 由题意结合均值不等式首先求得141m n ++的最小值,然后结合恒成立的条件得到关于a 的不等式,求解不等式即可确定实数a 的取值范围.【详解】由8m n +=可得19m n ++=,故: ()1411411411419191n m m n m n m n m n +⎛⎫⎛⎫+=+++=+++ ⎪ ⎪+++⎝⎭⎝⎭11419⎛⨯++= ⎝≥, 当且仅当12141n m n m mn +=⎧⎪+⎨=⎪+⎩,即3m =,5n =时等号成立, 故只需11a≤,又0a >,则1a ≥. 即则a 的取值范围是[)1,+∞.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 15.【解析】【分析】由已知利用三角形面积公式可求c 进而利用余弦定理可求a 的值根据正弦定理即可计算求解【详解】面积为解得由余弦定理可得:所以故答案为:【点睛】本题主要考查了三角形面积公式余弦定理正弦定理在解析:3【解析】【分析】由已知利用三角形面积公式可求c ,进而利用余弦定理可求a 的值,根据正弦定理即可计算求解.【详解】60A =︒Q ,1b =11sin 122bc A c ==⨯⨯, 解得4c =,由余弦定理可得:a ===,所以sin sin sin sin 32a b c a A B C A ++===++,【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.16.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立解析:15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM|=c=,由中位线定理可得12||4PF OM==,设(,)P x y可得22(2)16x y-+=,联立方程22195x y+=可解得321,22x x=-=(舍),点P在椭圆上且在x轴的上方,求得315,2P⎛⎫-⎪⎪⎝⎭,所以1521512PFk==方法2:焦半径公式应用解析1:由题意可知|2OF|=|OM|=c=,由中位线定理可得12||4PF OM==,即342p pa ex x-=⇒=-求得315,22P⎛-⎝⎭,所以1521512PFk==【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.17.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积 解析:2918 【解析】 在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r ,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r 22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.18.2【解析】【分析】过点C 作CD ⊥AB 于D 可得Rt △ACD 中利用三角函数的定义算出再由向量数量积的公式加以计算可得的值【详解】过点C 作CD ⊥AB 于D 则D 为AB 的中点Rt △ACD 中可得cosA==2故答解析:2【解析】【分析】过点C 作CD⊥AB 于D ,可得1AD AB 12==,Rt△ACD 中利用三角函数的定义算出1cos A AC= ,再由向量数量积的公式加以计算,可得AB AC ⋅u u u v u u u v 的值. 【详解】过点C 作CD ⊥AB 于D ,则D 为AB 的中点.Rt △ACD 中,1AD AB 12==, 可得cosA=11,cosA AD AB AC AB AC AB AC AB AC AC AC =∴⋅=⋅=⋅⋅=u u u u v u u u u v u u u u v u u u u v u u u u v u u u v u u u v =2. 故答案为2【点睛】本题已知圆的弦长,求向量的数量积.着重考查了圆的性质、直角三角形中三角函数的定义与向量的数量积公式等知识,属于基础题.19.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的 解析:18【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x ≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x -的最大值,进而得到结果.【详解】Q 函数()21ln f x x x a x =-++在()0,∞+上单调递增()210a f x x x '∴=-+≥在()0,∞+上恒成立 22a x x ∴≥-在()0,∞+上恒成立 令()22g x x x =-,0x > 根据二次函数的性质可知:当14x =时, ()max 18g x = 18a ∴≥,故实数a 的最小值是18本题正确结果:18 【点睛】本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题.20.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1-考点:函数定义域 三、解答题21.(1);(2)不存在.【解析】【分析】(1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为43,而436>,故不存在. 【详解】(1)由11ab a b ab=+≥,得2ab ≥,且当2a b ==时取等号. 故33+a b 33242a b ≥≥,且当2a b ==时取等号. 所以33+a b 的最小值为42;(2)由(1)知,232643a b ab +≥≥.由于436>,从而不存在,a b ,使得236a b +=成立.【考点定位】基本不等式.22.(1);(2)【解析】【分析】(1)运用,证明数列是等比数列,计算通项,即可。
2020-2021高中三年级数学下期末试卷(及答案)(1)

2020-2021高中三年级数学下期末试卷(及答案)(1)一、选择题1.若43i z =+,则z z =( ) A .1B .1-C .4355i +D .4355i - 2.给出下列说法:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确说法的个数是( )A .0B .1C .2D .33.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙 4.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( )A .①③B .①④C .②③D .②④5.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .10 6.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有A .4种B .10种C .18种D .20种 7.已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =I A .{0}B .{1}C .{1,2}D .{0,1,2} 8.函数2||()x x f x e -=的图象是( )A .B .C .D .9.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-10.函数f (x )=2sin(ωx +φ)(ω>0,-2π<φ<2π)的部分图象如图所示,则ω、φ的值分别是( )A .2,-3πB .2,-6πC .4,-6πD .4,3π 11.抛掷一枚骰子,记事件A 为“落地时向上的点数是奇数”,事件B 为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D 为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A .A 与B B .B 与C C .A 与D D .C 与D12.已知sin cos 0θθ<,且cos cos θθ=,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角二、填空题13.已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.14.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.15.在等腰梯形ABCD 中,已知AB DC P ,2,1,60,AB BC ABC ==∠=o 点E 和点F 分别在线段BC 和CD 上,且21,,36BE BC DF DC ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r 的值为 . 16.若,满足约束条件则的最大值 .17.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.18.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.19.已知1OA =u u u r ,3OB =u u u r ,0OA OB •=u u u r u u u r ,点C 在AOB ∠内,且AOC 30∠=o ,设OC mOA nOB =+u u u r u u u r u u u r ,(,)m n R ∈,则m n=__________. 20.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点,E F ,且22EF =,现有如下四个结论: AC BE ①⊥;//EF ②平面ABCD ;③三棱锥A BEF -的体积为定值;④异面直线,AE BF 所成的角为定值,其中正确结论的序号是______.三、解答题21.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积.22.已知A 为圆22:1C x y +=上一点,过点A 作y 轴的垂线交y 轴于点B ,点P 满足2.BP BA =u u u v u u u v(1)求动点P 的轨迹方程;(2)设Q 为直线:3l x =上一点,O 为坐标原点,且OP OQ ⊥,求POQ ∆面积的最小值.23.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与11A B 所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面111A B C ,求线段BM 的长.24.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率;(II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.25.在平面直角坐标系xOy 中,直线l 的参数方程为21x t y at=+⎧⎨=-⎩(t 为参数,a R ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,线C 的极坐标方程是224πρθ⎛⎫=+ ⎪⎝⎭. (1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)己知直线l 与曲线C 交于A 、B 两点,且7AB =a 的值.26.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈L ,且{}n a 为正项等比数列,12a =,324b b =+.(1)求数列{}n a 与{}n b 的通项公式;(2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【详解】由题意可得 :22435z =+=,且:43z i =-, 据此有:4343555z i i z -==-. 本题选择D 选项.2.A解析:A【解析】【分析】①②③根据定义得结论不一定正确.④画图举出反例说明题目是错误的.【详解】解:①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图(1)所示;③不一定.当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图(2)所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.故答案为:A【点睛】(1)要想真正把握几何体的结构特征,必须多角度、全面地去分析,多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定;(3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.3.A解析:A【解析】【分析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A .【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.C解析:C【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y >不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用. 5.C解析:C【解析】【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案.【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9.故选:C .【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.6.B解析:B【解析】【分析】【详解】分两种情况:①选2本画册,2本集邮册送给4位朋友,有C 42=6种方法;②选1本画册,3本集邮册送给4位朋友,有C 41=4种方法.所以不同的赠送方法共有6+4=10(种).7.C解析:C【解析】【分析】由题意先解出集合A,进而得到结果.【详解】解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.【点睛】本题主要考查交集的运算,属于基础题.8.A解析:A【解析】【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A .【详解】2||()x x f x e -=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B ,故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.9.C解析:C【解析】【分析】利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果.【详解】因为()a i i b i +=+,即1ai b i -+=+,因为,,a b R i ∈为虚数单位,所以1,1a b ==-,故选C.【点睛】本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.10.A解析:A【解析】【分析】由函数f (x )=2sin (ωx+φ)的部分图象,求得T 、ω和φ的值.【详解】由函数f (x )=2sin (ωx+φ)的部分图象知,3T 5π412=-(π3-)3π4=, ∴T 2πω==π,解得ω=2; 又由函数f (x )的图象经过(5π12,2), ∴2=2sin (25π12⨯+φ), ∴5π6+φ=2kππ2+,k∈Z, 即φ=2kππ3-, 又由π2-<φπ2<,则φπ3=-; 综上所述,ω=2、φπ3=-. 故选A .【点睛】本题考查了正弦型函数的图象与性质的应用问题,是基础题.11.C解析:C【解析】分析:利用互斥事件、对立事件的概念直接求解判断即可.详解:在A 中,A 与B 是对立事件,故不正确;在B 中,B 与C 能同时发生,不是互斥事件,所以不正确;在C 中,A 与D 两个事件不能同时发生,但能同时不发生,所以是互斥事件,但不是对立事件,所以是正确的;在D 中,C 与D 能同时发生,不是互斥事件,所以是错误的.综上所述,故选C.点睛:本题主要考查了命题的真假判定,属于基础题,解答时要认真审题,注意互斥事件与对立事件的定义的合理运用,同时牢记互斥事件和对立事件的基本概念是解答的基础.12.D解析:D【解析】【分析】 由cos cos θθ=以及绝对值的定义可得cos 0θ≥,再结合已知得sin 0,cos 0θθ<>,根据三角函数的符号法则可得.【详解】由cos cos θθ=,可知cos 0θ≥,结合sin cos 0θθ<,得sin 0,cos 0θθ<>, 所以角θ是第四象限角,故选:D【点睛】本题考查了三角函数的符号法则,属于基础题.二、填空题13.【解析】【分析】结合图形可以发现利用三角形中位线定理将线段长度用坐标表示成圆的方程与椭圆方程联立可进一步求解利用焦半径及三角形中位线定理则更为简洁【详解】方法1:由题意可知由中位线定理可得设可得联立 解析:15【解析】【分析】结合图形可以发现,利用三角形中位线定理,将线段长度用坐标表示成圆的方程,与椭圆方程联立可进一步求解.利用焦半径及三角形中位线定理,则更为简洁.【详解】方法1:由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y 可得22(2)16x y -+=,联立方程22195x y += 可解得321,22x x =-=(舍),点P 在椭圆上且在x 轴的上方, 求得315,22P ⎛⎫- ⎪ ⎪⎝⎭,所以1521512PF k ==方法2:焦半径公式应用解析1:由题意可知|2OF |=|OM |=c =,由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-求得3,22P ⎛- ⎝⎭,所以212PF k == 【点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、直线与圆的位置关系,利用数形结合思想,是解答解析几何问题的重要途径.14.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x )n 的展开式中通项公式:Tr+1(3x )r =3rxr ∵含有x2的系数是54∴r =2∴54可得6∴6n ∈N*解得n =4故答案为4【点睛】本题考 解析:4【解析】 【分析】利用通项公式即可得出. 【详解】解:(1+3x )n 的展开式中通项公式:T r +1rn =ð(3x )r =3r rn ðx r . ∵含有x 2的系数是54,∴r =2.∴223n =ð54,可得2n =ð6,∴()12n n -=6,n ∈N *.解得n =4. 故答案为4. 【点睛】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.15.【解析】在等腰梯形ABCD 中由得所以考点:平面向量的数量积 解析:2918【解析】在等腰梯形ABCD 中,由AB DC P ,2,1,60,AB BC ABC ==∠=o得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u u r u u u r,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r22121111129131231218331818AB BC AD AB AB AD BC AD AB BC AB ⎛⎫⎛⎫=+⋅+=⋅+⋅++⋅=++-=⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .考点:平面向量的数量积.16.3【解析】作出可行域如图中阴影部分所示由斜率的意义知yx 是可行域内一点与原点连线的斜率由图可知点A (13)与原点连线的斜率最大故yx 的最大值为3考点:线性规划解法 解析:【解析】作出可行域如图中阴影部分所示,由斜率的意义知,是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故的最大值为3.考点:线性规划解法17.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积【详解】因为长方体的体积为120所以因为为的中点所以由长方体的性质知底面所以是三棱锥的底面上的高所以三棱锥的体积【点睛】本题蕴解析:【解析】 【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.18.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O 即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图解析:1015π【解析】 【分析】先还原几何体,再从底面外心与侧面三角形SAB 的外心分别作相应面的垂线交于O ,即为球心,利用正弦定理求得外接圆的半径,利用垂径定理求得球的半径,即可求得表面积. 【详解】由该四棱锥的三视图知,该四棱锥直观图如图,因为平面SAB ⊥平面ABCD ,连接AC,BD 交于E ,过E 作面ABCD 的垂线与过三角形ABS 的外心作面ABS 的垂线交于O ,即为球心,连接AO 即为半径,令1r 为SAB ∆外接圆半径,在三角形SAB 中,SA=SB=3,AB=4,则cos 23SBA ∠=, ∴sin 5SBA ∠=,∴132sin 5r SBA ==∠,∴125r =,又OF=12AD =, 可得2221R r OF =+,计算得,28110112020R =+= , 所以210145S R ππ==. 故答案为101.5π 【点睛】本题考查了三视图还原几何体的问题,考查了四棱锥的外接球的问题,关键是找到球心,属于较难题.19.3【解析】因为所以从而有因为所以化简可得整理可得因为点在内所以所以则解析:3 【解析】因为30AOC ∠=o,所以cos cos30OC OA AOC OC OA⋅∠===⋅ou u u r u u u r u u u r u u u r,从而有2=u u u r u u u r u u u r.因为1,0OA OB OA OB ==⋅=u u u r u u u r u u u r u u u r=,化简可得222334m m n =+,整理可得229m n =.因为点C 在AOB ∠内,所以0,0m n >>,所以3m n =,则3mn= 20.【解析】【分析】对于①可由线面垂直证两线垂直;对于②可由线面平行的定义证明线面平行;对于③可证明棱锥的高与底面积都是定值得出体积为定值;对于④可由两个特殊位置说明两异面直线所成的角不是定值【详解】对 解析:①②③【解析】 【分析】对于①,可由线面垂直证两线垂直;对于②,可由线面平行的定义证明线面平行;对于③,可证明棱锥的高与底面积都是定值得出体积为定值;对于④,可由两个特殊位置说明两异面直线所成的角不是定值. 【详解】对于①,由1,AC BD AC BB ⊥⊥,可得AC ⊥面11DD BB ,故可得出AC BE ⊥,此命题正确;对于②,由正方体1111ABCD A B C D -的两个底面平行,EF 在平面1111D C B A 内,故EF 与平面ABCD 无公共点,故有//EF 平面ABCD ,此命题正确;对于③,EF 为定值,B 到EF 距离为定值,所以三角形BEF 的面积是定值,又因为A 点到面11DD BB 距离是定值,故可得三棱锥A BEF -的体积为定值,此命题正确; 对于④,由图知,当F 与1B 重合时,此时E 与上底面中心为O 重合,则两异面直线所成的角是1A AO ∠,当E 与1D 重合时,此时点F 与O 重合,则两异面直线所成的角是1OBC ∠,此二角不相等,故异面直线,AE BF 所成的角不为定值,此命题错误.综上知①②③正确,故答案为①②③ 【点睛】本题通过对多个命题真假的判断,综合考查线面平行的判断、线面垂直的判断与性质、棱锥的体积公式以及异面直线所成的角,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题21.(Ⅰ)见解析(Ⅱ)111632132C A DE V -=⨯⨯⨯⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分 所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分 由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分 所以三菱锥C ﹣A 1DE 的体积为:==1. 12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积22.(1) 2214x y += (2) 3.2 【解析】 【分析】(1)设出A 、P 点坐标,用P 点坐标表示A 点坐标,然后代入圆方程,从而求出P 点的轨迹;(2)设出P 点坐标,根据斜率存在与否进行分类讨论,当斜率不存在时,求出POQ ∆面积的值,当斜率存在时,利用点P 坐标表示POQ ∆的面积,减元后再利用函数单调性求出最值,最后总结出最值.【详解】解:(1) 设(),P x y , 由题意得:()()1,,0,A x y B y , 由2BP BA =u u u v u u u v,可得点A 是BP 的中点, 故102x x +=, 所以12xx =, 又因为点A 在圆上,所以得2214x y +=,故动点P 的轨迹方程为2214x y +=.(2)设()11,P x y ,则10y ≠,且221114x y +=,当10x =时,11y =±,此时()33,0,2POQ Q S ∆=; 当10x ≠时,11,OP y k x = 因为OP OQ ⊥, 即11,OQ x k y =-故1133,x Q y ⎛⎫-⎪⎝⎭,OP ∴=OQ ==,221111322POQx y S OP OQ y ∆+==⋅①, 221114x y +=代入① 2111143334322POQy S y y y ∆⎛⎫-=⋅=- ⎪ ⎪⎝⎭()101y <≤设()()4301f x x x x=-<≤因为()24f x 30x'=--<恒成立, ()f x ∴在(]0,1上是减函数, 当11y =时有最小值,即32POQ S ∆≥, 综上:POQ S ∆的最小值为3.2【点睛】本题考查了点的轨迹方程、椭圆的性质等知识,求解几何图形的长度、面积等的最值时,常见解法是设出变量,用变量表示出几何图形的长度、面积等,减元后借助函数来研究其最值. 23.(Ⅰ)3;(Ⅱ;(Ⅲ【解析】 【分析】(Ⅰ)以B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴,建立坐标系,设异面直线AC 与11A B 所成角为α,算出11,AC A B u u u r u u u u r ,再利用cos α=11|cos ,|AC A B 〈〉u u u r u u u u r 计算即可;(Ⅱ)分别求出平面11AA C 的法向量m u r 与平面111B AC 的法向量n r,再利用向量的夹角公式算得cos ,m n 〈〉u r r即可;(Ⅲ)设(,,0)M a b ,由MN ⊥平面111A B C ,得11110MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u v u u u u v u u u u v ,进一步得到M 的坐标,再由模长公式计算BM 的长. 【详解】如图所示,建立空间直角坐标系,其中点B 为坐标原点,BA 所在直线为x 轴,1BB 所在直线为y 轴, 由题意,111(0,0,0),B A C A B C ,(Ⅰ)11((AC A B ==-u u u r u u u u r ,所以111111cos ,||||AC A B AC A B AC A B ⋅〈〉===u u ru u u r u u u u r u u u r u u u u r ,设异面直线AC 与11A B 所成角为α,则cos α=11|cos ,|3AC A B 〈〉=u u u r u u u u r,所以异面直线AC 与11A B所成角的余弦值为3. (Ⅱ)易知111(AA AC ==u u u r u u u u r,设平面11AA C 的法向量(,,)m x y z =,则11100m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u v v,即00⎧+=⎪⎨=⎪⎩,令x =z =,所以m =u r,同理,设平面111B AC 的法向量(,,)n x y z =r,则111100n A C n A B ⎧⋅=⎪⎨⋅=⎪⎩u u u u v v u u u u v v,即00⎧-+=⎪⎨-=⎪⎩,令y =z =n =r,所以2cos ,7||||m n m n m n ⋅〈〉===⋅u r r ur r , 设二面角111A AC B --的大小为θ,则sin θ==所以二面角111A AC B --的正弦值为7. (Ⅲ)由N 为棱11B C的中点,得,22N ⎛ ⎝⎭,设(,,0)M a b,则MN a b =--⎝⎭u u u u r ,由MN ⊥平面111A B C ,得111100MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩u u u u v u u u u v u u u u v u u u u v ,即(0((0222a a b ⎧⎫-⋅-=⎪⎪⎪⎪⎝⎭⎨⎛⎫⎛⎫⎪-⋅+-⋅+= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得24a b ⎧=⎪⎪⎨⎪=⎪⎩,故M ⎫⎪⎝⎭,因此BM ⎫=⎪⎝⎭u u u u r ,所以线段BM 的长为10||BM =u u u u r.【点睛】本题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知识,考查学生的空间想象能力、运算能力和推理论证能力. 24.(Ⅰ)0.55;(Ⅱ)详见解析 【解析】 【分析】 【详解】解:(I )设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F , 则,,D E F 分别表示甲不胜A 、乙不胜B ,丙不胜C 的事件.因为()0.6,()0.5,()0.5===P D P E P F ,()0.4,()0.5,()0.5∴===P D P E P F . 红队至少两人获胜的事件有:,,,DEF DEF DEF DEF ,由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率()()()()0.60.50.50.60.50.50.40.50.50.60.50.50.55P P DEF P DEF P DEF P DEF =+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(II )由题意知ξ可能的取值为0,1,2,3.又由(I )知,,DEF DEF DEF 是两两互斥事件,且各盘比赛的结果相互独立, 因此(0)()0.40.50.50.1P P DEF ξ===⨯⨯=,(1)()()()ξ==++P P DEF P DEF P DEF(1)0.40.50.50.40.50.50.60.50.50.35ξ==⨯⨯+⨯⨯+⨯⨯=P (3)()0.60.50.50.15P P DEF ξ===⨯⨯=,由对立事件的概率公式得(2)1[(0)(1)(3)]0.4.P P P P ξξξξ==-=+=+== 所以ξ的分布列为:ξ12 3P0.10.350.40.15因此00.110.3520.430.15 1.6ξ=⨯+⨯+⨯+⨯=E25.(1)l 的普通方程210ax y a +--=;C 的直角坐标方程是22220x y x y +--=;(2)【解析】 【分析】(1)把直线l 的标准参数方程中的t 消掉即可得到直线l 的普通方程,由曲线C 的极坐标方程为ρ=(θ4π+),展开得22ρ=(ρsinθ+ρcosθ),利用x cos y sin ρθρθ=⎧⎨=⎩即可得出曲线C 的直角坐标方程; (2)先求得圆心C 到直线AB 的距离为d ,再用垂径定理即可求解. 【详解】(1)由直线l 的参数方程为21x ty at=+⎧⎨=-⎩,所以普通方程为210ax y a +--=由曲线C的极坐标方程是4πρθ⎛⎫=+ ⎪⎝⎭,所以22sin 2cos 4πρθρθρθ⎛⎫=+=+ ⎪⎝⎭, 所以曲线C 的直角坐标方程是22220x y x y +--=(2)设AB 的中点为M ,圆心C 到直线AB 的距离为d,则MA =, 圆()()22:112C x y -+-=,则r =()1,1C ,12d MC ====,由点到直线距离公式,12d ===解得3a =±,所以实数a的值为3±.【点睛】本题考查了极坐标方程化为直角坐标方程、直线参数方程化为普通方程,考查了点到直线的距离公式,圆中垂径定理,考查了推理能力与计算能力,属于中档题.26.(1)2nn a =,21n n b =-;(2)证明见解析.【解析】 【分析】(1)由a 1+a 2+a 3+…+a n =2b n ①,n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②,①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),{a n }公比为q ,求出a n ,然后求解b n ;(2)化简2211log log n n n c a a +=(n ∈N *),利用裂项消项法求解数列的和即可. 【详解】(1)由a 1+a 2+a 3+…+a n =2b n ①n ≥2时,a 1+a 2+a 3+…+a n ﹣1=2b n ﹣1②①﹣②可得:a n =2(b n ﹣b n ﹣1)(n ≥2),∴a 3=2(b 3﹣b 2)=8∵a 1=2,a n >0,设{a n }公比为q ,∴a 1q 2=8,∴q =2∴a n =2×2n ﹣1=2n∴()1231212222222212n n n nb +-=++++==--L , ∴b n =2n ﹣1.(2)证明:由已知:()22111111n n 1n n n c log a log a n n +===-++. ∴1231111111111223n n 11n c c c c n L L ++++=-+-++-=-<++ 【点睛】 本题考查数列的递推关系式的应用,数列求和,考查转化思想以及计算能力.数列求和的常见方法有:列项求和,错位相减求和,倒序相加求和.。
2020年高中三年级数学下期末试卷(附答案)

2020年高中三年级数学下期末试卷(附答案)一、选择题1.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为$y =0.85x-85.71,则下列结论中不正确的是 A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1cm ,则其体重约增加0.85kgD .若该大学某女生身高为170cm ,则可断定其体重必为58.79kg2.在复平面内,O 为原点,向量OA u u u v对应的复数为12i -+,若点A 关于直线y x =-的对称点为点B ,则向量OB uuu v对应的复数为( ) A .2i -+ B .2i -- C .12i +D .12i -+3.已知集合{}{}x -1<x 1Q=x 0x 2P =<<<,,那么P Q=⋃ A .(-1,2) B .(0,1) C .(-1,0) D .(1,2) 4.设是虚数单位,则复数(1)(12)i i -+=( )A .3+3iB .-1+3iC .3+iD .-1+i5.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B .32C .10D .426.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(⌝q );④(⌝p )∨q 中,真命题是( ) A .①③B .①④C .②③D .②④7.一动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必过定点( ) A .(4,0) B .(2,0)C .(0,2)D .(0,0)8.已知全集{1,3,5,7}U =,集合{1,3}A =,{3,5}B =,则如图所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}9.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( )A B C .D .10.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定 11.下列说法正确的是( ) A .22a b ac bc >⇒> B .22a b a b >⇒> C .33a b a b >⇒>D .22a b a b >⇒>12.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题:①若m αP ,m n ⊥,则n α⊥; ②若m α⊥,n αP ,则m n ⊥;③若,m n 是异面直线,m α⊂,m βP ,n β⊂,n αP ,则αβ∥; ④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④二、填空题13.曲线21y x x=+在点(1,2)处的切线方程为______________. 14.i 是虚数单位,若复数()()12i a i -+是纯虚数,则实数a 的值为 . 15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________. 16.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.17.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 ▲18.高三某班一学习小组的,,,A B C D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在_________.19.若函数2()1ln f x x x a x =-++在(0,)+∞上单调递增,则实数a 的最小值是__________.20.在ABC ∆中,若AB =3BC =,120C ∠=︒,则AC =_____.三、解答题21.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x轴相交于点D .若APD △的面积为62,求直线AP 的方程. 22.设函数()15,f x x x x R =++-∈. (1)求不等式()10f x ≤的解集;(2)如果关于x 的不等式2()(7)f x a x ≥--在R 上恒成立,求实数a 的取值范围.23.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值 24.2016年某市政府出台了“2020年创建全国文明城市简称创文”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:调查对象为本市市民,被调查者各自独立评分;采用百分制评分,内认定为满意,80分及以上认定为非常满意;市民对公交站点布局的满意率不低于即可进行验收;用样本的频率代替概率.求被调查者满意或非常满意该项目的频率;若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率; 已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.25.如图所示,已知正方体1111ABCD A B C D -中,E F ,分别为11D C ,11C B 的中点,AC BD P =I ,11A C EF Q =I .求证:(1)D B F E ,,,四点共面;(2)若1A C 交平面DBEF 于R 点,则P Q R ,,三点共线.26.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】根据y 与x 的线性回归方程为 y=0.85x ﹣85.71,则 =0.85>0,y 与 x 具有正的线性相关关系,A 正确; 回归直线过样本点的中心(,x y ),B 正确;该大学某女生身高增加 1cm ,预测其体重约增加 0.85kg ,C 正确;该大学某女生身高为 170cm ,预测其体重约为0.85×170﹣85.71=58.79kg ,D 错误. 故选D .2.A解析:A 【解析】 【分析】首先根据向量OA u u u v对应的复数为12i -+,得到点A 的坐标,结合点A 与点B 关于直线y x =-对称得到点B 的坐标,从而求得向量OB uuu v对应的复数,得到结果.【详解】复数12i -+对应的点为(1,2)A -, 点A 关于直线y x =-的对称点为(2,1)B -,所以向量OB uuu r对应的复数为2i -+.故选A . 【点睛】该题是一道复数与向量的综合题,解答本题的关键是掌握复数在平面坐标系中的坐标表示.3.A解析:A 【解析】利用数轴,取,P Q 所有元素,得P Q =U (1,2)-.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.4.C解析:C 【解析】因为2(1)(12)1223i i i i i i -+=+--=+,故选 C. 考点:本题主要考查复数的乘法运算公式.5.D解析:D 【解析】 【分析】3=,求得2a b ⋅=-r r,再根据向量模的运算,即可求解. 【详解】∵向量a r ,b r 满足2a =r ,3b a b =+=r r r 3=,解得2a b ⋅=-r r .则2a b +==r r .故选D .【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【解析】试题分析:根据不等式的基本性质知命题p 正确,对于命题q ,当,x y 为负数时22x y>不成立,即命题q 不正确,所以根据真值表可得,(p q p ∨∧q )为真命题,故选C.考点:1、不等式的基本性质;2、真值表的应用.7.B解析:B 【解析】 【分析】设圆和x 轴相交于M 点,根据圆的定义得到CA =CM =R ,因为x=-2,是抛物线的准线,结合抛物线的定义得到M 点为焦点. 【详解】圆心C 在抛物线上,设与直线20x +=相切的切点为A ,与x 轴交点为M ,由抛物线的定义可知,CA =CM =R ,直线20x +=为抛物线的准线,故根据抛物线的定义得到该圆必过抛物线的焦点()2,0.故选B 【点睛】这个题目考查了抛物线的定义的应用以及圆的定义的应用,一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.8.B解析:B 【解析】 【分析】先求出A B ⋃,阴影区域表示的集合为()U A B ⋃ð,由此能求出结果. 【详解】Q 全集{1,U =3,5,7},集合{}1,3A =,{}3,5B =,{1,A B ∴⋃=3,5},∴如图所示阴影区域表示的集合为:(){}7U A B ⋃=ð.故选B . 【点睛】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是中等题.9.C解析:C 【解析】 【分析】两圆方程相减,得到公共弦所在的直线方程,然后利用其中一个圆,结合弦长公式求解. 【详解】因为圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0, 两式相减得20x y --=,即公共弦所在的直线方程. 圆C 1:x 2+y 2=4,圆心到公共弦的距离为d =,所以公共弦长为:l ==. 故选:C 【点睛】本题主要考查直线与圆,圆与圆的位置关系,还考查了运算求解的能力,属于基础题.10.C解析:C 【解析】 【分析】由函数的增减性及导数的应用得:设3()sin,[1,1]2xf x x x π=+∈-,求得可得()f x 为增函数,又m ,[1n ∈-,1)时,根据条件得()()f m f n <,即可得结果.【详解】解:设3()sin ,[1,1]2xf x x x π=+∈-, 则2()3cos022xf x x ππ'=+>,即3()sin,[1,1]2xf x x x π=+∈-为增函数,又m ,[1n ∈-,1),33sin sin22mnn m ππ-<-,即33sinsin22mnm n ππ+<+,所以()()f m f n <,所以m n <. 故选:C . 【点睛】本题考查了函数的增减性及导数的应用,属中档题.11.C解析:C 【解析】 【分析】由不等式的性质,对各个选项逐一验证即可得,其中错误的可举反例. 【详解】选项A ,当c =0时,由a >b ,不能推出ac 2>bc 2,故错误; 选项B ,当a =﹣1,b =﹣2时,显然有a >b ,但a 2<b 2,故错误; 选项C ,当a >b 时,必有a 3>b 3,故正确;选项D ,当a =﹣2,b =﹣1时,显然有a 2>b 2,但却有a <b ,故错误. 故选:C . 【点睛】本题考查命题真假的判断,涉及不等式的性质,属基础题.12.A解析:A 【解析】 【分析】根据空间中点、线、面位置关系,逐项判断即可. 【详解】①若m αP ,m n ⊥,则n 与α位置关系不确定;②若n αP ,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m P β,n β⊂,n αP 时,平面α,β平行; ④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题. 综上,为真命题的是②③④. 故选A 【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.二、填空题13.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.14.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.考点:复数的运算.15.【解析】【详解】因为所以①因为所以②①②得即解得故本题正确答案为解析:12-【解析】 【详解】 因为,所以,①因为,所以,②①②得,即, 解得,故本题正确答案为16.【解析】分析:由对称轴得再根据限制范围求结果详解:由题意可得所以因为所以点睛:函数(A>0ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间解析:6π-. 【解析】分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果. 详解:由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+; (2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.17.1:8【解析】考查类比的方法所以体积比为1∶8解析:1:8 【解析】考查类比的方法,11111222221111314283S hV S h V S h S h ⋅⨯====,所以体积比为1∶8. 18.画画【解析】以上命题都是真命题∴对应的情况是:则由表格知A 在跳舞B 在打篮球∵③C 在散步是A 在跳舞的充分条件∴C 在散步则D 在画画故答案为画画解析:画画 【解析】以上命题都是真命题, ∴对应的情况是:则由表格知A 在跳舞,B 在打篮球,∵③“C 在散步”是“A 在跳舞”的充分条件,∴C 在散步,则D 在画画,故答案为画画19.【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立根据分离变量的方式得到在上恒成立利用二次函数的性质求得的最大值进而得到结果【详解】函数在上单调递增在上恒成立在上恒成立令根据二次函数的 解析:18【解析】【分析】由函数单调递增可得导函数在区间内大于等于零恒成立,根据分离变量的方式得到22a x x ≥-在()0,∞+上恒成立,利用二次函数的性质求得22x x -的最大值,进而得到结果.【详解】Q 函数()21ln f x x x a x =-++在()0,∞+上单调递增()210a f x x x '∴=-+≥在()0,∞+上恒成立 22a x x ∴≥-在()0,∞+上恒成立 令()22g x x x =-,0x > 根据二次函数的性质可知:当14x =时, ()max 18g x = 18a ∴≥,故实数a 的最小值是18本题正确结果:18【点睛】 本题考查根据函数在区间内的单调性求解参数范围的问题,关键是能将问题转化为导函数的符号的问题,通过分离变量的方式将问题转变为参数与函数最值之间的关系问题. 20.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计 解析:1【解析】【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值.【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去).【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(Ⅰ)22413y x +=, 24y x =.(Ⅱ)330x +-=,或330x -=. 【解析】 试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △的面积为m ,得出直线AP 的方程. 试题解析:(Ⅰ)解:设F 的坐标为(),0c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =. (Ⅱ)解:设直线AP 的方程为()10x my m =+≠,与直线l 的方程1x =-联立,可得点21,P m ⎛⎫-- ⎪⎝⎭,故21,Q m ⎛⎫- ⎪⎝⎭.将1x my =+与22413y x +=联立,消去x ,整理得()223460m y my ++=,解得0y =,或2634m y m -=+.由点B 异于点A ,可得点222346,3434m m B m m ⎛⎫-+- ⎪++⎝⎭.由21,Q m ⎛⎫- ⎪⎝⎭,可学*科.网得直线BQ 的方程为()222623*********m m x y m m m m ⎛⎫--+⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,令0y =,解得222332m x m -=+,故2223,032m D m ⎛⎫- ⎪+⎝⎭.所以222223613232m m AD m m -=-=++.又因为APD V 的面积为2,故22162232m m m ⨯⨯=+,整理得2320m -+=,解得m =m =.所以,直线AP 的方程为330x -=,或330x -=.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键.22.(1){}|37x x -≤≤;(2)(],9-∞.【解析】【分析】(1)分别在1x ≤-、15x -<<、5x ≥三种情况下去掉绝对值符号得到不等式,解不等式求得结果;(2)将不等式变为()()27a f x x ≤+-,令()()()27g x f x x =+-,可得到分段函数()g x 的解析式,分别在每一段上求解出()g x 的最小值,从而得到()g x 在R 上的最小值,进而利用()min a g x ≤得到结果.【详解】(1)当1x ≤-时,()154210f x x x x =--+-=-≤,解得:31x -≤≤-当15x -<<时,()15610f x x x =++-=≤,恒成立当5x ≥时,()152410f x x x x =++-=-≤,解得:57x ≤≤综上所述,不等式()10f x ≤的解集为:{}37x x -≤≤(2)由()()27f x a x ≥--得:()()27a f x x ≤+- 由(1)知:()42,16,1524,5x x f x x x x -≤-⎧⎪=-<<⎨⎪-≥⎩令()()()22221653,171455,151245,5x x x g x f x x x x x x x x ⎧-+≤-⎪=+-=-+-<<⎨⎪-+≥⎩当1x ≤-时,()()min 170g x g =-=当15x -<<时,()()510g x g >=当5x ≥时,()()min 69g x g ==综上所述,当x ∈R 时,()min 9g x =()a g x ≤Q 恒成立 ()min a g x ∴≤ (],9a ∴∈-∞【点睛】本题考查分类讨论求解绝对值不等式、含绝对值不等式的恒成立问题的求解;求解本题恒成立问题的关键是能够通过分离变量构造出新的函数,将问题转化为变量与函数最值之间的比较,进而通过分类讨论得到函数的解析式,分段求解出函数的最值.23.(I)(4,),(2)24ππ(II )1,2a b =-= 【解析】【分析】【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-= 联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C交点的极坐标为(4,)24ππ (II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+= 由参数方程可得122b ab y x =-+,所以1,12,1,222b ab a b =-+==-=解得24.(1);(2);(3).【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是,根据独立重复试验次发生次的概率公式可得结果;(3)随机变量的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果.试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在的频率为:;(2)根据频率分布直方图,被调查者非常满意的频率是,用样本的频率代替概率,从该市的全体市民中随机抽取1人,该人非常满意该项目的概率为,现从中抽取3人恰有2人非常满意该项目的概率为:;(3)∵评分低于60分的被调查者中,老年人占,又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量的所有可能取值为0,1,2,的分布列为:012的数学期望 .25.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由中位线定理可知//EF BD ,故四点共面(2)PQ 是平面11AAC C 与平面DBFE 的交线,可证R 是两平面公共点,故PQ 过R ,得证.【详解】证明:(1)EF Q 是111D B C ∆的中位线,11//EF B D ∴.在正方体1AC 中,11//B D BD ,//EF BD ∴.,EF BD ∴确定一个平面,即D B F E ,,,四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α,又设平面BDEF 为β.11,Q AC Q α∈∴∈Q .又Q EF ∈,Q β∴∈,则Q 是α与β的公共点,a PQ β∴⋂=.又11,AC R R AC β⋂=∴∈.R a ∴∈,且R β∈,则R PQ ∈,故P Q R ,,三点共线.【点睛】本题主要考查了多点共面及多点共线问题,主要利用平面的基本性质解决,属于中档题.26.(Ⅰ)证明见解析;(Ⅱ13(Ⅲ3. 【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD ⊥平面ABC ,则AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD 所成的角.计算可得113226MN cos DMN DM ∠==.则异面直线BC 与MD 所13. (Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD 所成的角.计算可得34 CMsin CDMCD∠==.即直线CD与平面ABD所成角的正弦值为34.详解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM22=13AD AM+AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN22=13AD AN+.在等腰三角形DMN中,MN=1,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD13.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM3ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD22AC AD+.在Rt△CMD中,3sinCMCDMCD∠==.所以,直线CD与平面ABD所成角的正弦值为34.点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.。
2020年长沙市高中三年级数学下期末试卷(附答案)

2020年长沙市高中三年级数学下期末试卷(附答案)一、选择题1.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .42.在ABC ∆中,,,a b c 是角,,A B C 的对边,2a b =,3cos 5A =,则sin B =( ) A .25B .35C .45 D .853.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0 C .存在x 0∈R ,使得x 02≥0 D .存在x 0∈R ,使得x 02<04.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则该几何体的俯视图为( )A .B .C .D .5.设双曲线2222:1x y C a b-=(00a b >>,)的左、右焦点分别为12F F ,,过1F 的直线分别交双曲线左右两支于点M N ,,连结22MF NF ,,若220MF NF ⋅=u u u u v u u u u v,22MF NF =u u u u v u u u u v ,则双曲线C 的离心率为( ). A 2B 3C 5D 66.ABC ∆的内角A B C 、、的对边分别是a b c 、、,若2B A =,1a =,3b =c =( )A .3B .2C 2D .17.已知向量)3,1a =r,b r 是不平行于x 轴的单位向量,且3a b ⋅=r r b =r( )A .31,22⎛⎫⎪⎪⎝⎭B .13,22⎛⎫⎪⎪⎝⎭ C .133,44⎛⎫⎪⎪⎝⎭D .()1,08.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。
老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙、丁可以知道自己的成绩 B .乙可以知道四人的成绩 C .乙、丁可以知道对方的成绩D .丁可以知道四人的成绩9.已知函数()3sin 2cos 2[0,]2f x x x m π=+-在上有两个零点,则m 的取值范围是A .(1,2)B .[1,2)C .(1,2]D .[l,2]10.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .32411.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( )A .,βγαγ<<B .,βαβγ<<C .,βαγα<<D .,αβγβ<<12.在[0,2]π内,不等式3sin 2x <-的解集是( ) A .(0)π,B .4,33ππ⎛⎫⎪⎝⎭C .45,33ππ⎛⎫⎪⎝⎭D .5,23ππ⎛⎫⎪⎝⎭二、填空题13.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.14.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c,若三角形的面积222)S a b c =+-,则角C =__________. 15.设n S 是等差数列{}*()n a n N ∈的前n 项和,且141,7a a ==,则5______S =16.曲线21y x x=+在点(1,2)处的切线方程为______________. 17.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,a =b=1,则c =_____________18.设正数,a b 满足21a b +=,则11a b+的最小值为__________. 19.已知复数z=1+2i (i 是虚数单位),则|z|= _________ .20.371()x x+的展开式中5x 的系数是 .(用数字填写答案)三、解答题21.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 3cos c B b C a B +=.(1)求cos B 的值;(2)若2CA CB -=u u u v u u u v,ABC ∆的面积为b .22.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表:已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润?23.已知直线52:{12x l y t=+=(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1)将曲线C 的极坐标方程化为直角坐标方程; (2)设点的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求MA MB ⋅的值.24.已知函数2()(1)1xx f x a a x -=+>+. (1)证明:函数()f x 在(1,)-+∞上为增函数;(2)用反证法证明:()0f x =没有负数根.25.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,2,求三棱锥C 一A 1DE 的体积. 26.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C 处取得最大值,其最大值为max 33329z x y =+=+⨯=.本题选择A 选项.2.A解析:A 【解析】试题分析:由3cos5A=得,又2a b=,由正弦定理可得sin B=.考点:同角关系式、正弦定理.3.D解析:D【解析】因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.4.C解析:C【解析】【分析】从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图形.【详解】由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的右侧,由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合C选项.故选C.点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.考点:三视图.5.B解析:B【解析】【分析】本道题设2MF x =,利用双曲线性质,计算x ,结合余弦定理,计算离心率,即可. 【详解】结合题意可知,设22,,,MF x NF x MN ===则则结合双曲线的性质可得,21122,2MF MF a MF MN NF a -=+-=代入,解得x =,所以122,NF a NF =+=,01245F NF ∠= 对三角形12F NF 运用余弦定理,得到()()()()()22202222cos45a c a ++-=+⋅,解得ce a== 故选B. 【点睛】本道题考查了双曲线的性质,考查了余弦定理,关键利用余弦定理,解三角形,进而计算x ,即可,难度偏难.6.B解析:B 【解析】1sin A ===cos A =,所以22212c c =+-2320,c c -+=求得1c =或 2.c = 若1c =,则三角形为等腰三角形,030,60A C B ===不满足内角和定理,排除. 【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出cos 2A =后,要及时判断出0030,60A B ==,便于三角形的初步定型,也为排除1c =提供了依据.如果选择支中同时给出了1或2,会增大出错率.7.B解析:B 【解析】 【分析】设()(),0b x y y =≠r,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b r的坐标.【详解】设(),b x y =r ,其中0y ≠,则a y b ⋅=+=r r由题意得22133x yx yy⎧+=⎪⎪+=⎨≠⎪⎩,解得123xy⎧=⎪⎪⎨⎪=⎪⎩,即13,22b⎛⎫= ⎪⎪⎝⎭r.故选:B.【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.8.A解析:A【解析】【分析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.因此,乙、丁知道自己的成绩,故选:A.【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.9.B解析:B【解析】【分析】【详解】试题分析:利用辅助角公式化简函数为()3sin2cos2f x x x m=+-,令,则,所以此时函数即为.令有,根据题意可知在上有两个解,根据在函数图像可知,.考点:辅助角公式;;零点的判断;函数图像.10.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算11.B解析:B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BD PB PB PB PB α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得333222cos sin ,sin ,sin 33α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.12.C解析:C 【解析】 【分析】根据正弦函数的图象和性质,即可得到结论. 【详解】解:在[0,2π]内,若sin x 3<,则43π<x 53π<, 即不等式的解集为(43π,53π), 故选:C .【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题.二、填空题13.2【解析】【分析】作出不等式组表示的平面区域根据目标函数的几何意义结合图象即可求解得到答案【详解】由题意作出不等式组表示的平面区域如图所示又由即表示平面区域内任一点与点之间连线的斜率显然直线的斜率最解析:2 【解析】 【分析】作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答案. 【详解】由题意,作出不等式组表示的平面区域,如图所示,又由()011y y x x -=+--,即1y x +表示平面区域内任一点(),x y 与点()1,0D -之间连线的斜率,显然直线AD 的斜率最大, 又由2202x y y +-=⎧⎨=⎩,解得()0,2A ,则02210AD k -==--, 所以1yx +的最大值为2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14.【解析】分析:利用面积公式和余弦定理结合可得详解:由余弦定理:可得:∴∵∴故答案为:点睛:在解三角形时有许多公式到底选用哪个公式要根据已知条件根据待求式子灵活选用象本题出现因此联想余弦定理由于要求角解析:π3. 【解析】分析:利用面积公式in 12s S ab C =和余弦定理结合可得.详解:由()2221sin 42S a b c ab C =+-=. 余弦定理:2222cos a b c ab C +-=,12cos sin 2ab C ab C =,∴tan C =∵0πC <<, ∴π3C =. 故答案为:π3. 点睛:在解三角形时,有许多公式,到底选用哪个公式,要根据已知条件,根据待求式子灵活选用,象本题出现222a b c +-,因此联想余弦定理2222cos a b c ab C +-=,由于要求C 角,因此面积公式自然而然 选用in 12s S ab C =.许多问题可能比本题要更复杂,目标更隐蔽,需要我们不断探索,不断弃取才能得出正确结论,而这也要求我们首先要熟记公式.15.25【解析】由可得所以解析:25【解析】由141,7a a ==可得11,2,21n a d a n ===-,所以5(19)5252S +⨯==. 16.【解析】设则所以所以曲线在点处的切线方程为即点睛:求曲线的切线方程是导数的重要应用之一用导数求切线方程的关键在于求出斜率其求法为:设是曲线上的一点则以为切点的切线方程是若曲线在点处的切线平行于轴(即 解析:1y x =+【解析】设()y f x =,则21()2f x x x '=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.17.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2【解析】【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c.【详解】由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.18.【解析】则则的最小值为点睛:本题主要考查基本不等式解决本题的关键是由有在用基本不等式求最值时应具备三个条件:一正二定三相等①一正:关系式中各项均为正数;②二定:关系式中含变量的各项的和或积必须有一个 解析:322+ 【解析】 21a b Q +=,则1111223+322b a a b a b a b a b +=++=+≥+()(),则11a b+的最小值为322+.点睛:本题主要考查基本不等式,解决本题的关键是由21a b +=,有11112a b a b a b+=++()(),在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.19.【解析】【分析】【详解】复数z=1+2i (i 是虚数单位)则|z|==故答案为 解析:【解析】【分析】【详解】复数z=1+2i (i 是虚数单位),则|z|==. 故答案为. 20.【解析】由题意二项式展开的通项令得则的系数是考点:1二项式定理的展开式应用解析:35【解析】由题意,二项式371()x x +展开的通项372141771()()r r r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =. 考点:1.二项式定理的展开式应用.三、解答题21.(1)1cos 3B =;(2)3b = 【解析】【分析】(1)直接利用余弦定理的变换求出B 的余弦值.(2)利用(1)的结论首先求出sin B 的值,进一步利用平面向量的模的运算求出c ,再利用三角形的面积公式求出a ,最后利用余弦定理的应用求出结果.【详解】解:在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 3cos c B b C a B +=. 则:2222222223222a c b a b c a c b c b a ac ab ac+-+-+-+=g g g , 整理得:22223ac a c b =+-, 所以:2221cos 23a cb B ac +-==; (2)由于1cos 3B =,(0,)B π∈,所以:sin 3B ==, 在ABC ∆中,由于:||2CA CB -=u u u r u u u r , 则:2BA =u u u r ,即:2c =.由于ABC ∆的面积为所以:1sin 2ac B = 解得:3a =,故:2222cos b a c ac B =+-14922393=+-=g g g , 解得:3b =.【点睛】本题考查的知识要点:平面向量的模的运算的应用,余弦定理和三角形的面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题.22.当生产A 种产品20t ,B 种产品24t 时,企业获得最大利润,且最大利润为428万元.【解析】【分析】设该企业生产A 种产品xt ,B 种产品yt ,获得的利润为z 万元,根据题意列出关于x 、y 的约束条件以及线性目标函数,利用平移直线法得出线性目标函数取得最大值的最优解,并将最优解代入线性目标函数即可得出该企业所获利润的最大值.【详解】设该企业生产A 种产品xt ,B 种产品yt ,获得的利润为z 万元,目标函数为712z x y =+.则变量x 、y 所满足的约束条件为31030094360452000,0x y x y x y x y +≤⎧⎪+≤⎪⎨+≤⎪⎪≥≥⎩,作出可行域如下图所示:作出一组平行直线712z x y =+,当该直线经过点()20,24M 时,直线712z x y =+在x 轴上的截距最大,此时z 取最大值,即max 7201224428z =⨯+⨯=(万元). 答:当生产A 种产品20t ,B 种产品24t 时,企业获得最大利润,且最大利润为428万元.【点睛】本题考查线性规划的实际应用,考查利用数学知识解决实际问题,解题的关键就是列出变量所满足的约束条件,并利用数形结合思想求解,考查分析问题和解决问题的能力,属于中等题.23.(1);(2).【解析】【分析】【详解】试题分析:(1)在方程=2cos ρθ两边同乘以极径ρ可得2=2cos ρρθ,再根据222=,cos x y x ρρθ+=,代入整理即得曲线C 的直角坐标方程;(2)把直线的参数方程代入圆的直角坐标方程整理,根据韦达定理即可得到MA MB ⋅的值.试题解析:(1)=2cos ρθ等价于2=2cos ρρθ①将222=,cos x y x ρρθ+=代入①既得曲线C 的直角坐标方程为 2220x y x +-=,②(2)将5212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩代入②得2180t ++=, 设这个方程的两个实根分别为12,,t t则由参数t 的几何意义既知,1218MA MB t t ⋅==.考点:圆的极坐标方程与直角坐标方程的互化及直线参数方程的应用.24.见解析.【解析】试题分析:(1)借助题设条件运用函数的单调性进行推证;(2)借助题设条件运用反证法推证.试题解析:(1)任取1x ,2(1,)x ∈-+∞,不妨设12x x <,则210x x ->,210x +>,110x +>,又1a >,所以21x x a a >, 所以2121212122()()11x x x x f x f x a a x x ++-=-+-++2121213()0(1)(1)x x x x a a x x -=-+>++, 故函数()f x 在(1,)-+∞上为增函数.(2)设存在00x <(01x ≠-)满足0()0f x =, 则00021x x a x -=+,且001x a <<,所以002011x x -<<+,即0122x <<, 与假设00x <矛盾,故方程()0f x =没有负根.考点:函数单调性的定义及反证法等有关知识的综合运用.25.(Ⅰ)见解析(Ⅱ)111132C A DE V -=⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分所以三菱锥C ﹣A 1DE 的体积为:==1. 12分 考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积26.(1) 当0a ≤时,()f x 的单调递减区间是(0,)+∞,无单调递增区间;当0a >时,()f x 的单调递减区间是10,a ⎛⎫ ⎪⎝⎭,单调递增区间是1,a ⎛⎫+∞ ⎪⎝⎭(2) 211b e -≤ 【解析】 【分析】【详解】分析:(1)求导()f x ',解不等式()0f x '>,得到增区间,解不等式()0f x '<,得到减区间;(2)函数f (x )在x=1处取得极值,可求得a=1,于是有f (x )≥bx ﹣2⇔1+1x ﹣lnx x ≥b ,构造函数g (x )=1+1x﹣lnx x ,g (x )min 即为所求的b 的值 详解:(1)在区间()0,∞+上, ()11ax f x a x x-'=-=, 当0a ≤时, ()0f x '<恒成立, ()f x 在区间()0,∞+上单调递减;当0a >时,令()0f x '=得1x a=,在区间10,a ⎛⎫ ⎪⎝⎭上,()0f x '<,函数()f x 单调递减, 在区间1,a ⎛⎫+∞ ⎪⎝⎭上,()0f x '>,函数()f x 单调递增. 综上所述:当0a ≤时, ()f x 的单调递减区间是()0,∞+,无单调递增区间; 当0a >时,()f x 的单调递减区间是10,a ⎛⎫ ⎪⎝⎭,单调递增区间是1,a ⎛⎫+∞ ⎪⎝⎭(2)因为函数()f x 在1x =处取得极值,所以()10f '=,解得1a =,经检验可知满足题意由已知()2f x bx ≥-,即1ln 2x x bx --≥-, 即1ln 1+x b x x-≥对()0,x ∀∈+∞恒成立, 令()1ln 1x g x x x =+-, 则()22211ln ln 2x x g x x x x -='---=, 易得()g x 在(20,e ⎤⎦上单调递减,在)2,e ⎡+∞⎣上单调递增, 所以()()22min 11g x g e e ==-,即211b e -≤.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >。
2020年高中三年级数学下期末试卷带答案

2020年高中三年级数学下期末试卷带答案一、选择题1.如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .2.已知在ABC V 中,::3:2:4sinA sinB sinC =,那么cosC 的值为( ) A .14-B .14C .23-D .233.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( ) A .$0.4 2.3y x =+ B .$2 2.4y x =- C .$29.5y x =-+ D .$0.3 4.4y x =-+4.2532()x x-展开式中的常数项为( ) A .80B .-80C .40D .-405.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u vA .3144AB AC -u u u v u u u v B .1344AB AC -u u uv u u u vC .3144+AB AC u u u v u u u vD .1344+AB AC u u uv u u u v6.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B .32C .10D .427.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成绩依次记为1214,,A A A L ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是( )A .7B .8C .9D .108.已知向量)3,1a =r,b r 是不平行于x 轴的单位向量,且3a b ⋅=r r b =r( )A .3122⎛⎫ ⎪ ⎪⎝⎭B .13,22⎛⎫⎪ ⎪⎝⎭C .133,44⎛⎫ ⎪ ⎪⎝⎭D .()1,0 9.若,αβvv 是一组基底,向量γv =x αu v +y βu v (x,y ∈R),则称(x,y)为向量γv 在基底αu v ,βu v 下的坐标,现已知向量αu v 在基底p u v =(1,-1), q v =(2,1)下的坐标为(-2,2),则αu v 在另一组基底m u v=(-1,1), n v=(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)10.设R λ∈,则“3λ=-”是“直线2(1)1x y λλ+-=与直线()614x y λ+-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件11.设0<a <1,则随机变量X 的分布列是Xa 1 P13 1313则当a 在(0,1)内增大时( ) A .()D X 增大 B .()D X 减小 C .()D X 先增大后减小D .()D X 先减小后增大12.已知锐角三角形的边长分别为2,3,x ,则x 的取值范围是( ) A.513x << B .135x << C .25x <<D .55x <<二、填空题13.已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= .14.在区间[1,1]-上随机取一个数x ,cos2xπ的值介于1[0,]2的概率为 .15.若x ,y 满足约束条件x y 102x y 10x 0--≤⎧⎪-+≥⎨⎪≥⎩,则xz y 2=-+的最小值为______.16.已知样本数据,,,的均值,则样本数据,,,的均值为 .17.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).18.在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆2cos ρθ=相切,则a =__________.19.能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________.20.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.三、解答题21.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.(1)求直方图的的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月用水量的中位数.22.如图在三棱锥-P ABC 中, ,,D E F 分别为棱,,PC AC AB 的中点,已知,6,8,5PA AC PA BC DF ⊥===.求证:(1)直线//PA 平面DEF ; (2)平面BDE ⊥平面ABC .23.设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式;(2)记,,2nn na C nb *=∈N 证明:12+2,.n C C C n n *++<∈N L 24.如图,边长为2的正方形ABCD 中,E 、F 分别是AB 、BC 边的中点,将AED V ,DCF V 分别沿DE ,DF 折起,使得A ,C 两点重合于点M .(1) 求证:MD EF ⊥; (2) 求三棱锥M EFD -的体积.25.在直角坐标系xoy 中以O 为极点,x 轴正半轴为极轴建立坐标系.圆1C ,直线2C 的极坐标方程分别为4sin ,cos 2 2.4πρθρθ⎛⎫=-= ⎪⎝⎭. (I )12C C 求与交点的极坐标; (II )112.P C Q C C PQ 设为的圆心,为与交点连线的中点已知直线的参数方程为()33{,,.12x t a t R a b b y t =+∈=+为参数求的值 26.已知(3cos ,cos )a x x =r ,(sin ,cos )b x x =r ,函数()f x a b =⋅rr .(1)求()f x 的最小正周期及对称轴方程; (2)当(,]x ππ∈-时,求()f x 单调递增区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】圆(y ﹣1)2+x 2=4的圆心为(0,1),半径r =2,与抛物线的焦点重合,可得|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A ,即可得出三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3,利用1<y B <3,即可得出. 【详解】抛物线x 2=4y 的焦点为(0,1),准线方程为y =﹣1, 圆(y ﹣1)2+x 2=4的圆心为(0,1), 与抛物线的焦点重合,且半径r =2, ∴|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A , ∴三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3, ∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选:B . 【点睛】本题考查了抛物线的定义与圆的标准方程及其性质、三角形的周长,考查了推理能力与计算能力,属于中档题.2.A解析:A 【解析】 【分析】 【详解】::sin :sin :sin 3:2:4a b c A B C == ,不妨设3,2,4a k b k c k ===,,则()()()2223241cos 2324k k k C k k+-==-⨯⨯ ,选A.3.A解析:A 【解析】试题分析:因为与正相关,排除选项C 、D ,又因为线性回归方程恒过样本点的中心,故排除选项B ;故选A .考点:线性回归直线.4.C解析:C 【解析】 【分析】先求出展开式的通项,然后求出常数项的值 【详解】2532()x x -展开式的通项公式为:53251()2()r rr r T C x x-+-=,化简得10515(2)r r r r T C x -+=-,令1050r -=,即2r =,故展开式中的常数项为25230(42)T C ==-.故选:C. 【点睛】本题主要考查二项式定理、二项展开式的应用,熟练运用公式来解题是关键.5.A解析:A 【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BC =+u u u v u u u v u u u v,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+u u u v u u u v u u u v,之后将其合并,得到3144BE BA AC =+u u u v u u u v u u u v ,下一步应用相反向量,求得3144EB AB AC =-u u u v u u u v u u u v,从而求得结果.详解:根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1113124444BA BA AC BA AC u uu v u u u v u u u v u u u v u u u v =++=+, 所以3144EB AB AC =-u u u v u u u v u u u v,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6.D解析:D 【解析】 【分析】222+3+23a b ⋅=r r,求得2a b ⋅=-r r,再根据向量模的运算,即可求解. 【详解】∵向量a r ,b r 满足2a =r ,3b a b =+=r r r 222323a b ++⋅=r r,解得2a b ⋅=-r r . 则()22222442434242a b a b a b +=++⋅=+⨯+⨯-r r r r r r.故选D .【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【解析】 【分析】根据流程图可知该算法表示统计14次考试成绩中大于等于90的人数,结合茎叶图可得答案. 【详解】根据流程图所示的顺序,可知该程序的作用是累计14次考试成绩超过90分的次数.根据茎叶图可得超过90分的次数为9. 故选:C . 【点睛】本题主要考查了循环结构,以及茎叶图的认识,解题的关键是弄清算法流程图的含义,属于基础题.8.B解析:B 【解析】 【分析】设()(),0b x y y =≠r,根据题意列出关于x 、y 的方程组,求出这两个未知数的值,即可得出向量b r的坐标.【详解】设(),b x y =r ,其中0y ≠,则a y b ⋅=+=r r由题意得2210x y y y ⎧+=+=≠⎪⎩,解得122x y ⎧=⎪⎪⎨⎪=⎪⎩,即12b ⎛= ⎝⎭r . 故选:B. 【点睛】本题考查向量坐标的求解,根据向量数量积和模建立方程组是解题的关键,考查方程思想的应用以及运算求解能力,属于基础题.9.D解析:D 【解析】 【分析】 【详解】由已知αu r=-2p u r +2q r =(-2,2)+(4,2)=(2,4), 设αu r =λm u r +μn r=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得02λμ=⎧⎨=⎩∴αu r =0m u r +2n r ,∴αu r在基底m u r , n r 下的坐标为(0,2). 10.A解析:A【解析】 【分析】当3λ=-时,两条直线是平行的,但是若两直线平行,则3λ=-或1λ=,从而可得两者之间的关系. 【详解】当3λ=-时,两条直线的方程分别为:6410x y ++=,3220x y +-=,此时两条直线平行;若两条直线平行,则()()2161λλλ⨯-=--,所以3λ=-或1λ=,经检验,两者均符合,综上,“3λ=-”是“直线()211x y λλ+-=与直线()614x y λ+-=平行” 的充分不必要条件,故选A. 【点睛】充分性与必要性的判断,可以依据命题的真假来判断,若“若p 则q ”是真命题,“若q 则p ”是假命题,则p 是q 的充分不必要条件;若“若p 则q ”是真命题,“若q 则p ”是真命题,则p 是q 的充分必要条件;若“若p 则q ”是假命题,“若q 则p ”是真命题,则p 是q 的必要不充分条件;若“若p 则q ”是假命题,“若q 则p ”是假命题,则p 是q 的既不充分也不必要条件.11.D解析:D 【解析】 【分析】利用方差公式结合二次函数的单调性可得结论; 【详解】解:1111()013333a E X a +=⨯+⨯+⨯=,222111111()()()(1)333333a a a D X a +++=⨯+-⨯+-⨯ 2222212211[(1)(21)(2)](1)()279926a a a a a a =++-+-=-+=-+ 01a <<Q ,()D X ∴先减小后增大 故选:D . 【点睛】本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,属于中档题.12.A解析:A 【解析】试题分析:因为三角形是锐角三角形,所以三角形的三个内角都是锐角,则设边3对的锐角为角α,根据余弦定理得22223cos 04x xα+-=>,解得5x >;设x 边对的锐角为β,根据余弦定理得22223cos 012x β+-=>,解得013x <<,所以实数x 的取值范围是513x <<,故选A. 考点:余弦定理.二、填空题13.8【解析】试题分析:函数在处的导数为所以切线方程为;曲线的导函数的为因与该曲线相切可令当时曲线为直线与直线平行不符合题意;当时代入曲线方程可求得切点代入切线方程即可求得考点:导函数的运用【方法点睛】解析:8 【解析】试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.14.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率解析:13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤-≤≤-⇒≤≤-≤≤-或或,因此所求概率为22(1)13.1(1)3-=--考点:几何概型概率15.-1【解析】【分析】画出约束条件表示的平面区域由图形求出最优解再计算目标函数的最小值【详解】画出约束条件表示的平面区域如图所示由图形知当目标函数过点A时取得最小值由解得代入计算所以的最小值为故答案为解析:-1【解析】【分析】画出约束条件表示的平面区域,由图形求出最优解,再计算目标函数1z x y2=-+的最小值.【详解】画出约束条件10210x yx yx--≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域如图所示,由图形知,当目标函数1z x y2=-+过点A时取得最小值,由{x0x y10=--=,解得()A0,1-,代入计算()z011=+-=-,所以1z x y2=-+的最小值为1-.故答案为1-.【点睛】本题考查了线性规划的应用问题,也考查了数形结合的解题方法,是基础题.16.11【解析】因为样本数据x1x2⋅⋅⋅xn的均值x=5所以样本数据2x1+12x2+1⋅⋅⋅2xn+1的均值为2x+1=2×5+1=11所以答案应填:11考点:均值的性质解析:【解析】因为样本数据,,,的均值,所以样本数据,,,的均值为,所以答案应填:.考点:均值的性质.17.390【解析】【分析】【详解】用2色涂格子有种方法用3色涂格子第一步选色有第二步涂色共有种所以涂色方法种方法故总共有390种方法故答案为:390解析:390 【解析】 【分析】 【详解】 用2色涂格子有种方法,用3色涂格子,第一步选色有,第二步涂色,共有种,所以涂色方法种方法,故总共有390种方法. 故答案为:39018.【解析】【分析】根据将直线与圆极坐标方程化为直角坐标方程再根据圆心到直线距离等于半径解出【详解】因为由得由得即即因为直线与圆相切所以【点睛】(1)直角坐标方程化为极坐标方程只要运用公式及直接代入并化 解析:12【解析】 【分析】根据222,cos ,sin x y x y ρρθρθ=+==将直线与圆极坐标方程化为直角坐标方程,再根据圆心到直线距离等于半径解出a . 【详解】因为222,cos ,sin x y x y ρρθρθ=+==, 由cos sin (0)a a ρθρθ+=>,得(0)x y a a +=>,由2cos ρθ=,得2=2cos ρρθ,即22=2x y x +,即22(1)1x y -+=,111201 2.2a a a a -=∴=±>∴=+Q ,,,【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可;(2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.19.y=sinx (答案不唯一)【解析】分析:举的反例要否定增函数可以取一个分段函数使得f (x )>f (0)且(02]上是减函数详解:令则f (x )>f (0)对任意的x ∈(02]都成立但f (x )在[02]上不解析:y =sin x (答案不唯一)【解析】分析:举的反例要否定增函数,可以取一个分段函数,使得f (x )>f (0)且(0,2]上是减函数.详解:令0,0()4,(0,2]x f x x x =⎧=⎨-∈⎩,则f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.又如,令f (x )=sin x ,则f (0)=0,f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不是增函数.点睛:要判定一个全称命题是假命题,只要举出集合M 中的一个特殊值0x ,使0()p x 不成立即可.通常举分段函数.20.【解析】【分析】由题意可得又由可得联立得又由为焦点的抛物线:经过点化简得根据离心率可得即可求解【详解】由题意双曲线的渐近线方程为焦点为可得①又可得即为②由联立①②可得由为焦点的抛物线:经过点可得且即解析:2+【解析】 【分析】 由题意可得00by x a=,又由12MF MF ⊥,可得22200y x c +=,联立得0x a =,0y b =,又由F 为焦点的抛物线2C :22(0)y px p =>经过点M ,化简得224ac 0c a --=,根据离心率ce a=,可得2410e e --=,即可求解. 【详解】由题意,双曲线的渐近线方程为by x a=±,焦点为()1,0F c -,()2,0F c , 可得00by x a=,① 又12MF MF ⊥,可得00001y yx c x c⋅=-+-, 即为22200y x c +=,②由222a b c +=,联立①②可得0x a =,0y b =,由F 为焦点的抛物线2C :22(0)y px p =>经过点M , 可得22b pa =,且2pc =,即有2224b ac c a ==-,即224ac 0c a --=由cea=,可得2410e e--=,解得25e=+【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程是解答的关键.求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c的值,代入公式cea=;②只需要根据一个条件得到关于,,a b c的齐次式,转化为,a c的齐次式,然后转化为关于e的方程(不等式),解方程(不等式),即可得e(e的取值范围).三、解答题21.(1) ; (2)36000;(3).【解析】【分析】本题主要考查频率分布直方图、频率、频数的计算等基础知识,考查学生的分析问题、解决问题的能力. 第(Ⅰ)问,由高×组距=频率,计算每组的频率,根据所有频率之和为1,计算出a的值;第(Ⅱ)问,利用高×组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率×样本容量=频数,计算所求人数;第(Ⅲ)问,将前5组的频率之和与前4组的频率之和进行比较,得出2≤x<2.5,再估计月均用水量的中位数.【详解】(Ⅰ)由频率分布直方图,可知:月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(Ⅱ)由(Ⅰ)100位居民月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.12=36000.(Ⅲ)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5所以2≤x<2.5.由0.50×(x–2)=0.5–0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.【考点】频率分布直方图【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题、解决问题的能力.在频率分布直方图中,第n个小矩形的面积就是相应组的频率,所有小矩形的面积之和为1,这是解题的关键,也是识图的基础. 22.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)本题证明线面平行,根据其判定定理,需要在平面DEF 内找到一条与PA 平行的直线,由于题中中点较多,容易看出//PA DE ,然后要交待PA 在平面DEF 外,DE 在平面DEF 内,即可证得结论;(2)要证两平面垂直,一般要证明一个平面内有一条直线与另一个平面垂直,由(1)可得DE AC ⊥,因此考虑能否证明DE 与平面ABC 内的另一条与AC 相交的直线垂直,由已知三条线段的长度,可用勾股定理证明DE EF ⊥,因此要找的两条相交直线就是,AC EF ,由此可得线面垂直. 【详解】(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA ⊄平面DEF ,DE ⊂平面DEF ,所以//PA 平面DEF .(2)由(1)//PA DE ,又PA AC ⊥,所以DE AC ⊥,又F 是AB 中点,所以132DE PA ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ⊥平面ABC ,又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC . 【考点】线面平行与面面垂直.23.(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】 【分析】(1)首先求得数列{}n a 的首项和公差确定数列{}n a 的通项公式,然后结合三项成等比数列的充分必要条件整理计算即可确定数列{}n b 的通项公式;(2)结合(1)的结果对数列{}n c 的通项公式进行放缩,然后利用不等式的性质和裂项求和的方法即可证得题中的不等式. 【详解】(1)由题意可得:1112432332a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得:102a d =⎧⎨=⎩, 则数列{}n a 的通项公式为22n a n =- . 其前n 项和()()02212n n n S nn +-⨯==-.则()()()()1,1,12n n n n n b n n b n n b -++++++成等比数列,即:()()()()21112n n n n n b n n b n n b ++=-+⨯+++⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,据此有:()()()()()()()()2222121112121n n n n n n n n n b b n n n n n n b n n b b ++++=-++++++-+,故()()()()()22112121(1)(1)(1)(2)n n n n n n b n n n n n n n n n +--++==++++--+. (2)结合(1)中的通项公式可得:()()1121211n n n a n C n n b n n n n n n n -==<=<=--+++-,则()()()12210221212n C C C n n n +++<-+-++--=L L .【点睛】本题主要考查数列通项公式的求解,,裂项求和的方法,数列中用放缩法证明不等式的方法等知识,意在考查学生的转化能力和计算求解能力. 24.(1)见解析;(2)13【解析】 【分析】(1)在正方形ABCD 中,有AB AD ⊥,CD BC ⊥,在三棱锥M DEF -中,可得MD MF ⊥,MD ME ⊥,由线面垂直的判定可得MD ⊥面MEF ,则MD EF ⊥; (2)由E 、F 分别是AB 、BC 边的中点,可得1BE BF ==,求出三角形MEF 的面积,结合()1及棱锥体积公式求解. 【详解】(1)证明:Q 在正方形ABCD 中,AB AD ⊥,CD BC ⊥,∴在三棱锥M DEF -中,有MD MF ⊥,MD ME ⊥,且ME MF M ⋂=,MD ∴⊥面MEF ,则MD EF ⊥;(2)解:E Q 、F 分别是边长为2的正方形ABCD 中AB 、BC 边的中点, 1BE BF ∴==,111122MEF BEF S S V V ∴==⨯⨯=,由(1)知,111123323M DEF MEF V S MD -=⋅=⨯⨯=V .【点睛】本题考查线面垂直的判定定理及性质定理的应用,考查棱锥体积的求法,是中档题.25.(I)(4,),(2)24ππ(II )1,2a b =-= 【解析】 【分析】 【详解】(I )圆1C 的直角坐标方程为22(2)4x y +-=,直线2C 的直角坐标方程为40x y +-=联立得22(2)4{40x y x y +-=+-=得110{4x y ==222{2x y ==所以1C 与2C交点的极坐标为(4,)24ππ(II )由(I )可得,P ,Q 的直角坐标为(0,2),(1,3),故,PQ 的直角坐标方程为20x y -+=由参数方程可得122b ab y x =-+,所以1,12,1,222b aba b =-+==-=解得26.(1) T π= ;26k x ππ=+(k Z ∈). (2) 5(,]6ππ--,[,]36ππ-和2[,]3ππ 【解析】 【分析】(1)化简得()1sin 262f x x π⎛⎫=++ ⎪⎝⎭,再求函数的周期和对称轴方程;(2)先求出函数在R 上的增区间为[,36k k ππππ-+] (k Z ∈),再给k 赋值与定义域求交集得解.【详解】解:(1)()2cos cos f x a b x x x =⋅+r r111sin2cos2sin 222262x x x π⎛⎫=++=++ ⎪⎝⎭ 所以()f x 的周期22T ππ==, 令262x k πππ+=+(k Z ∈),即26k x ππ=+(k Z ∈) 所以()f x 的对称轴方程为26k x ππ=+(k Z ∈). (2)令222262k x k πππππ-≤+≤+(k Z ∈)解得36k x k ππππ-≤≤+(k Z ∈),由于(],x ππ∈- 所以当1,0k =-或1时,得函数()f x 的单调递增区间为5,6ππ⎛⎤-- ⎥⎝⎦,,36ππ⎡⎤-⎢⎥⎣⎦和2,3ππ⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查三角恒等变换,考查三角函数的周期的求法和对称轴的求法,考查三角函数的单调区间的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由已知 =-2 p +2 q =(-2,2)+(4,2)=(2,4), 设 =λ m +μ n =λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),
2 0 则由 2 4 解得 2 ∴ =0 m +2 n ,∴ 在基底 m , n 下的坐标为(0,2). 6.C
B. a 1,b 1 C. a 1,b 1 D. a 1,b 1
7.对于不等式 n2 n <n+1(n∈N*),某同学应用数学归纳法的证明过程如下:
(1)当 n=1 时, 12 1 <1+1,不等式成立.
(2)假设当 n=k(k∈N*)时,不等式成立,即 k2 k <k+1.
那么当 n=k+1
解析:C 【解析】 【分析】 利用复数乘法的运算法则化简原式,利用复数相等的性质可得结果. 【详解】
因为 (a i)i b i , 即 1 ai b i , 因为 a,b R,i 为虚数单位,所以 a 1,b 1,
故选 C. 【点睛】
本题主要考查复数的乘法运算以及复数相等的性质,属于基础题.
【详解】 记事件 A 表示“第一次正面向上”,事件 B 表示“第二次反面向上”,
则 P(AB)= ,P(A)= ,∴P(B|A)= = ,故选 C.
【点睛】 本题主要考查了条件概率的计算,其中解答中认真审题,熟记条件概率的计算公式,准确 计算是解答的关键,着重考查了推理与运算能力,属于基础题.
5.D
存在,求 n 的最小值;若不存在,说明理由. 24.已知 A 为圆 C : x2 y2 1上一点,过点 A 作 y 轴的垂线交 y 轴于点 B ,点 P 满足
BP 2BA.
(1)求动点 P 的轨迹方程;
(2)设 Q 为直线 l : x 3 上一点, O 为坐标原点,且 OP OQ ,求 POQ 面积的最小
3
________ cm . 15.在平行四边形 ABCD 中, A ,边 AB,AD 的长分别为 2 和 1,若 M,N 分别是
3
BM CN
边 BC,CD 上的点,且满足
,则 AM AN 的取值范围是_________.
BC CD
16. ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 b 2 , c 3, C 2B ,则 ABC 的面积为______.
2020 年高中三年级数学下期末试卷(带答案)(1)
Байду номын сангаас
一、选择题
1.某班上午有五节课,分別安排语文,数学,英语,物理,化学各一节课.要求语文与化
学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课法的种数是
A.24
B.16
C.8
D.12
2.在复平面内, O 为原点,向量 OA 对应的复数为 1 2i ,若点 A 关于直线 y x 的对
时, (k 1)2 k 1 k2 3k 2 k2 3k 2 k 2 (k 2)2 =(k+1)+1,
所以当 n=k+1 时,不等式也成立.
根据(1)和(2),可知对于任何 n∈N*,不等式均成立.
则上述证法( )
A.过程全部正确
B.n=1 验得不正确
C.归纳假设不正确
D.从 n=k 到 n=k+1 的证明过程不正确
∴该几何体的体积 V=6×6×3﹣
=100.
故选 B.
考点:由三视图求面积、体积.
9.A
解析:A 【解析】
余弦定理 AB2 BC2 AC2 2BC?AC cos C 将各值代入 得 AC2 3AC 4 0 解得 AC 1或 AC 4(舍去)选 A.
10.C
解析:C 【解析】
【分析】
本题根据双曲线的渐近线方程可求得 a b ,进一步可得离心率.容易题,注重了双曲线基
(1)求证:
ab
1
2
1
;
ab
(2)若 a b ,且 ab 2 ,求证: a2 b2 4 . ab
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 根据题意,可分三步进行分析:(1)要求语文与化学相邻,将语文与化学看成一个整体, 考虑其顺序;(2)将这个整体与英语全排列,排好后,有 3 个空位;(3)数学课不排第 一行,有 2 个空位可选,在剩下的 2 个空位中任选 1 个,得数学、物理的安排方法,最后
求解.
【详解】
设球的半径为 R ,根据长方体的对角线长等于其外接球的直径,可得
2R
32
42
52
,解得
R2
25 2
,所以球的表面积为
S球
4
R2
4
25 2
50
.
故选:B
【点睛】
本题主要考查了长方体的外接球的性质,以及球的表面积的计算,其中解答中熟练应用长
8.B
解析:B 【解析】 试题分析:由三视图可知:该几何体是一个棱长分别为 6,6,3,砍去一个三条侧棱长分 别为 4,4,3 的一个三棱锥(长方体的一个角).据此即可得出体积. 解:由三视图可知:该几何体是一个棱长分别为 6,6,3,砍去一个三条侧棱长分别为 4, 4,3 的一个三棱锥(长方体的一个角).
三、解答题 21.如图,四棱锥 P ABCD 的底面 ABCD 是平行四边形,连接 BD ,其中 DA DP , BA BP .
(1)求证: PA BD ; (2)若 DA DP , ABP 600 , BA BP BD 2 ,求二面角 D PC B 的正弦
值.
22.如图,在四棱锥 P ABCD 中,已知 PC 底面 ABCD , AB AD , AB / /CD , AB 2 , AD CD 1, E 是 PB 上一点.
A. 2 2
B.1
C. 2
D.2
11.已知长方体的长、宽、高分别是 3,4,5,且它的 8 个顶点都在同一球面上,则这个
球的表面积是( )
A. 25
B. 50
C.125
D.都不对
12.把红、黄、蓝、白 4 张纸牌随机分给甲、乙、丙、丁 4 个人,每人分得一张,事件
“甲分得红牌”与事件“乙分得红牌”是
础知识、基本计算能力的考查. 【详解】
根据渐近线方程为 x±y=0 的双曲线,可得 a b ,所以 c 2a
则该双曲线的离心率为 e c 2 , a
故选 C.
【点睛】
理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.
11.B
解析:B 【解析】
【分析】
根据长方体的对角线长等于其外接球的直径,求得 R2 25 ,再由球的表面积公式,即可 2
解析:A 【解析】 【分析】
首先根据向量 OA 对应的复数为 1 2i ,得到点 A 的坐标,结合点 A 与点 B 关于直线 y x 对称得到点 B 的坐标,从而求得向量 OB 对应的复数,得到结果.
【详解】
复数 1 2i 对应的点为 A(1,2) , 点 A 关于直线 y x 的对称点为 B(2,1) , 所以向量 OB 对应的复数为 2 i .
称点为点 B ,则向量 OB 对应的复数为( A. 2 i C.1 2i
)
B. 2 i D. 1 2i
3.已知
F1,F2
分别是椭圆
C:
x2 a2
y2 b2
1
(a>b>0)的左、右焦点,若椭圆 C 上存在点 P,
使得线段 PF1 的中垂线恰好经过焦点 F2,则椭圆 C 离心率的取值范围是( )
A.
2 3
,1
B.
1 3
,
2
2
C.
1 3
,1
D.
0,
1 3
4.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( )
A. 1 4
B. 1 3
C. 1 2
D. 2 3
5.若 , 是一组基底,向量 =x +y (x,y∈R),则称(x,y)为向量 在基底 , 下的坐标,
安排物理,有 2 中情况,则数学、物理的安排方法有 22 4 种,
所以不同的排课方法的种数是 2 2 4 16 种,故选 B。
【点睛】 本题主要考查了排列、组合的综合应用,其中解答红注意特殊问题和相邻问题与不能相邻 问题的处理方法是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。
2.A
(1)求证:平面 EAC 平面 PBC ; (2)若 E 是 PB 的中点,且二面角 P AC E 的余弦值是 6 ,求直线 PA 与平面 EAC
3
所成角的正弦值.
23.已知等差数列 an 满足: a1 2 ,且 a1 , a2 , a5 成等比数列. (1)求数列an 的通项公式; (2)记 Sn 为数列an 的前 n 项和,是否存在正整数 n ,使得 Sn 60n 800 ?若
值.
25.如图,在几何体 ABC A1B1C1 中,平面 A1ACC1 底面 ABC,四边形 A1ACC1 是正方
形, B1Cl / / BC ,Q 是 A1B 的中点, AC BC 2B1C1,
ACB 2 3
(I)求证: QB1 / / 平面 A1ACC1
(Ⅱ)求二面角 A1 BB1 C 的余弦值. 26.已知 a 0,b 0 .
【点睛】求离心率范围时,常转化为 x,y 的范围,焦半径的范围,从而求出离心率的范
围。本题就是通过中垂线上点到两端点距离相等,建立焦半径与 a, b, c 的关系,从而由焦
半径的范围求出离心率的范围。
4.C
解析:C 【解析】 【分析】
由题意,求得 P(AB), P(A) 的值,再由条件概率的计算公式,即可求解.