八年级数学上册2.7二次根式第2课时二次根式的运算教案1(新版)北师大版
北师大版八年级数学上册:2.7《二次根式》教学设计1

北师大版八年级数学上册:2.7《二次根式》教学设计1一. 教材分析《二次根式》是北师大版八年级数学上册第2.7节的内容,本节主要介绍二次根式的概念、性质和运算。
二次根式在数学中占有重要地位,它不仅是学习更高深数学的基础,也是解决实际问题的重要工具。
通过学习二次根式,学生可以更好地理解和掌握数学的本质。
二. 学情分析学生在学习本节内容前,已经学习了实数、有理数和无理数等基础知识,对数的运算也有一定的了解。
但二次根式作为一种新的数学对象,其概念和性质需要学生通过实例去感受和理解。
同时,学生需要将已有的知识运用到新的领域,进行二次根式的运算。
三. 教学目标1.了解二次根式的概念和性质。
2.掌握二次根式的运算方法。
3.能够运用二次根式解决实际问题。
四. 教学重难点1.二次根式的概念和性质。
2.二次根式的运算方法。
五. 教学方法采用问题驱动法和案例教学法,通过设置问题和实例,引导学生主动探索和理解二次根式的概念和性质。
同时,通过小组讨论和合作交流,培养学生解决问题的能力和团队协作精神。
六. 教学准备1.PPT课件。
2.相关练习题和实例。
七. 教学过程1.导入(5分钟)通过设置问题:“你能用已学的知识解释水的沸腾吗?”引导学生思考和探索二次根式的概念和性质。
2.呈现(10分钟)通过PPT课件,展示二次根式的实例,引导学生观察和分析,总结出二次根式的概念和性质。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,运用刚学的知识进行分析和运算。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一组练习题,让学生独立完成,检验学生对二次根式的理解和掌握程度。
5.拓展(10分钟)让学生运用二次根式解决实际问题,如计算物理中的速度、路程等问题。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固二次根式的概念和性质,以及运算方法。
7.家庭作业(5分钟)布置适量作业,让学生进一步巩固和提高二次根式的理解和运用能力。
北师大版八年级数学上册:2.7《二次根式》说课稿

北师大版八年级数学上册:2.7《二次根式》说课稿一. 教材分析北师大版八年级数学上册第2.7节《二次根式》是学生在学习了实数、有理数、无理数等相关知识的基础上,进一步深入研究根式的一种拓展。
本节内容主要介绍了二次根式的定义、性质和运算规则,旨在培养学生对根式的理解和运用能力。
教材通过例题和练习题的形式,使学生能够熟练掌握二次根式的相关知识,并能够运用到实际问题中。
二. 学情分析学生在学习本节内容之前,已经掌握了实数、有理数、无理数等基础知识,对于根式的概念和性质有一定的了解。
但二次根式作为一种特殊的根式,其定义和性质与一次根式有所不同,需要学生进行进一步的学习和理解。
此外,学生需要掌握二次根式的运算规则,并能够灵活运用到实际问题中。
三. 说教学目标1.知识与技能目标:学生能够理解二次根式的定义,掌握二次根式的性质和运算规则,并能够运用到实际问题中。
2.过程与方法目标:通过小组合作、讨论交流等学习方式,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观目标:激发学生对数学学科的兴趣和热爱,培养学生的自信心和自主学习能力。
四. 说教学重难点1.教学重点:二次根式的定义、性质和运算规则。
2.教学难点:二次根式的运算规则的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探索、讨论和解决问题。
2.教学手段:利用多媒体课件、板书、练习题等教学手段,帮助学生理解和掌握二次根式的相关知识。
六. 说教学过程1.导入:通过复习一次根式的相关知识,引导学生思考二次根式的定义和性质。
2.讲解:讲解二次根式的定义、性质和运算规则,通过例题和练习题的形式,使学生能够理解和掌握相关知识。
3.小组合作:学生分组讨论,通过解决实际问题,运用二次根式的相关知识,培养学生的团队协作能力和问题解决能力。
4.总结:对本节内容进行总结,强调二次根式的定义、性质和运算规则的重要性和运用。
北师大版八年级数学上册:2.7《二次根式》教学设计

北师大版八年级数学上册:2.7《二次根式》教学设计一. 教材分析《二次根式》是北师大版八年级数学上册第2.7节的内容,本节主要介绍二次根式的概念、性质和运算。
二次根式是中学数学中的重要内容,它不仅出现在代数、几何等领域,还是学习高中数学的基础。
本节内容为学生提供了理解二次根式的基础知识,为后续学习二次根式的运算和应用打下基础。
二. 学情分析八年级的学生已经学习了实数、有理数、无理数等基础知识,对数学概念和运算有一定的理解。
但二次根式作为一种新的数学对象,其概念和性质与已有知识有很大的不同,需要学生进行一定的适应和理解。
同时,学生需要掌握二次根式的运算方法,这需要他们在课堂上进行充分的练习和思考。
三. 教学目标1.理解二次根式的概念和性质;2.掌握二次根式的运算方法;3.能够应用二次根式解决实际问题。
四. 教学重难点1.二次根式的概念和性质;2.二次根式的运算方法;3.二次根式在实际问题中的应用。
五. 教学方法采用讲授法、案例教学法、练习法、小组合作学习法等。
通过具体的例子和练习,让学生理解和掌握二次根式的概念、性质和运算方法。
六. 教学准备1.PPT课件;2.练习题;3.小组讨论工具。
七. 教学过程1.导入(5分钟)通过一个实际问题引入二次根式的概念,例如:“一个正方形的对角线长为8cm,求正方形的面积。
”让学生思考如何解决这个问题,引出二次根式的概念。
2.呈现(10分钟)讲解二次根式的概念和性质,通过PPT课件展示二次根式的图形和性质,让学生理解和掌握二次根式的基本概念和性质。
3.操练(10分钟)让学生进行二次根式的运算练习,提供一些练习题,让学生独立完成,然后进行讲解和解析。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用二次根式的概念和运算方法,巩固所学知识。
5.拓展(5分钟)讲解二次根式在实际问题中的应用,提供一些实际问题,让学生思考如何运用二次根式解决这些问题。
6.小结(5分钟)对本节课的内容进行小结,让学生回顾和巩固所学知识。
北师大初中数学八年级上册第二章《2.7二次根式》教案

北师大版数学八年级上册第二章《二次根式》教案教学目标:1.式子b a b a ⋅=⋅ (a ≥0,b ≥0),b a ba = (a ≥0,b >0)的运用;能利用化简对实数进行简单的四则运算.(重点) 2.让学生能根据实际情况灵活地运用两个法则进行有关实数的四则运算.(难点)3.通过对法则的逆运用,让学生体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.教法及学法指导:本节采用“导学-探究—反馈”教学模式,引导学生对设计的问题进行主动思考、小组讨论、主动探究,最后自己得到二次根式化简的方法,并能进行简单的四则混合运算. “两个公式的逆运用”是本节课的重点知识,“灵活地运用公式进行实数运算”是本节课的难点知识.对以上两个知识,要通过大量练习,才能让学生熟练掌握. 课前准备:制作课件,学生课前进行预习工作.教学过程:一、 导学1.让学生回顾算术平方根的概念,并提出问题:下面正方形的边长分别是多少?(利用课间展示图片)学生思考后踊跃回答,上述两个问题学生很容易完成.在这个环节为了方便表示,设大正方形的边长为a ,小正方形的边长为b .因此,学生得到:.2,822==b a 由算数平方根的定义很容易得到:.2,8==b a2.老师继续提出问题:这两个正方形的边长之间有什么关系?(停留片刻,展示分割大正方形的图片)借助图片,学生得出:,2b a =即:.228=3.你能借助什么运算法则解释它吗?点明本节课研究任务——化简,导入新课.二、 探究1.利用课件出示上节课研究的两个运算法则:b a b a ⋅=⋅(a ≥0,b ≥0), ba b a=(a ≥0,b >0).并明确指出逆用仍然是成立的,面积8 面积2即:b a b a ⋅=⋅,b a b a = (a ≥0,b >0).2.老师提出问题:能否根据该公式将8化成22呢?在这个环节,由于学生课前已经自学完课本,有部分学生能够解决这个问题.学生回答:2242428=⨯=⨯=.(强调:含有根号的数与一个不含根号的数相乘,一般把不含根号的数写在前面,并省略去乘号)3.探究方法老师提出问题:以上化简过程有何规律呢?学生得出:被开方数被拆成两个因数乘积的形式,并且其中一个因数能够直接开平方,而且在这个变化过程当中逆用了我们上节课研究的乘法运算公式.老师明确:像这种运算我们称为化简,像8被开方数含有开得尽的因数,一般需要进行化简.4.典例解析:32如何化简?学生在这个环节进行小组探究,学生得出(1):82848432=⨯=⨯=(学生比较热于利用乘法口诀); 学生得出(2):2416216232=⨯=⨯=老师引导学生:两名同学化简的结果有什么区别?学生:82可以继续化简,即2442242282=⨯=⨯=.老师继续提出:哪种方法更好呢?我们以后应该采用哪种方法?学生一定选择第二种方法,第二种方法的优点是只需一次化简,而第一种方法需要两次化简.总结方法:对于32这种式子的化简,被开方数拆成两个因数乘积的形式,其中一个因数能够直接开方,而另一个不再含有开方开得尽的因数.5.反馈练习:化简:(1)45;(2)27;(3)54;(4)98;(5)16125. 五名同学在黑板板书,其余同学独立完成.完成后同位交换批改,并订正答案.黑板上的让同学点评.6.拓展:事实上,对带有根号的数的化简,不仅仅限于以上提出的要求,它还有其他要求.类比(4)98 (5)16125的化简,让学生化简21.(小组合作探究) 学生会有两种做法: 方法一: 212121==.在此指出这种结果并非最简,还需进行分母有理化,但分母有理化不是我们现在的教学要求,以后我们习题课的时候有可能会涉及到.方法二: 22424221===.自学效果好的同学得到这种方法,这种方法是我们这节课要掌握的方法.那么这种方法的特点是什么呢?学生回答:被开方数的分母利用分数的基本性质扩大一定的正整数倍,配成能够直接开方的数.有些学生有这种想法: 2242216816821====.这种情况里面8还需要化简.因此分母扩大一定的正整数倍后,应该配成最小的能够直接开平方的数.老师总结:原来被开方数含有分母,化简后,被开方数不含分母了.7.反馈练习:化简:(1)31 (2) 121 (两名同学黑板板书,其余同学独立完成,并同位间批改订正)8.小结归纳:带根号的数的化简要求:(1)使被开方数不含开得尽的数;(2)使被开方数不含分母.9.知识运用例1 化简:(1)50;(2)348-;(3)515-. 对于例题的处理:先让学生自学例题,注意解题格式和步骤,然后合上课本把例题再做一遍,并且找四名同学到黑板上板书,最后让学生点评例题.三、反馈1.课本60页随堂练习1:(三名同学到黑板板书,然后其余同学独立完成,同位间批改订正,黑板上同学的完成情况,让学生点评)化简:(1)18;(2)7533-;(3)72.2.补充习题, 化简:(1)81;(2)278;(3)2.1;(4)1615 (找同学板书) 说明:(3)(4)大部分同学无从下手,老师给予适当点拨.(3)要先把小数化成分数,再考虑下一步的化简.(4)要把带分数化成假分数,再考虑下一步的化简.3.补充习题,化简:(1)128; (2)900; (3)48122+;(4)325092-+; (5)5145203--; (找同学板书) 课堂小结小组内交流讨论,总结本节课的收获.以小组为单位做出总结:(1)被开方数中含有分母或者含有能开得尽的因数的式子需要化简;(2)公式b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0)从左往右或从右往左在化简中会灵活运用.(3)能够进行含有根式的式子的四则混合运算.限时作业课本62页 习题 2.10 知识技能 1.课本64页 复习题 8.化简 (4)(5)(6)板书设计:教学反思:1.这是一节实数的运算、化简课,只有在熟练掌握两个公式(和这两个公式的逆运用)的基础上,反复利用练习来巩固学生对知识理解和融汇.2.本节课通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并体验实数的运算、化简;让学生根据实例进行探索,通过同学们互相交流合作,得出两个化简的公式(实际上是两个运算公式的逆运用),培养他们的合作精神和探索能力.3.由于课本的知识量比较少,我在新课引入和反馈训练方面所花的时间相对多一些,这§2.6.3 实数(三)1.法则 2.例题讲解b a b a ⋅=⋅ (a ≥0,b ≥0);b a ba =(a ≥0,b >0) 练 习 区也是数(或式)的运算的通用的做法,旨在通过练习、例题来巩固学生对所学知识的理解和掌握.。
北师大八年级数学教案-二次根式的运算(1)

2.7 二次根式第2課時二次根式的運算【上節知識回顧】1.關於二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“”表示的代數式,這裡的開方運算是最後一步運算。
如,等不是二次根式,而是含有二次根式的代數式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數或有理式(整式或分式)時,雖然最後運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數或有理式就叫做二次根式的係數;(3)二次根式的被開方數,可以是某個確定的非負實數,也可以是某個代數式表示的數,但其中所含字母的取值必須使得該代數式的值為非負實數;(4)像“,”等雖然可以進行開方運算,但它們仍屬於二次根式。
2.二次根式的主要性質(1);(2);(3);(4)積的算術平方根的性質:;(5)商的算術平方根的性質:;(6)若,則。
3.注意與的運用。
【新授】一、二次根式的乘法一、複習引入1.填空(1=______;(2=_______.(3=_______.參考上面的結果,用“>、<或=”填空.一般地,對二次根式的乘法規定為反過來:例1.計算(1(2(3(4)例2 化簡(1(2(3(4(5)例3.判斷下列各式是否正確,不正確的請予以改正:(1(2=4二、二次根式的除法1.寫出二次根式的乘法規定及逆向等式.2.填空(1=________;(2=________=________;(3=________;(4=________=________.______;______;_______.一般地,對二次根式的除法規定:例1.計算:(1(2(3(4=例2.化簡:(1(2(3(4例3.,且x 為偶數,求(1+x的值. 三、分母有理化兩個含有二次根式的代數式相乘,如果它們的積不含有二次根式,我們說這兩個代數式互為有理化因式。
對於有理化因式,要注意以下四點: (1)它們必須是成對出現的兩個代數式; (2)這兩個代數式都是二次根式;(3)這兩個代數式的積不含有二次根式;(4)一個二次根式,可以與幾個不同的代數式互為有理化因式。
八年级数学上册2.7二次根式第2课时二次根式的运算教学设计 (新版北师大版)

八年级数学上册2.7二次根式第2课时二次根式的运算教学设计(新版北师大版)一. 教材分析二次根式的运算是在学生已经掌握了二次根式的性质和运算法则的基础上进行教学的。
这一节的内容主要包括二次根式的加减乘除运算,以及如何化简二次根式。
通过这一节的学习,学生能够进一步理解和掌握二次根式的运算规则,提高解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式有一定的了解。
但是在实际操作中,部分学生可能会对二次根式的化简和运算规则理解不深,导致在解决问题时出现困难。
因此,在教学过程中,需要针对学生的实际情况进行讲解,引导学生理解和掌握二次根式的运算规则。
三. 教学目标1.知识与技能目标:学生能够理解和掌握二次根式的加减乘除运算规则,能够熟练地进行二次根式的运算。
2.过程与方法目标:通过实例分析和练习,学生能够掌握二次根式的化简方法,提高解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.重点:二次根式的加减乘除运算规则。
2.难点:二次根式的化简方法。
五. 教学方法采用讲解法、引导法、练习法进行教学。
通过实例分析,引导学生理解和掌握二次根式的运算规则,通过练习,巩固所学知识,提高学生的实际操作能力。
六. 教学准备1.教学课件:制作二次根式运算的教学课件,用于辅助教学。
2.练习题:准备一些有关二次根式运算的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次根式的运算。
例如:一个正方形的对角线长为8cm,求这个正方形的面积。
2.呈现(10分钟)讲解二次根式的加减乘除运算规则,并通过实例进行分析。
3.操练(10分钟)让学生进行二次根式的运算练习,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些变式练习,巩固学生对二次根式运算规则的理解。
5.拓展(5分钟)讲解二次根式的化简方法,并进行一些化简练习。
北师大版八年级上册数学2.7第2课时二次根式的运算教案2

2.7 二次根式第 2 课时二次根式的运算【上节知识回首】1.对于二次根式的观点,要注意以下几点:( 1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。
如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前方乘有一个有理数或有理式(整式或分式)时,固然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前方与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,能够是某个确立的非负实数,也能够是某个代数式表示的数,但此中所含字母的取值一定使得该代数式的值为非负实数;(4)像“,”等固然能够进行开方运算,但它们仍属于二次根式。
2.二次根式的主要性质( 1);( 2);(3);( 4)积的算术平方根的性质:;( 5)商的算术平方根的性质:;(6)若,则。
3.注意与的运用。
【新授】一、二次根式的乘法一、复习引入1.填空(1)4×9 =_______, 4 9 =______;( 2)16 ×25 =_______, 16 25 =________.( 3)100 ×36 =________, 10036 =_______.参照上边的结果,用“>、 <或=”填空.4×9_____ 4 9,16×25_____16 25,100×36 ________100 36一般地,对二次根式的乘法例定为a ·b = ab反过来 :ab = a · b例 1.计算.( a ≥ 0, b ≥ 0)( a ≥ 0, b ≥ 0)( 1) 5 × 7(2) 1× 9( 3) 9× 27( 4)1 × 632例 2 化简( 1)9 16 (2) 16 81(3)81 100( 4)9x 2 y 2( 5)54例 3.判断以下各式能否正确,不正确的请予以更正:( 1)( 4) ( 9) 4 9 ( 2)412× 25 =4×12 × 25=412× 25=4 12=8 3252525二、二次根式的除法1.写出二次根式的乘法例定及逆向等式. 2.填空( 1)( 3)916 416=________ ,=________ ,9 16 416=_________ ; ( 2)=_________ ; ( 4)16363681=________ ,=________ ,1636 3681=________ ;=________ .规律:9 ______ 9 ; 16 ______ 16; 4 _______ 4 ; 36 _______ 36 .16 16 36 36 1616 81 81 一般地,对二次根式的除法例定:a =a( a ≥ 0, b>0 ), 反过来,a = a( a ≥ 0, b>0 )b bb b例 1. 计算:( 1)例 2.化简:12 3 1 1 1 643( 2)8( 3)16( 4)248( 1)3 ( 2) 64b2( 3)9x ( 4)5x649a 264 y 2169y 2例 3.已知9x9x,且 x 为偶数,求( 1+x )x2 5x 4 的值.x6x6x2 1三、分母有理化两个含有二次根式的代数式相乘,假如它们的积不含有二次根式,我们说这两个代数式互为有理化因式。
北师大版初中数学八年级(上)第二章实数2-7二次根式(第2课时)教学详案

第二章实数7二次根式第2课时二次根式的运算教学目标1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.2.会用二次根式的四则运算法则进行简单运算.3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算,重要的是培养这种类比学习的能力.教学重难点重点:掌握二次根式的乘、除法运算法则,并能够熟练应用;难点:会用二次根式的四则运算法则进行简单运算.教学过程导入新课1.满足什么条件的根式是最简二次根式?试化简下列二次根式:√8,√18,√80,√0.5, √18,√20.(2√2 ,3√2 ,4√5 ,√22,√24,2√5)2.上述化简后的二次根式有什么特点?你会怎么对它们进行分类?几个二次根式化简后被开方数相同.最简根式分别为√2 ,√5两类,即√8 ,√18 ,√0.5 ,√18为一组;√80 ,√20为一组.探究新知活动1:二次根式的乘除运算1.填空(1)√4×√9=6,√4×9= 6 ;√16×√25=20,√16×25=20;√4√9=23, √49=23;√16√25=45, √1625=45.(2)用计算器计算:√6×√7≈6.481,√6×7≈6.481 ;√6√7≈0.925 8, √67≈0.925 8.参考上面的结果,用“>”“<”或“=”填空.√4×√9 = √4×9;√16×√25=√16×25; √6×√7= √6×7;√4√9=√49; √16√25=√1625; √6√7= √67.观察上面的式子得上节课的规律:√ab=√a·√b(a≥0,b≥0);√ab =√a√b(a≥0,b>0).反过来也成立:√a ·√b =√ab (a ≥0,b ≥0);√a √b =√a b (a ≥0,b >0). 【例1】计算:(1)√6×√23; (2)√6×√3√2; (3)√2√5. 【解】(1)√6×√23 =√6×23=√4=2;(2)√6×√3√2=√6×3√2=√6×32=√9=3; (3)√2√5=√25=√2×55×5=√105. 判断下列各式是否正确,不正确的请予以改正:(1)√(−4)×(−9)=√−4×√−9 ;(2)√41225×√25=4×√1225×√25=4√1225×25=4√12=8√3.解:(1)错. √(−4)×(−9)=√36=6;(2)错. √41225×√25=√41225×25=√11225×25 =√112 =4√7.做一做:(1)3a 2·2a 3= 6a 5 ,(2)(a +b )(a -b )= a 2−b 2 ,(3)(a ±b)2=222a ab b ±+, (4)(554−772) ×18= 554×18-772×18=112-. 【例2】计算:(1)3√2×2√3; (2)(√5+1)2;(3)(√13+3)(√13−3);(4)(√12−√13)×√3; (5)√8+√18√2. 【解】(1)原式=(3×2)×(√2×√3)=6√6;(2)原式=(√5)2+2×√5×1+1=5+2√5+1=6+2√5;(3)原式=(√13)2−32=13-9=4; (4)原式=√12×√3−√13×√3=√12×3−√13×3=√36−√1=5;(5)原式=√8√2+√18√2=√82+√182=√4+√9=2+3=5.活动2:二次根式的加减运算1.(1)3x 2+2x 2= 5x 2 ;(2)x 2+2x 2+4y = 3x 2+4y .2.类比合并同类项的方法,想想如何计算√80−√45? 解:√80−√45=4√5−3√5=√5.3. √3+√5能不能再进行计算?为什么?答:不能,因为它们都是最简二次根式,且被开方数不相同,所以不能合并.【例3】计算:(1)√48+√3 ; (2)√5−√15 ; (3)(√43+√3)×√6.【解】(1)原式=4√3+√3=(4+1)√3=5√3;(2)原式=√5−√55=(1-15)√5=45√5; (3)原式=√43×√6+√3×√6=√8+√18=2√2+3√2=5√2.二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:1.加减法的运算步骤:一化简,二判断,三合并.2.合并的前提:只有被开方数相同的最简二次根式才能进行合并.课堂练习1.下列运算错误的是( ) A.2+3=5 B.2·3=6C.6÷2=3D.2(2=2.下列各式中,与√3是同类二次根式的是( )A. √2B. √5C. √8D. √123.估计√32×√12+√2·√5的结果在( ) A.6至7之间 B.7至8之间C.8至9之间D.9至10之间4. √8与最简二次根式√m +1能合并,则m =________.5.若最简二次根式√3m −2n 2n+1与√3可以合并,求√mn 的值.参考答案1.A2.D3.B4.15.解:由题意得2n +1=2且3m -2n =3,解得n = 12,m = 43,即√mn =√12×43 =√23 =√63. 课堂小结1.二次根式的乘除运算法则√a ·√b =√ab (a ≥0,b ≥0);√a√b =√ab (a ≥0,b >0). 2.二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.布置作业习题2.10第1,2题板书设计7 二次根式第2课时 二次根式的运算1.二次根式的乘除运算法则:√a ·√b =√ab (a ≥0,b ≥0);√a √b=√a b (a ≥0,b >0). 2.二次根式的加减法法则:一化简,二判断,三合并.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时 二次根式的运算
1.会用二次根式的四则运算法则进行简单地运算;(重点) 2.灵活运用二次根式的乘法公式.(难
点) 一、情境导入 下面正方形的边长分别是多少?
这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?
二、合作探究
探究点一:二次根式的乘除运算 【类型一】
二次根式的乘法
计算:
(1)3×5; (2)1
3
×27; (3)2xy ×
1
x
; (4)14×7. 解:(1)3×5=15; (2)
1
3
×27=1
3
×27=9=3; (3)2xy ×
1x
=2xy×1
x
=
2y ;
(4)14×7
=14×7=72
×2=7 2.
方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.
【类型二】 计算
结果是
( )
A.-a -2 B .--a -2 C.a -2 D .-a -2
解析:原式=
a 2
-2a
a
=
a (a -2)
a
=a -2.故选C.
方法总结:利用a b
=a
b (a≥0,b>0)
可以进行二次根式的化简、计算,化去根号
内的分母.
探究点二:二次根式的加减运算
计算: (1)23-63;(2)80-20+5;
(3)2
3
9x +6x
4
-2x 1x
. 解析:(1)直接把二次根式合并,(2)、(3)先将二次根式化成最简二次根式,再将被开方数中相同的二次根式合并. 解:(1)23-63=(2-6)3=-43;
(2)80-20
+5=45-25+5=(4-2+1)5=35;
(3)
2
3
9x +6x
4
-2x 1
x
=2x +3x -2x =3x.
方法总结:将各二次根式化简为最简二次根式,然后将被开方数相同的项合并.
探究点三:二次根式乘法公式 计算:(23+32-6)(23-
32+6).
解析:将括号内的各项重新结合,构成平方差公式,再结合完全平方公式展开并化简.
解:原式=[23+(32-6)][23-
(32-6)]=(23)2-(32-6)2
=12-(18-123+6)=123-12.
方法总结:结合题目特点使用适当的运算方法,可以减少计算量.
三、板书设计
二次根式的运算⎩⎪⎨⎪
⎧乘除法则加减法则乘法公式
通过对公式的逆运用,达到化简的目的.学会这种特殊的思考方法.在合作探究
过程中,提升学生探究能力和合作意识.通过对公式的逆运用,感受数学的严谨性以及数学结论的确定性.。