简单的逻辑联结词“非”教案

合集下载

简单逻辑联结词“非”教案

简单逻辑联结词“非”教案

《简单逻辑联结词“非”》教案——陈丽君一、教学目标:1、理解逻辑联结词“非”的含义,能正确表述“p⌝”命题.并判断它们的真假性2、学会区分命题的否定和否命题二、教学重点和难点:1、准确地表述新命题“p⌝”,2、掌握“非”命题与否命题的区别和联系三、教学方法:通过问题发现生疑,通过问题解决析疑,从而获取知识形成能力;应用引导与动手尝试结合教学法,即学生自主探究与教师启发,引导相结合.四、教学过程:1、提出问题,引出新知下列两个命题间有什么关系?(1)35能被5整除;(2)35不能被5整除预案:可以看到,命题(2)是命题(1)的否定2、讨论交流,形成概念一般地,对一个命题p 全盘否定,就能得到一个新命题,记作﹁ p,读作“非p”或“p的否定”.3、例1:写出下列命题的否定,并判断真假1、p:24是偶数2、p:19不是质数4、学会判断﹁ p的真假性命题﹁ p是p的否定,﹁ p与p不能同为真命题,也不能同为假命题1、若p是真命题,则﹁ p必是假命题2、若p是假命题,则﹁ p必是真命题5、分析例子,巩固新知例1:写出下列命题的否定,并判断它们的真假:(1)p:y=sinx 是周期函数;;(2)p:32(3)p:空集是集合A的子集.6、例2:写出下表中各给定语的否定语7、练一练写出下列命题的否定:1、p:100能被4整除且能被5整除2、q:一元二次方程至多有两个解3、r:2< x≤3预案:1、﹁p:100不能被4整除或不能被5整除2、﹁q:一元二次方程至少有三个解3、﹁r:x≤2或x>38、区分命题的否定和否命题例:原命题:若函数y=sinx,则函数是周期函数真命题命题的否定:若函数y=sinx,则函数不是周期函数假命题否命题:若函数y≠sinx,则函数不是周期函数假命题9、小结(1)理解联结词“且”“或”“非”的含义p∧q:用联结词“且”把命题p和命题q联结起来口诀:全真“且”真.p∨q:用联结词“或”把命题p和命题q联结起来口诀:一真“或”真.﹁ p:对一个命题p 全盘否定口诀:真假相对(2)熟悉用真值表判断p∧q、 p∨q、﹁p的真假性10、作业(1)名师面对面的练习(2)课后练习题。

1.3简单的逻辑联结词(教学设计) (1)

1.3简单的逻辑联结词(教学设计) (1)

1.3简单的逻辑联结词(1)(教学设计)1.3.1且 1.3.2或 1.3.3非教学目标1.知识与技能目标:(1)掌握逻辑联结词“且、或、非”的含义(2)正确应用逻辑联结词“且、或、非”解决问题(3)掌握真值表并会应用真值表解决问题2.过程与方法目标:在观察和思考中,在解题和证明题中,本节课要特别注重学生思维的严密性品质的培养.3.情感态度价值观目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.通过探究学习培养学生合作交流的良好习惯和品质,培养学生独立思考锲而不舍的钻研精神。

教学重点与难点重点:通过数学实例,了解逻辑联结词“且、或、非”的含义,使学生能正确地表述相关数学内容。

难点:1、正确理解命题“P∧q”,“P∨q”,“⌝p”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”“⌝p”. 教学过程:一、复习回顾:命题:若p,则q(1)若p⇒q,且q p.则P是q的充分不必要条件(2)若p q,且q⇒p.则p是q的必要不充分条件(3)若p⇒q,且q⇒p.则p是q的充要条件,q也是p的充要条件(4)若p q,且q p.则p是q的既不充分与不必要条件引调:只能“已知(条件)”是“结论”的什么条件。

二、创设情境、新课引入在当今社会中,人们从事任何工作、学习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“或”“非”。

在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。

下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。

为叙述简便,今后常用小写字母p,q,r,s,…表示命题。

4.3逻辑联结词“非”-北师大版选修1-1教案

4.3逻辑联结词“非”-北师大版选修1-1教案

4.3逻辑联结词“非”-北师大版选修1-1教案知识点概述在命题逻辑中,逻辑联结词“非”(not)是最简单的逻辑联结词之一,它表示否定关系,代表陈述句的否定形式。

在英语中,逻辑联结词“非”通常用not表示。

例如:•北京是中国的首都——非(not)北京是中国的首都。

•这个苹果很甜——非(not)这个苹果很甜。

教学目标1.理解逻辑联结词“非”的定义和逻辑含义。

2.能够正确理解透过“非”的否定, 得到自然语言的否定形式。

3.能够应用“非”联结词进行命题转化,举一反三。

教学重点1.逻辑联结词“非”的定义和逻辑含义。

2.应用“非”联结词进行命题转化的方法。

教学难点1.如何理解逻辑联结词“非”的否定作用。

2.如何运用“非”联结词进行命题转化。

教学方法1.答疑法。

2.举例法。

教学过程第一步:导入1.从学生熟悉的日常例子入手,引出逻辑联结词“非”表示否定的概念,并提醒学生注意逻辑学的精确性。

2.引导学生从自己的日常生活(电影、游戏等),经过理性思考寻找到更多的“非”的例子。

第二步:讲解1.讲解逻辑联结词“非”的定义和逻辑含义,并结合例子讲解。

2.讲解应用“非”联结词进行命题转化的方法,并结合例子讲解。

第三步:实例操作1.让学生进行课堂练习,提高学生的动手能力。

2.随时解答学生提出的问题,引导学生思维并巩固所学知识。

第四步:课堂练习•将下列命题转化为自然语言:1.非(p 且 q)。

2.非(p 或 q)。

3.非(如果p那么q)。

4.如果非p,那么q。

5.如果p,则非q。

6.如果非p,则非q。

第五步:课堂总结1.碰到陈述句是否句的时候,要始终记住“非”的概念。

2.在命题转化中,一定要认真理解原命题的逻辑含义,避免在转化的过程中出现错误。

3.必须注意逻辑学的严谨性。

总结逻辑联结词“非”是命题逻辑中最简单的逻辑联结词之一。

在进行命题转化时,需要掌握“非”的表示方法,并结合逻辑含义理解原命题。

上述教学中所给的例子,只是命题逻辑中“非”的用法中的一种,希望学生能够通过实践进一步加深对“非”的理解,从而更好地运用“非”联结词进行命题转化,最终达到提高逻辑思维的效果。

高中数学 1.3.1《简单的逻辑联结词一或且非》 新人教版选修1-1

高中数学 1.3.1《简单的逻辑联结词一或且非》 新人教版选修1-1
pq
读作”p且 q”.
精品课件
规定:当p,q都是真命题时,p q
是真命题;当p,q两个命题中有一个
命题是假命题p时 q,
是假命题.
p
q
全真为真,有假即假.
精品课件
一般地,用逻辑联结词”或” 把命题p和命题q联结起来.就得到一 个新命题,记作
pq
规定:当p,q两个命题中有一个是真命题
时, p q
是真命题;当p,q两个命题中都

pq
假命题时,
是假命题.
精品课件
当p,q两个命题中有一个是真
命题时,p q
是真命题;当
p,q两个命题都是假p命 题q 时,
是假命题.
p
开关p,q的闭合
对应命题的真假,
q
则整个电路的接
通应与命断题开p分别q对
的真与假.
精品课件
一般地,对一个命题p全盘否定,就 得到一个新命题,记作
辑联结词的命题称为简单命题.
复合命题有以下三种形式: (1)P且q.
(2)P或q.
(3)非p.
精品课件
思考?
下列三个命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除.
精品课件
一般地,用逻辑联结词”且” 把命题p和命题q联结起来.就得 到一个新命题,记作
(7)这道数学题目有趣吗? (8)若|x-y|=|a-b|,则x-y=a-b. (9)任何无限小数都是无理数.
精品课件
我们再来看几个复杂的命题:
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
“或”,“且”, “非”称为逻辑联结词.

高中数学常用逻辑用语简单的逻辑联结词且and或or非not学案

高中数学常用逻辑用语简单的逻辑联结词且and或or非not学案

1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)学习目标:1.了解逻辑联结词“且”“或”“非”的意义.(重点)2.能够判断命题“p 且q”“p或q”“非p”的真假.(难点)3.会使用联结词“且”“或”“非”联结并改写成某些数学命题,会判断命题的真假.(易错点)[自主预习·探新知]1.“且”(1)定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q.读作“p且q”.(2)真假判断当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q 是假命题.2.“或”(1)定义一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q.读作“p或q”.(2)真假判断当p,q两个命题有一个命题是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题.思考1:(1)p∨q是真命题,则p∧q是真命题吗?(2)若p∨q与p∧q一个是真命题,一个是假命题,那么谁是真命题?[提示](1)不一定,p∨q是真命题,p与q可能一真一假,此时p∧q是假命题.(2)p∨q是真命题,p∧q是假命题.3.“非”(1)定义一般地,对一个命题p全盘否定,就得到一个新命题,记作p,读作“非p”或“p的否定”.(2)真假判断若p是真命题,则p必是假命题;若p是假命题,则p必是真命题.思考2:命题的否定与否命题的区别是什么?[提示](1)命题的否定是直接对命题的结论进行否定,而否命题则是对原命题的条件和结论分别否定.(2)命题的否定(非p)的真假与原命题(p)的真假总是相对的,即一真一假,而否命题的真假与原命题的真假无必然的联系.4.复合命题:用逻辑联结词“且”;“或”;“非”把命题p和命题q联结来的命题称为复合命题.复合命题的真假判断p1.思考辨析(1)若p∧q为真,则p,q中有一个为真即可.( )(2)若命题p为假,则p∧q一定为假.( )(3)“p∨q为假命题”是“p为假命题”的充要条件.( )(4)“梯形的对角线相等且互相平分”是“p∨q”形式的命题.( )[答案](1)×(2)√(3)×(4)×2.“xy≠0”是指( )A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0A[xy≠0⇔x≠0且y≠0,故选A.]3.已知p,q是两个命题,若“(p)∨q”是假命题,则( )【导学号:97792023】A.p,q都是假命题B.p,q都是真命题C.p是假命题,q是真命题D.p是真命题,q是假命题D[若(p)∨q为假命题,则p,q都是假命题,即p真q假,故选D.][合作探究·攻重难](1)方程x2-3=0没有有理根;(2)有两个内角是45°的三角形是等腰直角三角形;(3)±1是方程x3+x2-x-1=0的根.[解](1)这个命题是“非p”形式的命题,其中p:方程x2-3=0有有理根.(2)这个命题是“p且q”形式的命题,其中p:有两个内角是45°的三角形是等腰三角形,q:有两个内角是45°的三角形是直角三角形.(3)这个命题是“p或q”形式的命题,其中p:1是方程x3+x2-x-1=0的根,q:-1是方程x3+x2-x-1=0的根.1.分别写出由下列命题构成的“p∨q”、“p∧q”、“p”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.【导学号:97792024】[解](1)p∧q:梯形有一组对边平行且有一组对边相等.p∨q:梯形有一组对边平行或有一组对边相等.p:梯形没有一组对边平行.(2)p∧q:-1与-3是方程x2+4x+3=0的解.p∨q:-1或-3是方程x2+4x+3=0的解.p:-1不是方程x2+4x+3=0的解.的已知命题p:方程x2-2ax-1=0有两个实数根;命题q:函数f(x)=x+x 最小值为4.给出下列命题:①p∧q;②p∨q;③p∧(q);④(p)∨(q).则其中真命题的个数为( )A.1 B.2 C.3 D.4[思路探究] 判断p,q的真假→判断p,q的真假→判断所给命题的真假[解析]由于Δ=(-2a)2-4×1×(-1)=4a2+4>0,所以方程x2-2ax-1=0有两个实数根,所以命题p是真命题;当x<0时,f(x)=x+4x<0,所以命题q为假命题,所以p∨q,p∧(q),(p)∨(q)是真命题,故选C.[答案] C”还是“2.(1)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(q);④(p)∨q中,真命题是( )A.①③ B.①④C.②③ D.②④C[由不等式的性质可知,命题p为真命题,命题q为假命题,故①p∧q为假命题,②p∨q为真命题,③q为真命题,则p∧(q)为真命题,④p为假命题,则(p)∨q为假命题.](2)分别指出由下列命题构成的“p∨q”“p∧q”“p”形式的命题的真假.【导学号:97792025】①p:1∈{2,3},q:2∈{2,3};②p:2是奇数,q:2是合数;③p:4≥4,q:23不是偶数;④p:不等式x2-3x-10<0的解集是{x|-2<x<5},q:不等式x2-3x-10<0的解集是{x|x>5或x<-2}.[解] ①∵p 是假命题,q 是真命题,∴p ∨q 是真命题,p ∧q 是假命题,p 是真命题. ②∵p 是假命题,q 是假命题,∴p ∨q 是假命题,p ∧q 是假命题,p 是真命题. ③∵p 是真命题,q 是真命题,∴p ∨q 是真命题,p ∧q 是真命题,p 是假命题. ④∵p 是真命题,q 是假命题,∴p ∨q 是真命题,p ∧q 是假命题,p 是假命题.1.设集合A 是p 为真命题时参数的取值范围,则p 为假命题时,参数的取值范围是什么?提示:p 为假命题时,参数的取值范围是∁R A .2.设集合M 、N 分别是p ,q 分别为真命题时参数的取值范围,则p ∨q 与p ∧q 分别为真命题时参数的取值范围分别是什么?提示:当p ∨q 为真命题时,参数的取值范围是A ∪B . 当p ∧q 为真命题时,参数的取值范围是A ∩B .已知p :关于x 的方程x 2+mx +1=0有两个不相等的负根,q :关于x 的方程4x 2+4(m -2)x +1=0无实根.若p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.[思路探究][解] 当x 2+mx +1=0有两个不相等的负根为真时,⎩⎪⎨⎪⎧m 2-4>0,-m <0,解之得m >2,当4x 2+4(m -2)x +1=0无实根为真时,16(m -2)2-16<0,解之得1<m <3. 因为p ∧q 为假命题,p ∨q 为真命题,所以p 与q 一真一假.若p 真q 假,则⎩⎪⎨⎪⎧m >2,m ≥3或m ≤1,所以m ≥3.若p 假q 真,则⎩⎪⎨⎪⎧m ≤2,1<m <3,所以1<m ≤2.所以m 的取值范围为1<m ≤2或m ≥3.求出根据命题根据1.若命题“p∧q”为假,且p为假,则( )A.p∨q为假B.q假C.q真D.p假B[由p为假知,p为真,又p∧q为假,则q假,故选B.]2.给出下列命题:①2>1或1>3;②方程x2-2x-4=0的判别式大于或等于0;③25是6或5的倍数;④集合A∩B是A的子集,且是A∪B的子集.其中真命题的个数为( )A.1 B.2 C.3 D.4D[对于①,是“或”命题,且2>1是真命题,故①是真命题.对于②,是“或”命题,且Δ=(-2)2+16=20>0,故②是真命题.对于③,是“或”命题,且25是5的倍数,故③是真命题.对于④,是“且”命题,且集合A ∩B 是A 的子集,也是A ∪B 的子集.故④是真命题,故选D.]3.已知命题:p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .p ∧q C .p ∧qD .p ∧qD [因为指数函数的值域为(0,+∞),所以对任意x ∈R ,y =2x>0恒成立,故p 为真命题;因为当x >1时,x >2不一定成立,反之当x >2时,一定有x >1成立,故“x >1”是“x >2”的必要不充分条件,故q 为假命题,则p ∧q 、p 为假命题,q 为真命题,p ∧q 、p ∧q 为假命题,p ∧q 为真命题,故选D.]4.已知命题p :函数f (x )=(2a -1)x +b 在R 上是减函数;命题q :函数g (x )=x 2+ax 在[1,2]上是增函数,若p ∧q 为真,则实数a 的取值范围是________.【导学号:97792026】⎣⎢⎡⎭⎪⎫-2,12 [p 为真时,2a -1<0,即a <12,q 为真时,-a2≤1,即a ≥-2,则p ∧q 为真时,-2≤a <12.]5.分别指出由下列各组命题构成的“p ∧q ”“p ∨q ”“ p ”形式的命题的真假:(1)p :点P (1,1)在直线2x +y -1=0上,q :直线y =x 过圆x 2+y 2=4的圆心; (2)p :4∈{2,3,4},q :不等式x 2-x -2>0的解集为{x |-2<x <1}; (3)p :若a >b ,则2a>2b,q :若a >b ,则a 3>b 3. [解] (1)∵p 是假命题,q 是真命题,∴p ∧q 为假命题,p ∨q 为真命题,p 为真命题. (2)∵p 是真命题,q 是假命题,∴p ∧q 为假命题,p ∨q 为真命题,p 为假命题. (3)∵p 是真命题,q 是真命题,∴p ∧q 为真命题,p ∨q 为真命题,p 为假命题.。

1.3简单的逻辑联结词(第二课时)

1.3简单的逻辑联结词(第二课时)

1.3简单的逻辑联结词(第二课时)【学习目标】1.正确理解逻辑联结词“非”的含义;2.了解含有“非”的复合命题的构成,会判断它们的真假;2、理解命题的否定和否命题的区别。

【自主学习】仔细阅读课本P17,完成下列问题:问题1、(1)27是7的倍数;(2)27不是7的倍数;命题(2)是命题(1)的______________;这里的“_______”是逻辑联结词,命题(1)记为p,命题(2)的构成形式记作读作或问题p ⌝问题3、逻辑联结词“非”与集合运算有什么关系?如何从集合的角度理解“非”?问题4、命题的否定与否命题有什么区别?【合作探究】探究一、写出下列各命题的否定及其否命题,并判断它们的真假。

(1)若x,y都是奇数,则x+y是偶数;(2)负数有平方根.探究二、写出下列命题的否定,并判断它们的真假:(1)p:y=sinx是周期函数;(2)p:3<2;(3)p:空集是集合A的子集.探究三、看课堂练习2,3探究四、命题p : 2||x x -≥6,q :x Z ∈,若“p q ∧”与“q ⌝”同时为假命题,求x 的值。

练习 命题甲:关于x 的不等式0)1(22≤+-+a x a x 的解集为φ,命题乙:函数x a a y )2(2-=为增函数,分别求出符合下列条件的实数a 的取值范围:(1)甲、乙至少有一个是真命题; (2)甲、乙中有且只有一个是真命题。

小结1.命题的否定即﹁p ,它是对命题p 的全盘否定,与p 的否命题有本质的区别,二者不能混为一谈.2.命题p 与﹁p 有且只有一个为真命题,命题p 与p 的否命题的真假关系不确定.3.对于p ∧q ,p ∨q 和﹁p 相互渗透的真假命题,一般应转化为p 、q 的真假来解决. 课堂练习1.书本P18 练习3 A 组 32.若命题“q p ∨”与命题“p ⌝”都是真命题,则有 A .命题p 不一定是假命题 B .命题q 一定为真命题 C .命题q 不一定为真命题 D .命题p 与命题q 真假性相同 3.若“q p ∧”与“()p q ⌝∨”均为假命题,则 A .p 真q 假 B .p 假q 真 C .p 真q 真 D .p 假q 假4.若条件p :14x +≤,条件q :256x x <-,则p ⌝是q ⌝的 A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分也不必要条件 5.若命题“p ⌝或q ⌝”是假命题,则下列结论中正确的是①命题“q p ∧”是真命题;②命题“q p ∧”是假命题;③命题“q p ∨”是真命题; ④命题“q p ∨”是假命题A. ①③B. ②④C. ②③D. ①④6.命题p :实数x 满足03422<+-a ax x ,其中0<a ,命题q :实数x 满足062≤--x x 或0822>-+x x ,若p ⌝是q ⌝的必要不充分条件,求实数a 的取值范围。

1.2 简单的逻辑联结词(教学案)(2)

1.2  简单的逻辑联结词(教学案)(2)

1.2简单的逻辑联结词(2)教学目标:1.进一步了解“或”、“且”、“非”作为逻辑联结词的含义,掌握“p 或q”、“p且q”以及“非p”命题的真假规律;2.能够应用真值表解决相关问题.教学重点:含有逻辑联结词的命题的真假的判断.教学难点:应用逻辑联结词求参数范围.教学方法:问题链导学,讲练结合.2.含有逻辑联结词的命题的真假判断的步骤:(1)逐一判断命题p、q的真假;(2)根据“或”、“且”、“非”的含义判断“p或q”、“p且q”、“非p”的真假.二、知识应用例1写出由下列各组命题构成的“p或q”、“p且q”以及“非p”形式的命题:(1)p:3是正数,q:3是奇数;(2)p:函数y=x2(x∈R)是偶函数,q:函数y=x2(x∈R)是单调递增函数;(3)p:正方形是矩形,q:正方形是菱形.例2判断下列命题的真假:(1)2≥1;(2)2≥2;(3)1≥2.例3写出由下列各组命题构成的“p或q”、“p且q”以及“非p”形式的命题,并判断其真假:(1)p:2∈N*,q:1∈Q;(2)p:方程x2+x+1=0无实数根,q:方程x2+x-2=0有两个异号实数根;(3)p:3是9的约数,q:4是12的约数.例4已知p:x2-x≥6,q:x∈Z,若p∧q和¬q都是假命题,求x的值.例5已知有两个命题,命题p:不等式x2-(a+1)x+1≤0的解集是空集,命题q:函数y=(a+1)x在定义域内是增函数,如果p且q为假命题,p 或q是真命题,求a的取值范围.三、要点归纳与方法小结本节课学习了以下内容:1.含有逻辑联结词的命题的真假判断.2.综合应用逻辑联结词求参数范围的一般步骤.。

人教课标版高中数学选修1-1:《简单的逻辑联结词》教案-新版

人教课标版高中数学选修1-1:《简单的逻辑联结词》教案-新版

1.3简单的逻辑联结词一、教学目标 【核心素养】培养学生的数学抽象,构建基本的数学逻辑体系. 【学习目标】(1)通过数学实例,了解简单的逻辑联结词“或”、“且”、“非”的含义; (2)能正确地利用“或”、“且”、“非”表述相关的数学内容; (3)知道命题的否定与否命题的区别. 【学习重点】逻辑联结词“或”、“且”、“非”的含义; 【学习难点】逻辑联结词“或”的含义; 二、教学设计 (一)课前设计 1.预习任务任务1:阅读教材P 14—P 17,,思考:“或”“且”“非”的含义 任务2:“p ∧q ”、“p ∨q ”、“非p ”形式命题的真假如何判断 2.预习自测1.已知复合命题()p q ∧⌝是真命题,则下列命题中也是真命题的是( ) A .()p q ⌝∨ B .p q ∨ C .p q ∧ D .()()p q ⌝∧⌝ 答案:B解析:由已知得命题p 是真命题,命题q ⌝是真命题,所以命题q 是假命题,根据复合命题的真假判断p q ∨是真命题,其他选项都是假命题,故选B . 考点:复合命题真假的判断.2.已知命题:p 若π6α=,则1sin 2α=;命题:q 若1sin 2α=,则π6α=.下面四个结论中正确的是( ) A .p q ∧是真命题 B .p q ∨是真命题 C .p ⌝是真命题 D .q ⌝是假命题 答案:B解析:由题意可知,命题p 为真命题,命题q 为假命题,所以p q ∨是真命题,故选B .考点:复合命题的真假判断. 3.下列说法错误的是( )A .若命题“p q ∧”为真命题,则“p q ∨”为真命题B .若命题“p q ⌝∨”为假命题,则“p q ∧⌝”为真命题C .命题“若a b >,则22ac bc >”的否命题为真命题D .命题“若0m >,则方程20x x m +-=有实根”的逆命题为真命题 答案:D解析:对于A :若“p q ∧”为真命题,则p ,q 都是真命题,所以“p q ∨”为真命题,故A 正确; 对于B :若“p q ⌝∨”为假命题,则,p q ⌝都是假命题,∴p 是真命题,q ⌝是真命题,所以“p q ∧⌝”为真命题,故B 正确;对于C :“若a b >,则22ac bc >”的否命题为“若a b ≤,则22ac bc ≤”,∵c 2≥0,∴由a b ≤可得到22ac bc ≤,故C 正确;对于D :命题“若0m >,则方程20x x m +-=有实根”的逆命题为“若方程20x x m +-=有实根,则0m >”,方程20x x m +-=有实数根只需1140,,4m m ∆=+≥≥-所以不一定得到0m >,所以D 错.故选D .(二)课堂设计1.知识回顾(1)学生自己写两个命题p,q,并判断其真假.(2)再将两个命题用“或、且、非”联结,能否判断真假?2.问题探究问题探究一:逻辑连接词观察与思考:想一想:从串联电路A B C之间的一些关系,我们能得到什么样的启示?阅读与举例:请大家阅读教材中P14所举例的例子,并试着举一些类似的命题.探究:考察下列命题:(1)6可以被2或3整除;(2)6是2的倍数且6是3的倍数;(3不是有理数;想一想:这些命题的构成各有什么特点?1.逻辑连结词命题中的“或”、“且”、“非”这些词叫做逻辑联结词2.三种命题构成形式的表示常用小写拉丁字母p、q、r、s……表示命题1.用联结词“且(and)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.2.用联结词“或(or)”联结命题p和命题q,就得到一个新命题,记作__________,读作__________.3.对一个命题p全盘否定(not),就得到一个新命题,记作__________,读作_________或__________.问题探究二:三种命题真假判断1.“p且q”形式的复合命题真假:2.“p或q”形式的复合命题真假:3.“非p”形式的复合命题真假:3.课堂总结【知识梳理】1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.3.“p∧q”“p∨q”“非p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“¬p”命题的真假.【重难点突破】含有逻辑联结词的命题的真假判断规律(1)p∨q:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q 为假.(一真必真)(2)p∧q:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q 为假.(一假必假)(3)非p:当p为真时,非p为假;当p为假时,非p为真(真假相反)4.随堂检测1.“xy≠0”是指()A.x≠0且y≠0B.x≠0或y≠0C.x,y至少一个不为0D.x,y不都是0解析:【知识点:逻辑联结词】答案:A2.下列命题:①矩形的对角线相等且互相平分;②10的倍数一定是5的倍数;③方程x2=1的解为x=±1;④3∉{1,2}.其中使用逻辑联结词的命题有()A.1个B.2个C.3个D.4个答案:C解析:【知识点:逻辑联结词】①中有“且”;②中没有;③中有“或”;④中有“非”.故选C.3.若条件p:x∈A∩B,则¬p是()A.x∈A且x∉BB.x∉A或x∉BC.x∉A且x∉BD.x∈A∪B答案:B解析:【知识点:逻辑联结词,四种命题】由p:x∈A∩B,得p:x∈A且x∈B,∴¬p是x∉A或x∉B.4.设命题p:函数y=sin2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真答案:C解析:【知识点:逻辑联结词,命题真假的判断】因周期T=2π2=π,故p为假命题.因函数y=cos x的对称轴为x=kπ(k∈Z),故q也为假命题,所以p∧q为假.5.已知P:2+2=5,Q:3>2,则下列判断正确的是()A.“P∨Q”为假,“¬Q”为假B.“P∨Q”为真,“¬Q”为假C.“P∧Q”为假,“¬P”为假D.“P∧Q”为真,“P∨Q”为假答案:B解析:【知识点:逻辑联结词,命题真假的判断】由题意可知,P假、Q真,所以P或Q为真,P且Q为假,非Q为假,非P为真,故选B.(三)课后作业★基础型自主突破1.若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.⌝p是真命题D.⌝q是真命题答案:D解析:【知识点:逻辑联结词,命题真假的判断】2.若命题“p∧(¬q)”为真命题,则()A.p∨q为假命题B.q为假命题C.q为真命题D.(¬p)∧(¬q)为真命题答案:B解析:【知识点:逻辑联结词,命题真假的判断】p∧(¬q)为真命题,故¬q为真命题,所以q为假命题.3.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A.p真q真B.p假q假C.p真q假D.p假q真答案:B解析:【知识点:逻辑联结词,命题真假的判断】“p或q”的否定是:“¬p且¬q”是真命题,则¬p、¬q都是真命题,故p、q都是假命题.4.命题p:2不是质数,命题q:2是无理数,在命题“p∧q”、“p∨q”、“¬p”、“¬q”中,假命题是__________________,真命题是__________________.答案:“p∧q”“¬q”;“p∨q”“¬p”解析:【知识点:逻辑联结词,命题真假的判断】因为命题p假,命题q真,所以命题“p∧q”假,命题“p∨q”真,“¬p”真,“¬q”假.5.已知p:x2-x≥6,q:x∈Z.若“p∧q”,“¬q”都是假命题,则x的值组成的集合为_____________.答案:{-1,0,1,2}解析:【知识点:逻辑联结词,命题真假的判断】 因为“p ∧q ”为假,“¬q ”为假,所以q 为真,p 为假.故⎩⎨⎧ x 2-x <6x ∈Z ,即⎩⎨⎧-2<x <3x ∈Z,因此x 的值可以是-1,0,1,2. 6.如果命题“非p 或非q ”是假命题,给出下列四个结论:①命题“p 且q ”是真命题;②命题“p 且q ”是假命题;③命题“p 或q ”是真命题;④命题“p 或q ”是假命题. 其中正确的结论是( ) A .①③ B .②④ C .②③ D .①④解析:【知识点:逻辑联结词,命题真假的判断】 答案:A“非p 或非q ”是假命题⇒“非p ”与“非q ”均为假命题⇒p 与q 均为真命题. 7.分别指出下列各组命题构成的“p ∧q ”、“p ∨q ”形式的命题的真假. (1)p :6<6,q :6=6;(2)p :梯形的对角线相等,q :梯形的对角线互相平分;(3)p :函数y =x 2+x +2的图象与x 轴没有公共点,q :不等式x 2+x +2<0无解; (4)p :函数y =cos x 是周期函数,q :函数y =cos x 是奇函数. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)∵p 为假命题,q 为真命题,∴p ∧q 为假命题,p ∨q 为真命题. (2)∵p 为假命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为假命题. (3)∵p 为真命题,q 为真命题,∴p ∧q 为真命题,p ∨q 为真命题. (4)∵p 为真命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为真命题. 8.写出下列命题的否定: (1)若a >b >0,则1a <1b ;(2)a 、b ∈N ,若ab 可被5整除,则a 、b 中至少有一个能被5整除;(3)若x2-x-2=0,则x≠-1且x≠2.答案:见解析解析:【知识点:命题的否定】(1)若a>b>0,若1a≥1b.(2)正方形的四条边不全相等.(2)a、b∈N,若ab可以被5整除,则a、b都不能被5整除;(3)若x2-x-2=0,则x=-1或x=2.★★能力型师生共研9.已知命题p:偶函数的图象关于y轴对称,命题q:正数的对数都是正数,则下列命题中为真命题的是()A.p∧qB.(¬p)∧(¬q)C.(¬p)∧qD.p∧(¬q)答案:D解析:【知识点:逻辑联结词,命题真假的判断】∵p为真命题,q为假命题,∴p∧(¬q)为真命题,故选D.10.已知命题p:x2-4x+3<0与q:x2-6x+8<0;若“p且q”是不等式2x2-9x +a<0成立的充分条件,则实数a的取值范围是()A.(9,+∞)B.{0}C.(-∞,9]D.(0,9]解析:【知识点:逻辑联结词,充分必要条件】答案:C11.设命题p:函数y=sin 2x的最小正周期为π2;命题q:函数y=cos x的图象关于直线x=π2对称.则下列判断正确的是()A.p为真B.q为真C .p ∧q 为假D .p ∨q 为真 答案:C解析:【知识点:逻辑联结词,命题真假的判断】 命题p ,q 均为假命题,故p ∧q 为假命题.12.已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .(⌝p )∨q B .p ∧q C .(⌝p )∧(⌝q ) D .(⌝p )∨(⌝q ) 答案:D解析:【知识点:逻辑联结词,命题真假的判断】命题p 为真命题,命题q 为假命题,所以¬p 为假命题,¬q 为真命题,所以(¬p )∨(¬q )为真命题.13.命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .⌝p 为假命题D .⌝q 为假命题 答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎨⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.14.已知命题p :函数f (x )=|lg x |为偶函数,q :函数g (x )=lg|x |为奇函数,由它们构成的“p ∨q ”“p ∧q ”和“¬p ”形式的新命题中,真命题是________________. 解析:【知识点:逻辑联结词,命题的否定,命题真假的判断】答案:¬p函数f (x )=|lg x |为非奇非偶函数,g (x )=lg|x |为偶函数,故命题p 和q 均为假命题,从而只有“¬p ”为真命题.15.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎨⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2) ⌝p 是⌝q 的充分不必要条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0.又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎨⎧ x 2-x -6≤0,x 2+2x -8>0,解得⎩⎨⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3. 所以q 为真时,2<x ≤3. 若p ∧q 为真,则⎩⎨⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3},因为¬p 是¬q 的充分不必要条件,所以A ⊆B .所以0<a ≤2且3a >3,即1<a ≤2.所以实数a 的取值范围是(1,2].16.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值范围. 答案:见解析解析:【知识点:逻辑联结词,命题真假的判断,一元二次方程解的讨论】 由2x 2+ax -a 2=0,得(2x -a )(x +a )=0,∴x =a 2或x =-a ,∴当命题p 为真命题时, ⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p∨q”为真命题时,|a|≤2.∵命题“p∨q”为假命题,a>2,或a<-2.∴a>2或a<-2.即a的取值范围为{a|}★★★探究型多维突破17.设a、b、c是非零向量,已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.p∨(¬q)解析:【知识点:逻辑联结词,命题真假的判断】答案:A取a=c=(1,0),b=(0,1)知,a·b=0,b·c=0,但a·c≠0,∴命题p为假命题;∵a∥b,b∥c,∴存在λ,μ∈R,使a=λb,b=μc,∴a=λμc,∴a∥c,∴命题q是真命题.∴p∨q为真命题.18.在一次篮球投篮比赛中,甲、乙两球员各投篮一次.设命题p:“甲球员投篮命中”;q:“乙球员投篮命中”,则命题“至少有一名球员投中”可表示为()A.p∨qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∨(¬q)解析:【知识点:逻辑联结词,命题的否定】答案:A至少有一名球员投中为p∨q.19.已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式x2-ax +1>0对x∈R恒成立.若p∨q为真命题,p∧q为假命题,求实数a的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】∵函数y=a x在R上单调递增,∴a>1,∴p :a >1.∵不等式x 2-ax +1>0时x ∈R 恒成立,∴Δ=a 2-4<0,∴-2<a <2. ∴q :0<a <2.又∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假.当p 真q 假时,⎩⎪⎨⎪⎧ a >1a ≥2,∴a ≥2.当p 假q 真时,⎩⎪⎨⎪⎧ 0<a ≤10<a <2,∴0<a ≤1,综上可知,实数a 的取值范围是(0,1]∪[2,+∞)20.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】若方程x 2+mx +1=0有两个不等的负根x 1,x 2,则⎩⎨⎧ Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎨⎧Δ=m 2-4>0,m >0. 解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3. ∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴⎩⎨⎧ m >2,m ≤1或m ≥3或⎩⎨⎧m ≤2,1<m <3.解得m ≥3或1<m ≤2. ∴m 的取值范围是(1,2]∪[3,+∞).(四)自助餐1.已知命题p :1∈{x |(x +2)(x -3)<0},命题q :∅={0},则下列判断正确的是( )A .p 假q 假B .“p 或q ”为真C .“p 且q ”为真D .p 假q 真答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵{x|(x+2)(x-3)<0}={x|-2<x<3},∴1∈{x|(x+2)(x-3)<0},∴p真.∵∅≠{0},∴q假.故“p或q”为真,“p且q”为假,故选B.2.若命题p:0是偶数,命题q:2是3的约数,则下列结论中正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对.答案:B解析:【知识点:逻辑联结词,命题真假的判断】命题p为真命题,命题q为假命题,故“p∨q”为真命题.3.已知命题p、q,则命题“p∨q为真”是命题“p∧q为真”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:【知识点:逻辑联结词,命题真假的判断,充分必要条件】p∧q为真⇒p真且q真⇒p∨q为真;p∨q为真⇒p真或q真⇒/p∧q为真.4.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是()A.a>0B.a≥0C.a>1D.a≥1解析:【知识点:逻辑联结词,命题真假的判断】答案:B当p真时,Δ=4-4a≥0,解得a≤1.当q真时a2-a>0,解得a<0或a>1.∵p ∧q 为假命题,p ∨q 为真命题,∴p,q 中一真一假.(1)当p 真q 假时,得0≤a ≤1.(2)当p 假q 真时得a>1,由(1)(2)得所求a 的取值范围是a ≥0.故选B .5.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真答案:C【知识点:逻辑联结词,命题真假判断】y =log a (ax +2a )=log a a (x +2)=1+log a (x +2),当x =-1时,log a (x +2)=0, ∴函数y =log a (ax +2a )(a >0且a ≠1)的图象过定点(-1,1),故p 真;如果函数y =f (x )的图象关于点(3,0)对称,则函数y =f (x -3)的图象关于点(6,0)对称,故q 假,∴选C .6.p :函数f (x )=lg x +1有零点;q :存在α、β,使sin(α-β)=sin α-sin β,在p ∨q ,p ∧q ,¬p ,¬q 中真命题有( )A .1个B .2个C .3个D .4个答案:B解析:【知识点:逻辑联结词,命题真假的判断】∵f ⎝ ⎛⎭⎪⎫110=0,∴p 真;∵α=β时,sin(α-β)=0=sin α-sin β,∴q 真,故p ∨q 为真,p ∧q 为真,¬p 为假,¬q 为假.7.分别用“p ∧q ”、“p ∨q ”填空.(1)命题“0是自然数且是偶数”是__________________形式;(2)命题“5小于或等于7”是__________________形式;(3)命题“正数或0的平方根是实数”是__________________形式.答案: p ∧q ;p ∨q ;p ∨q解析:【知识点:逻辑联结词】8.设命题p :a 2<a ,命题q :对任何x ∈R ,都有x 2+4ax +1>0,命题p ∧q 为假,p ∨q 为真,则实数a 的取值范围是__________________.答案:-12<a ≤0或12≤a <1解析:【知识点:逻辑联结词】由a 2<a 得0<a <1,∴p :0<a <1;由x 2+4ax +1>0恒成立知Δ=16a 2-4<0,∴-12<a <12,∴q :-12<a <12,∵p ∧q 为假,p ∨q 为真,∴p 与q 一真一假,p 假q 真时,-12<a ≤0,p 真q 假时,12≤a <1,∴实数a 的取值范围是-12<a ≤0或12≤a <1.9.已知命题p :不等式x 2+x +1≤0的解集为R ,命题q :不等式x -2x -1≤0的解集为{x |1<x ≤2},则命题“p ∨q ”“p ∧q ”“¬p ”“¬q ”中为真命题是__________________. 解析:【知识点:逻辑联结词,命题真假的判断】答案:p ∨q ,¬p∴∀x ∈R ,x 2+x +1>0,∴命题p 为假,¬p 为真;∵x -2x -1≤0⇔⎩⎨⎧(x -2)(x -1)≤0x -1≠0⇔1<x ≤2.∴命题q 为真,p ∨q 为真,p ∧q 为假,¬q 为假.10.已知命题p :1x -1<1,命题q :x 2+(a -1)x -a >0,若¬p 是¬q 的充分不必要条件,则实数a 的取值范围是__________________.答案:(-∞,-2)解析:【知识点:逻辑联结词,充分必要条件】命题p :1x -1<1,∴x >2或x <1. 命题q :x 2+(a -1)x -a >0,∴(x +a )(x -1)>0.∵¬p 是¬q 的充分不必要条件,∴q 是p 的充分不必要条件.∴-a >2,∴a <-2.11.已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;命题q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,命题真假的判断】设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0. 所以-2<a <2,所以命题p :-2<a <2;又f (x )=-(5-2a )x 是减函数,则有5-2a >1,即a <2.所以命题q :a <2. ∵p ∨q 为真命题,p ∧q 为假命题,∴p 和q 一真一假.(1)若p 为真命题,q 为假命题,则⎩⎨⎧ -2<a <2a ≥2,此不等式组无解. (2)若p 为假命题,q 为真命题,则⎩⎨⎧a ≤-2或a ≥2a <2,解得a ≤-2. 综上,实数a 的取值范围是(-∞,-2].12.已知p :|3x -4|>2;q :1x 2-x -2>0;r :(x -a )(x -a -1)<0. (1)¬p 是¬q 的什么条件;(2)若¬r 是¬p 的必要不充分条件,求实数a 的取值范围.答案:见解析解析:【知识点:逻辑联结词,充分必要条件】(1)p :|3x -4|>2⇒x >2或x <23,q :1x 2-x -2>0⇒x >2或x <-1, ¬p :23≤x ≤2,¬q :-1≤x ≤2,∴¬p ⇒¬q ,¬q ⇒/ ¬p ,∴¬p 是¬q 的充分不必要条件.(2)r :a <x <a +1,¬r :x ≥a +1或x ≤a .∵¬r 是¬p 的必要不充分条件,∴a ≥2或a +1≤23,即a ≥2或a ≤-13.数学视野建立逻辑的语言,使逻辑学象数学那样也有一套完美的、通用的符号,其思想也可以追溯到莱布尼茨.他认为,我们可以建立一种普遍的、没有歧义的语言,通过这种语言,就可以把推理转变为演算.一旦发生争论,我们只要坐下来,拿出纸和笔算一算就行了.这里,他实际上提出了数理逻辑的两个基本思想:构造形式语言和建立演算.但是,对于他所设想的语言,他要求:“它能这样地形成和排列符号,使得它能表达一些思想,或者说使得它们之间具有和这些思想之间的关系相同的关系.一个表达式是一些符号的组合,这些符号能表象被表示的事物,表达式的规律如下:如果被表示的那个事物的观念是由一些事物的一些观念组成的,那么那个事物的表达式也是由这些事物的符号组成的.”(张家龙,第46-47 页)莱布尼茨的这些论述,实际上就是要将逻辑形式化.不过莱布尼茨没有实现他的两个设想.1879年,逻辑学家弗雷格发表了名著的《概念文字——一种模仿算术语言构造的纯思维的形式语言》.在这本书中,弗雷格借鉴了两种语言,一种是传统逻辑使用的语言,另一种是算术的语言.从而成功地构造了一种逻辑的形式语言,即:一种表意的符号语言,并且用这种语言建立了一个一阶谓词演算系统,实现了莱布尼茨提出建立一种普遍语言的思想.其实,在莱布尼茨之前,从亚里士多德开始,对逻辑学的研究所使用的语言就是一种半形式化的语言.这种半形式化的语言就是用字母表达一般概念.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:简单的逻辑联结词:非
课时:006
课型:新授课
教学目标
1.知识与技能目标:
(1)掌握逻辑联结词“非”的含义(2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题
2.过程与方法目标:
观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.3.情感态度价值目标:
激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.教学重点与难点
重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容. 难点: 1、正确理解命题“¬P”真假的规定和判定.2、简洁、准确地表述命题“¬P”. 教学过程
1、引入新课:思考、分析
问题1:下列各组命题中的两个命题间有什么关系?
(1)①35能被5整除;②35不能被5整除;
(2)①方程x2+x+1=0有实数根。

②方程x2+x+1=0无实数根。

学生很容易看到,在每组命题中,命题②是命题①的否定。

2、“非”定义
一般地,对一个命题p全盘否定,就得到一个新命题,记作
¬p
读作“非p”或“p的否定”。

3、命题“¬p”与命题p的真假间的关系
命题“¬p”与命题p的真假之间有什么联系?
引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。

例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。

第(2)组命题中,命题①是假命题,而命题②是真命题。

由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,
若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;
4、命题的否定与否命题的区别
让学生思考:命题的否定与原命题的否命题有什么区别?
命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。

例:如果命题p:5是15的约数,那么
命题¬p:5不是15的约数;
p的否命题:若一个数不是5,则这个数不是15的约数。

显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。

5.例题分析
例1 写出下表中各给定语的否定语。

分析:“等于”的否定语是“不等于”;
“大于”的否定语是“小于或者等于”;
“是”的否定语是“不是”;
“都是”的否定语是“不都是”;
“至多有一个”的否定语是“至少有两个”;
“至少有一个”的否定语是“一个都没有”;
例2:写出下列命题的否定,判断下列命题的真假
(1)p:y = sinx 是周期函数;
(2)p:3<2;
(3)p:空集是集合A的子集。

解略.
6.巩固练习:P18 习题1.3 第3题
7.教学反思:
(1)正确理解命题“¬P”真假的规定和判定.(2)简洁、准确地表述命题“¬P”.
8.作业P18:习题1.3A组B题。

相关文档
最新文档