全国大学生数学建模竞赛优秀论文选之雨量预报方法的评价2

合集下载

雨量预报分析的评价模型数学建模

雨量预报分析的评价模型数学建模

雨量预报分析的评价模型数学建模雨量预报是一种重要的气象预报,用于预测未来一段时间内降水的情况。

准确的雨量预报对于农业、水利、交通等行业的决策与管理具有重要的参考价值。

评价雨量预报分析模型的有效性和精度是提高气象预报准确性的关键。

本文将介绍雨量预报分析评价模型的数学建模方法。

一、问题的提出针对雨量预报分析评价的问题,我们首先需要明确预报模型的性质,即预报模型的目标和任务。

通常来说,雨量预报的目标是通过利用历史观测数据和其他气象因素,建立一个数学模型,预测未来一段时间内的降水量。

预报模型通常采用时间序列分析、回归分析、神经网络等方法进行建模。

评价预报模型的目标是对预测结果的准确性进行评估,从而确定预报模型的好坏程度,为实际的预报工作提供科学依据。

二、评价指标的选择在评价雨量预报分析模型时,我们通常使用以下几个指标来评价其准确性:1.预报误差:预报误差是指预报结果与实际观测结果之间的差异。

常见的预报误差指标有均方根误差(RMSE)、平均绝对误差(MAE)等。

这些指标可以用来评估预报结果的整体误差水平。

2.相关系数:相关系数衡量了预报结果与实际观测结果之间的相关性。

通过评估相关系数可以确定预报模型是否具有一定的预测能力。

3.偏差分析:偏差分析主要是对预测结果的偏差进行评估。

可以通过统计偏差的分布情况和变化趋势,评估预报模型对不同时空尺度的预测能力。

三、数学模型的建立为了评价雨量预报分析模型的准确性,我们可以建立以下数学模型:1.假设预报结果为y,实际观测结果为x,预报误差为δ,则预报误差的计算可以使用均方根误差(RMSE):RMSE = sqrt(sum((y-x)^2)/n)2. 相关系数的计算可以使用皮尔逊相关系数(Pearson correlation coefficient),用来评估预报结果与实际观测结果之间的相关程度:r = sum((x-x_mean)*(y-y_mean)) / sqrt(sum((x-x_mean)^2)*sum((y-y_mean)^2))3.偏差分析可以使用直方图和箱线图等方法来进行可视化分析,评估预报模型在不同时空尺度上的偏差情况。

雨量预报方法的评价2

雨量预报方法的评价2

雨量预报方法的评价摘要本文以所给的的有关数据为资料,对雨量预报进行研究,针对各个问题,我们分别建立了插值计算模型,满意度评价模型等多个数学模型,经过严密的理论论证,精确的计算,很好的解决了雨量预报的的问题。

针对问题一,我们首先根据插值的的相关知识/理论,建立了最邻近插值和反距离加权模型。

为了解决预报点与实测点的不重合,我们运用插值原理求出其再次的近似点,根具matlab griddata求解,我们可以得到所需的预报点。

而且由我们的计算,预报方法二较为合理。

在问题二中,我们考虑到了不同时段群众的不满意度不同,因而采用了增加权重表格,区别对待各时段的预报误差。

这样就很好的解决了满意度贴切生活的难题。

在求解的过程中,我们在数据的处理上不可避免的存在不少误差,我们通过探讨研究,给出了概率灵敏度和误差分析,分析了其中的误差产生的来源,尽量避免由于误差所造成求解的错误,进而得出了一个较好的方案。

我们还对模型进行改进,通过求均值和绝对误差平方,使得模型更加合理,更加切合实际。

关键词; 评价;插值;误差平方和;反距离加权平均;权重一问题的提出雨量预报对农业生产和城市工作和生活有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。

我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。

同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的。

气象部门希望建立一种科学评价预报方法好坏的数学模型与方法。

气象部门提供了41天的用两种不同方法的预报数据和相应的实测数据。

雨量用毫米做单位,小于0.1毫米视为无雨。

(1) 请建立数学模型来评价两种6小时雨量预报方法的准确性;(2)气象部门将6小时降雨量分为6等:0.1—2.5毫米为小雨,2.6—6毫米为中雨,6.1—12毫米为大雨,12.1—25毫米为暴雨,25.1—60毫米为大暴雨,大于60.1毫米为特大暴雨。

雨量预报方法的评价

雨量预报方法的评价

雨量预报方法的评价
黎捷
【期刊名称】《价值工程》
【年(卷),期】2009(28)1
【摘要】雨量预报对我们的工作和生活,农业生产,洪涝和地质灾害等有着重要作用,但要准确、及时地对雨量作出预报是比较困难的.文中给出了一个筒单有效的评价雨量预报方法的方法.针对2005年全国大学生数学建模竞赛C题"雨量预报方法的评价"中的两个问题,运用maple将文本数据读写成矩阵元素,实现了大量数据分析的机械化处理.运用MAPLE绘制仿真图,分析图形的拟合程度;同时,计算出预测数据结果和实测数据结果的残差平方和,并对预测准确度进行检验,综合得出第一种雨量预报方法比第二种预报方法准确率高、给公众感受更好.
【总页数】5页(P41-45)
【作者】黎捷
【作者单位】广东中山火炬职业技术学院信息中心,中山,528436
【正文语种】中文
【中图分类】P45;P426.61+3
【相关文献】
1.雨量预报方法的评价模型 [J], 雒征;蒋昕昊
2.雨量预报方法的评价模型 [J], 皮杰
3.6 h雨量预报方法的模糊评价 [J], 郝振莉;吕良军
4.关于雨量预报方法的评价 [J], 沈剑
5.用灰色关联度法评价雨量预报方法问题 [J], 郭中华;董向成;蒋兴加;周玲
因版权原因,仅展示原文概要,查看原文内容请购买。

雨量预报方法的评价

雨量预报方法的评价

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛的题目是:C题雨量预报方法的评价我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):北京大学医学部参赛队员(打印并签名) : 1. 胡奇2. 潘德林3. 郑铮指导教师或指导教师组负责人(打印并签名):指导小组日期: 2005 年 9 月 19 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):公众满意,我们的追求摘要本题的内容就是对两种预测方法给出不同方式与角度的评价方式。

我们建立模型逐步深入地讨论影响对预测方式评价标准的因素,给出两种预测方法的应用范围与适用范围。

在第一个模型中,对预测方法的评价必然需要对预测值与实测值的误差进行分析。

我们首先通过欧拉距离计算出绝对误差。

随后,我们考虑到同样的预测能力对于小降雨量的预测较之对大降雨量的预测更易取得较小的绝对误差,因此我们决定引入不同降雨量绝对值对于绝对误差的影响权重,建立了预测误差权重模型,对欧拉距离进行修饰。

同时,我们考虑对每天四个时段的降雨预测的困难程度是不相同的,随着时间的推移,对于降雨预测的准确度将会越来越差。

我们建立了预测难度增长模型。

引入早期预测难度指数与预测难度增长因子,通过比较对未来雨量的预测难度来衡量二预测方法的优劣。

雨量预报方法的模糊评价模型--2005高教社杯全国大学生数学建模竞赛题目之一

雨量预报方法的模糊评价模型--2005高教社杯全国大学生数学建模竞赛题目之一

雨量预报方法的模糊评价模型--2005高教社杯全国大学生数
学建模竞赛题目之一
杨金山;耿玉菊;马小女
【期刊名称】《衡水学院学报》
【年(卷),期】2006(8)1
【摘要】对气象部门来说,准确、及时、有效地预报降雨量,需要有较优秀的预报方法.为此有必要构建一种评价某气象台所使用的2种不同降雨量预测方法精确性的模型,同时也应该在模型中考虑到公众的感受.为此,建立了一种模糊评价模型,并用MATLAB做了仿真.隶属度函数为:μ(x)=e-a(x-b).而后,创建了一种距离函数来表征预测与实际降雨量之间的差距,最后用距离和的最小作为评价函数.
【总页数】4页(P25-28)
【作者】杨金山;耿玉菊;马小女
【作者单位】衡水学院,数学与计算机科学系,河北,衡水,053000;衡水学院,数学与计算机科学系,河北,衡水,053000;衡水学院,数学与计算机科学系,河北,衡水,053000【正文语种】中文
【中图分类】TP273+.4
【相关文献】
1.2016年“高教社杯”全国大学生数学建模竞赛题目 [J],
2.NBA赛程的分析和评价——2008高教社杯全国大学生数学建模竞赛题目 [J], 马明远
3.2012高教社杯全国大学生数学建模竞赛题目 [J],
4.2012高教社杯全国大学生数学建模竞赛题目 [J], ;
5.2016年“高教社杯”全国大学生数学建模竞赛题目 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

全国大学生数学建模竞赛优秀论文选之雨量预报方法的评价2

全国大学生数学建模竞赛优秀论文选之雨量预报方法的评价2

雨量预报方法的评价摘要本文首先对两种雨量预报方法做出准确性的评价。

对位于东经120度、北纬32度附近的整个研究区域以及产生雨量的各种因素进行仔细分析之后,利用已知网格点降雨量的预报数据,进行合理的二维插值计算,从理论上得出非网格点降雨量的预报值;然后将这些理论值和各个观测点降雨量的准确值,经过求解得出两个方案在各个预报时段的偏差;在得到了偏差之后,利用偏差的平方和描述总的偏离程度,对每个时段进行权值的比较,再对两个方案进行多层次分析,从而做出权重的比较,最后利用MALTAB 等数学软件,得出两个方案的总偏差分别为:.0;方案一:928523.0;方案二:998061由此说明,就气象部门对该地区雨量预报的准确度来说,方案一优于方案二。

在此基础上,我们又加入公众对雨量分级预报的感受度等因素,把对该地区降雨量的研究从定量的方法转换成定性的方法。

对各个观测点实测的降雨量和理论降雨量相互对比,得到了各个观测点在每个时段的预报准确度,再利用多层次分析法得到了两个预报方案各自总的准确度为:.0;方案一:940791.0;方案二:997773由此说明,加入公众对雨量分级预报的感受度等因素之后,雨量预报方案二的准确度大于方案一的准确度。

因为在每个公众的心里,对各个时段预报的准确度有着不一样的权重,因此就需要对各个时段预报等级的准确度有不一样的预报要求。

我们在模型求解中提出了漏报率、空报率、错报率以及恶劣天气错报率,从而计算出两个预报方案各自对公众生产和生活的影响,综合得出它们的两个方案各自失误指数:方案一的综合失误指数:0.00060521;方案二的综合失误指数:0.000487213由此可以知道两种预报方法在失误方面差别不大,说明他们都具有良好的科学性,只是相对而言,第二种预报方法的失误方面稍微小一点。

关键词准确度多层次分析漏报率空报率恶报率一、问题的重述雨量预报对农业生产、城市工作和生活都有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。

数学建模C题论文

数学建模C题论文

191])()([),(20200y y x x r z y x z -+--=c y b x a y x y x z +⋅+⋅++=22),(4753⨯41i D i D 20.000160.001162021421339915152112032534791410.1 6660.1 2.5 2.666.11212.12525.16060.1/mcm05/probX 53⨯47Y 53⨯47k n m Z ⨯53⨯47 k n m Z ⨯~53⨯47i n m k H ⨯m m n k n 21n +120i n m k S ⨯i D126 18319719141164512X Y⎪⎪⎪⎭⎫ ⎝⎛=⨯⨯⨯⨯⨯⨯47532531534712111..................x x x x x x X ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................y y y y y y),(y x Z =mnk ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯),(...),,(),,(............),(...),,(),,(4753475325325315315347147121211111y x f y x f y x f y x f y x f y x f ⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................Z Z Z Z Z Z 1=imnk Z ~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~Z Z Z Z Z Z i imnkH ∆mnk Z i mnk Z ~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯ii i i i i h h h h h h 47532531534712111............... (2)i mnkS∆∑∑=⨯=⨯4712531)(47531j i ji i hi D ∆∑=16411641i mnk S 4i i imnk H 5347imnk S mnk H i D 41 2),(y x Z = ),(y x Z =i D nk m ⨯ i mnk H mnk Z i mnk Z ~1~mnk Z 2~mnk Z 1mnk H 2mnk H imnkS∆∑∑=⨯=⨯4712531)(47531j ij i i h1mnk S 2mnk S⑤ 用i D ∆∑=16411641i mnk S 计算出1D 与2D ,则1D 和2D 的值较小者为最优方案.3 主要程序及结论通过数据处理与分析我们认为预测方法一比预测方法二好.所得计算结果值分别为:(1)不同时段的两种方法的实测与预测值的均方差:1mnkS =[0.9247218269e-1, .165797962696, 0.9247218269e-1,0.9247218269e-1, .2586806182, .2586806182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174, .2715902174182, .2586806182, 2.791713932, .2474029514, .2539943168, .2715902174]2mnkS := [0.921412432e-1, .1098068392, 0.2234955063e-1,0.1592933205e-1, .2851304286, .2851304286, .2851304286, 2.792910527, .2612701098, .2381007694, .2613774987, 0.5183032655e-1,.2851304286,2.792810527, .2612701098, .2381007694, .2613774987] (2) 方法一的均方差为:1D := .8311398371方案二的均方差: 2D = .8417760978得1D <2D .主要程序与运行结果为: (1) 局域曲面拟合程序> solve({0.3=0.6-r*(0.045^2+0.042^2)},{r});> z1:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z2:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z3:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> z4:=0.6-79.17656374*[(x-120.2500)^2+(y-33.7667)^2];> solve({0.15=0.3-r*(0.045^2+0.042^2)},{r});> z4:=0.3-39.58828187*[(x-118.1833)^2+(y-31.0833)^2];> solve({5.1=10.2-r*(0.045^2+0.042^2)},{r});> z1:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z2:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z3:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> z4:=10.2-1346.001584*[(x-120.3167)^2+(y-31.5833)^2];> solve({0.1=0.2-r*(0.045^2+0.042^2)},{r});> z4:=0.2-26.39218791*[(x-118.4000)^2+(y-30.6833)^2];>z4:=solve({118.9833^2+30.6167^2+a*118.9833+b*30.6167+c=0.7000,118.5833^ 2+30.0833^2+a*118.5833+b*30.0833+c=1.8000,119.4167^2+30.8833^2+a*119.41 67+b*30.8833+c=0.5});> solve({0.05=0.1-r*(0.045^2+0.042^2)},{r});> z1:=0.1-13.19609396*[(x-119.4167)^2+(y-30.8833)^2];>> solve({2.9=5.8-r*(0.045^2+0.042^2)},{r});> z4:=0.1-765.3734495*[(x-118.2833)^2+(y-29.7167)^2];(2)均方差求值程序:>sq1:=[0.09247218269,0.165797962696,0.09247218269,0.09247218269,0.258680 6182,0.2586806182,0.2586806182,2.791713932,0.2474029514,0.2539943168,0. 2715902174,0.2715902174182,0.2586806182,2.791713932,0.2474029514,0.2539 943168,0.2715902174];> sum1:=add(i,i=sq1);> ave1:=sum1/17;>ve1:=[.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222 900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.522 2900020,.5222900020,.5222900020,.5222900020,.5222900020,.5222900020,.52 22900020];>sq2:=[0.0921412432,0.1098068392,0.022********,0.01592933205,0.285130428 6,0.2851304286,0.2851304286,2.792910527,0.2612701098,0.2381007694,0.261 3774987,0.0518*******,0.2851304286,2.792810527,0.2612701098,0.238100769 4,0.2613774987];(2)数据模拟图程序:> with(linalg):> l:=matrix(91,7,[58138,32.9833,118.5167, 0.0000, 5.0000, 0.2000, 0.0000, 58139, 33.3000,118.8500, 0.0000, 3.9000, 0.0000, 0.0000,58141, 33.6667,119.2667, 0.0000, 0.0000, 0.0000, 0.0000,58143, 33.8000,119.8000, 0.0000, 0.0000, 0.0000, 0.0000,58146, 33.4833,119.8167, 0.0000, 0.0000, 0.0000, 0.0000,58147, 33.0333,119.0333, 0.0000, 6.0000, 1.4000, 0.0000,58148, 33.2333,119.3000, 0.0000, 1.1000, 0.3000, 0.0000,58150, 33.7667,120.2500, 0.0000, 0.0000, 0.0000, 0.1000,58154, 33.3833,120.1500, 0.0000, 0.0000, 0.0000, 0.0000,58158, 33.2000,120.4833, 0.0000, 0.0000, 0.0000, 0.0000,58230, 32.1000,118.2667, 3.3000,20.7000, 6.6000, 0.0000,58236, 32.3000,118.3000, 0.0000, 8.2000, 3.6000, 1.4000,58238, 32.0000,118.8000, 0.0000, 0.0000, 0.0000, 0.0000,58240, 32.6833,119.0167, 0.0000, 3.0000, 1.4000, 0.0000,58241, 32.8000,119.4500, 0.1000, 1.4000, 1.5000, 0.1000,58243, 32.9333,119.8333, 0.0000, 0.7000, 0.4000, 0.0000,58245, 32.4167,119.4167, 0.3000, 2.7000, 3.8000, 0.0000,58246, 32.3333,119.9333, 7.9000, 2.7000, 0.1000, 0.0000,58249, 32.2000,120.0000,12.3000, 2.4000, 5.6000, 0.0000,58251, 32.8667,120.3167, 5.2000, 0.1000, 0.0000, 0.0000, 58252, 32.1833,119.4667, 0.4000, 3.2000, 4.8000, 0.0000, 58254, 32.5333,120.4500, 0.0000, 0.0000, 0.0000, 0.0000, 58255, 32.3833,120.5667, 1.1000,18.5000, 0.5000, 0.0000, 58264, 32.3333,121.1833,35.4000, 0.1000, 0.2000, 0.0000, 58265, 32.0667,121.6000, 0.0000, 0.0000, 0.0000, 0.0000, 58269, 31.8000,121.6667,31.3000, 0.7000, 2.8000, 0.1000, 58333, 31.9500,118.8500, 8.2000, 8.5000,16.9000, 0.1000, 58334, 31.3333,118.3833, 4.9000,58.1000, 9.0000, 0.1000, 58335, 31.5667,118.5000, 5.4000,26.0000,11.0000, 0.8000, 58336, 31.7000,118.5167, 3.6000,27.8000,15.3000, 0.6000, 58337, 31.0833,118.1833, 7.0000, 6.4000,15.3000, 0.2000, 58341, 31.9833,119.5833,11.5000, 5.4000,16.1000, 0.0000, 58342, 31.7500,119.5500,32.6000,37.9000, 5.8000, 0.0000, 58343, 31.7667,119.9333,20.7000,24.3000, 5.3000, 0.0000, 58344, 31.9500,119.1667,12.4000, 5.9000,16.3000, 0.0000, 58345, 31.4333,119.4833,21.8000,18.1000, 9.8000, 0.1000, 58346, 31.3667,119.8167, 0.1000,12.7000, 5.1000, 0.2000, 58349, 31.2667,120.6333, 1.1000, 5.1000, 0.0000, 0.0000, 58351, 31.8833,120.2667,22.9000,15.5000, 6.2000, 0.0000, 58352, 31.6500,120.7333,15.1000, 5.4000, 2.4000, 0.0000, 58354, 31.5833,120.3167, 0.1000,12.5000, 2.4000, 0.0000, 58356, 31.4167,120.9500, 5.1000, 4.9000, 0.4000, 0.0000, 58358, 31.0667,120.4333, 2.4000, 3.4000, 0.0000, 0.8000, 58359, 31.1500,120.6333, 1.5000, 3.8000, 0.5000, 0.1000, 58360, 31.9000,121.2000, 5.6000, 3.2000, 2.9000, 0.1000, 58361, 31.1000,121.3667, 3.5000, 0.6000, 0.2000, 0.7000, 58362, 31.4000,121.4833,33.0000, 4.1000, 0.9000, 0.0000, 58365, 31.3667,121.2500,17.7000, 2.2000, 0.1000, 0.0000, 58366, 31.6167,121.4500,75.2000, 0.4000, 1.5000, 0.0000, 58367, 31.2000,121.4333, 7.2000, 2.8000, 0.2000, 0.2000, 58369, 31.0500,121.7833, 3.2000, 0.3000, 0.0000, 0.3000, 58370, 31.2333,121.5333, 7.0000, 3.4000, 0.2000, 0.2000, 58377, 31.4667,121.1000, 7.8000, 7.2000, 0.3000, 0.0000, 58426, 30.3000,118.1333, 0.0000, 0.0000,17.6000, 6.2000, 58431, 30.8500,118.3167, 5.1000, 2.3000,16.5000, 0.1000, 58432, 30.6833,118.4000, 3.6000, 1.4000,20.5000, 0.2000, 58433, 30.9333,118.7500, 2.1000, 3.4000, 8.5000, 0.2000, 58435, 30.3000,118.5333, 0.0000, 0.0000,13.6000, 8.5000, 58436, 30.6167,118.9833, 0.0000, 0.0000, 5.3000, 0.5000, 58438, 30.0833,118.5833, 0.0000, 0.0000,27.6000,21.8000, 58441, 30.8833,119.4167, 0.1000, 1.6000, 1.6000, 1.0000, 58442, 31.1333,119.1833, 3.0000, 8.8000, 5.4000, 0.2000, 58443, 30.9833,119.8833, 0.1000, 2.7000, 0.1000, 0.9000,58446, 30.9667,119.6833, 0.0000, 0.1000, 5.1000, 2.5000, 58448, 30.2333,119.7000, 0.0000, 0.0000,15.1000, 6.9000, 58449, 30.0500,119.9500, 0.0000, 0.0000,23.5000, 8.2000, 58450, 30.8500,120.0833, 0.0000, 0.7000, 0.0000, 4.1000, 58451, 30.8500,120.9000, 0.5000, 0.1000, 0.0000, 3.8000, 58452, 30.7833,120.7333, 0.3000, 0.0000, 0.0000, 3.0000, 58453, 30.0000,120.6333, 0.0000, 0.0000, 0.0000,18.2000, 58454, 30.5333,120.0667, 0.0000, 0.0000, 0.5000, 4.9000, 58455, 30.5167,120.6833, 0.0000, 0.0000, 0.0000, 4.6000, 58456, 30.6333,120.5333, 0.0000, 0.0000, 0.0000, 4.2000, 58457, 30.2333,120.1667, 0.0000, 0.0000, 2.0000,12.6000, 58459, 30.2000,120.3167, 0.0000, 0.0000, 0.0000,15.0000, 58460, 30.8833,121.1667, 1.2000, 0.1000, 0.0000, 2.3000, 58461, 31.1333,121.1167, 4.0000, 1.4000, 0.4000, 0.2000, 58462, 31.0000,121.2500, 2.7000, 0.3000, 0.4000, 1.7000, 58463, 30.9333,121.4833, 1.7000, 0.1000, 0.0000, 0.8000, 58464, 30.6167,121.0833, 0.0000, 0.0000, 0.0000, 3.6000, 58467, 30.2667,121.2167, 0.0000, 0.0000, 0.0000, 1.8000, 58468, 30.0667,121.1500, 0.0000, 0.1000, 5.1000, 2.5000, 58472, 30.7333,122.4500, 0.3000, 0.6000, 0.0000, 4.9000, 58477, 30.0333,122.1000, 0.0000, 0.0000, 0.0000, 0.0000, 58484, 30.2500,122.1833, 0.0000, 0.0000, 0.0000, 0.0000, 58530, 29.8667,118.4333, 0.0000, 0.0000,27.5000,23.6000, 58531, 29.7167,118.2833, 0.0000, 0.0000, 3.7000,11.5000, 58534, 29.7833,118.1833, 0.0000, 0.0000, 9.3000, 6.5000, 58542, 29.8167,119.6833, 0.0000, 0.0000, 0.0000,27.6000, 58550, 29.7000,120.2500, 0.0000, 0.0000, 0.0000, 4.9000, 58562, 29.9667,121.7500, 0.0000, 0.0000, 0.0000, 0.9000]);> lat:=col(l,2);> lon:=col(l,3); > sd1:=col(l,4);> sd2:=col(l,5); > sd3:=col(l,6); > sd4:=col(l,7);> abc1:=seq([lat[i],lon[i],sd1[i]],i=1..91);> abc2:=seq([lat[i],lon[i],sd2[i]],i=1..91);> abc3:=seq([lat[i],lon[i],sd3[i]],i=1..91);> abc4:=seq([lat[i],lon[i],sd4[i]],i=1..91);> with(plots):> pointplot3d([abc1],color=green,axes=boxed);> surfdata([abc1],labels=["x","y","z"],axes=boxed);> with(stats):> with(fit):> with(plots):fx1:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc1]);> plot3d(fx1,x=25..35,y=119..135);> pointplot3d([abc2],color=blue,axes=boxed);> surfdata([abc2],labels=["x","y","z"],axes=boxed);>fx2:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc2]);> plot3d(fx2,x=25..35,y=119..135);> pointplot3d([abc3],color=red,axes=boxed)> surfdata([abc3],labels=["x","y","z"],axes=boxed);>fx3:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc3]);> surfdata([abc4],labels=["x","y","z"],axes=boxed);>fx4:=leastsquare[[x,y,z],z=x^3+y^3+a*x^2+b*y^2+c*x*y+d*x+e*y+f,{a,b,c,d ,e,f}]([abc4]);五.如何在评价方法中考虑公众感受的数学模型建立.1660.1 2.5 2.666.11212.12525.16060.1z } 1.00 {0≤≤=z z R } 5.21.0 {1≤≤=z z R } 66.2 {2≤≤=z z R } 121.6 {3≤≤=z z R } 251.12 {4≤≤=z z R } 601.25 {5≤≤=z z R } 1.60 {6≥=z z R 0ˆR 1ˆR 2ˆR 3ˆR 4ˆR 5ˆR 6ˆR } 1)( {ˆ000R z z z R ∈≤=,μ} 1)( {ˆ111R z z z R ∈≤=,μ} 1)( {ˆ222R z z z R ∈≤=,μ } 1)( {ˆ333R z z z R ∈≤=,μ} 1)( {ˆ444R z z z R ∈≤=,μ} 1)( {ˆ555R z z z R ∈≤=,μ } 1)( {ˆ666R z z z R ∈≤=,μ)(z i μ i 1z ∈i R i R )(z i μ i 16i R ˆ i 1 2)(z i μ i 1⎩⎨⎧≤<+-≤≤=1.006.0 , 5.22506.00, 1)(0z z z z μ)(1z μ] 2369277587.0e [2369277587.0112)3.1(----z 5.21.0≤≤z )(2z μ] 20555762126.0e [20555762126.0112)3.4(----z 66.2≤≤z)(3z μ] 2287787270.0e [2287787270.0119.5)05.9(2----z 121.6≤≤z )(4z μ] 70397557815.0e[70397557815.0119.12)55.18(2----z 251.12≤≤z)(5z μ] 00475951221.0e[00475951221.011100)55.42(2----z 601.25≤≤z)(6z μ2)]5.60(5 [11--+z 1.60≥z 74)(z i μ及iR ˆ i =0,1,…,6合并可得} 0 {≥=z z R 上的模糊集合} , 1)( {ˆR z z z R∈≤=μ.其中R 是论域,)(z μ是模糊集合R ˆ的隶属函数,由)(z i μ分段合)(z μ小雨的隶属函数图特大暴雨隶属函数图大暴雨隶属函数图暴雨隶属函数图⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<≤<≤<≤<≤≤=60)(6025)(2512)(126)(65.2)(5.21.0)(1.00)()(6543210z z z z z z z z z z z z z z t μμμμμμμμ 5 353⨯47imnkZ ~)(z μ53⨯47=M mnk⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111..................μμμμμμ=M imnk~⎪⎪⎪⎭⎫⎝⎛⨯⨯⨯⨯⨯⨯47532531534712111~...~~............~...~~μμμμμμi ),(y x Z =i mnk ∏∆mnk M =M i mnk~⎪⎪⎪⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯i i i i i i 47532531534712111..................λλλλλλ 6imnkΓ∆∑∑=⨯=⨯4712531)(47531j i j i i λ i Ω∆∑=16411641i imnkΓ 8 i 2i i i mnk ∏5347imnk Γi mnk ∏i Ω411Ω2Ω 1Ω2Ω1D 2D19811999。

雨量预报方法的评价模型(全国获奖论文)

雨量预报方法的评价模型(全国获奖论文)

雨量预报方法的评价模型摘要本文建立了一个关于雨量预报方法的评估模型。

首先,通过对给定的大量数据(预报数据和实测数据)进行统计画图分析,得出了散点图。

然后分别对两种不同方法预报的41天中每天4个时段各等距网格点的雨量数据进行处理和分析。

在可接受的度数差范围内搜索与各个观测站点距离最近的网格点,按从小到大排序后取其最小的4个网格点,再根据欧氏距离倒数加权的方法对它们赋权重,取出4个网格点对应的雨量,分别与各自的权重相乘,累加得到的值来预测相对应观测站点的雨量。

对得到的观测站点的预测雨量进行两种方法的分析,方法一:将预测雨量与实测雨量求偏差率,并对所有偏差率求出一个偏差率的算术平方根,作为评价准确性的指数,从而得到第一种雨量预报方法的准确性的指数为102.8755,第二种雨量预报方法的准确性的指数为726.6841;方法二:将预测雨量与实测雨量分别转化为对应的级别(如雨量在区间0.1——2.5为1级),用同级率比较法将它们作比较,从而得到第一种雨量预报方法的同级率为73.9346% ,第二种雨量预报方法的同级率为70.9662% 。

本文利用数学软件Matlab很好地实现了编程模拟计算,并结合实际测得的数据得出了雨量预报方法的同级率,很好地指导了人们的生活与工作。

关键词:(预报、实测、网格点、同级率)(一)问题的重述与分析1、问题的重述随着气象事业现代化建设的快速发展,雨量预报对指导农业生产和城市工作和生活有重要作用,但如何准确、及时地对雨量作出预报是一个十分困难的问题,近年来,随着社会经济的不断发展,预报方法对于提高气象服务水平,增强防灾减灾能力具有重要意义,因此,广受世界各国关注。

我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段(21点至次日3点,次日3点至9点,9点至15点,15点至21点)在某些位置的雨量,这些位置位于东经120度、北纬32度附近的53×47的等距网格点上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雨量预报方法的评价摘要本文首先对两种雨量预报方法做出准确性的评价。

对位于东经120度、北纬32度附近的整个研究区域以及产生雨量的各种因素进行仔细分析之后,利用已知网格点降雨量的预报数据,进行合理的二维插值计算,从理论上得出非网格点降雨量的预报值;然后将这些理论值和各个观测点降雨量的准确值,经过求解得出两个方案在各个预报时段的偏差;在得到了偏差之后,利用偏差的平方和描述总的偏离程度,对每个时段进行权值的比较,再对两个方案进行多层次分析,从而做出权重的比较,最后利用MALTAB 等数学软件,得出两个方案的总偏差分别为:.0;方案一:928523.0;方案二:998061由此说明,就气象部门对该地区雨量预报的准确度来说,方案一优于方案二。

在此基础上,我们又加入公众对雨量分级预报的感受度等因素,把对该地区降雨量的研究从定量的方法转换成定性的方法。

对各个观测点实测的降雨量和理论降雨量相互对比,得到了各个观测点在每个时段的预报准确度,再利用多层次分析法得到了两个预报方案各自总的准确度为:.0;方案一:940791.0;方案二:997773由此说明,加入公众对雨量分级预报的感受度等因素之后,雨量预报方案二的准确度大于方案一的准确度。

因为在每个公众的心里,对各个时段预报的准确度有着不一样的权重,因此就需要对各个时段预报等级的准确度有不一样的预报要求。

我们在模型求解中提出了漏报率、空报率、错报率以及恶劣天气错报率,从而计算出两个预报方案各自对公众生产和生活的影响,综合得出它们的两个方案各自失误指数:方案一的综合失误指数:0.00060521;方案二的综合失误指数:0.000487213由此可以知道两种预报方法在失误方面差别不大,说明他们都具有良好的科学性,只是相对而言,第二种预报方法的失误方面稍微小一点。

关键词准确度多层次分析漏报率空报率恶报率一、问题的重述雨量预报对农业生产、城市工作和生活都有重要作用,但准确、及时地对雨量作出预报是一个十分困难的问题,广受世界各国关注。

我国某地气象台和气象研究所正在研究6小时雨量预报方法,即每天晚上20点预报从21点开始的4个时段在某些位置的雨量。

同时设立91个观测站点实测这些时段的实际雨量,由于各种条件的限制,站点的设置是不均匀的。

气象部门希望建立一种科学评价预报方法好坏的数学模型与方法,已提供了41天用两种不同方法得到的预报数据和相应的实测数据。

我们要建立数学模型来评价两种6小时雨量预报方法的准确性,以及气象部门将6小时降雨量分为6等:0.1—2.5毫米为小雨,2.6—6毫米为中雨,6.1—12毫米为大雨,12.1—25毫米为暴雨,25.1—60毫米为大暴雨,大于60.1毫米为特大暴雨。

若按此分级向公众预报,如何在评价方法中考虑公众的感受?二、问题的假设1.整个研究区域(位于东经120度、北纬32度附近)为一个平原,除了地理位置外,不考虑其它因素对该区域降雨量的影响;2.预报点位于研究区域的等距网格点上,预报点的个数为53×47个; 3.如果降雨量小于0.1毫米,可视为无雨; 4.问题中所给出的数据全部为真实的实验数据; 5.观测站点的设置是不均分布的; 6.6小时雨量预报方法是指每天晚上20点预报从当时21点开始的4个时段(第一时段为21点至次日3点,第二时段为次日3点至9点,第三时段为9点至15点,第四时段为15点至21点)在某些位置的雨量;7.模型中提供的两种预报方法都是采用6小时雨量预报法; 8.模型中提供的两种预报方法都具备一定的科学根据; 9.模型中各个点的位置坐标用其经度、纬度来表示;10.定义: 预报的总次数预报正确次数预报准确度=;三、符号的说明个观测点的经度为非网格点上第i x i ⋯⋯; 个观测点的纬度为非网格点上第i y i ⋯⋯;()47...1;53...1 降雨量时段 t 网格上的点在)(==⋯⋯j i t Q ij 的为;()量的矩阵时段整个网格点上降雨为t t ⋯⋯;()()91...1,,=⋯⋯i y x i y x P i i i i i 纬度度个观测站,所处位置经为非网格点上第; 个观测点的降雨量为非网格点上第i JP i ⋯⋯; ())预报数据。

(种预测方法在网格点的为第21)(⋯=⋯⋯k k t k ;)21()(⋯=⋯⋯k i k JP k i个观测点的降雨量。

上第种预测方法在非网格点为第四、模型的分析与建立(一)问题一的分析降雨量的预报和实际降雨量紧密的联系着国民的生产和生活。

因此为了减小预报降雨量和实际降雨量之间的误差,就需要了解降雨量与哪些因素有关,以便于作出更加准确的预报,最大限度减少因预报误差给公众生产和生活带来的不便。

查阅有关气象学资料可知,决定降雨量的主要因素包括,区域所在的地理位置、时间和环境以及近段时间内该区域的天气变化状况等等。

由于我们已经假设本模型中提供的两种预报方法都具有一定的科学根据,因此我们不再去探讨如何进行降雨量的预报,而只是对某种预报法的准确度进行评价。

由于模型中告诉的预报点都在等距的网格点上,我们可以通过这些网格点上的降雨量,进行合理的插值计算,得出非网格点上降雨量的数值。

科学已经证明,这种插值计算方法具有很高的准确度。

设网格上的点在t 时段降雨量为()47...1;53...1)(==j i t Q ij ,我们可以把整个网格点上的降雨量用一个矩阵()t 来表示如下:()⎪⎪⎪⎪⎪⎭⎫⎝⎛=47,532,531,5347,2222147,11211Q Q Q Q Q Q Q Q Q t Q---------(1)非网格点上观测点()()91...1,=i y x P i i i 的降雨量i JP ,可以通过对当天数据()t 进行二维插值计算出该天同一个时段的值,这里我们可以简单地把()t 以及坐标()i i i y x P ,之间的关系用一个函数式来表达:()()i i P t F JP ,=----------(2)如果()t 是准确的,那么可以认为由(2)式计算出的观测点的值i JP (以下简称为理论值)也是准确的;如果计算出来的理论值与我们实测数据(以下简称为实际值)出现偏差,则我们有理由怀疑数据()t Q 的准确度。

我们就模型提供的两种预测方法对网格点的预报数据()t Q )1(、()t Q )2(分别进行插值,计算,得到相应的理论值得)1(i JP 、)2(iJP 。

(其计算结果见附件一的理论值文件夹)我们把两种方法得到的理论值和各个观测点的实际值进行比较,发现它们都有一定的误差。

由于数据太多,在这里不便一一呈现,我们以6月18号的计算结果为例来进行说明。

下表为6月18号在四个时段分别用两种预测方法得出的理论值与实际值的偏差。

点某种预测法的偏离大一些,而在另外一些观测点时,另一预测法的偏离又要大一些。

这种情况在每一天几乎每一个时段都存在。

为了解决这个问题,我们对每一种预测方法在各个时段的偏差进行统计,在各个时段,分别计算所有观测点的每天的偏差的平方和,用来反应各预测方法在各时段预测准确度的统计规律。

我们通过MATLAB软件编程运算(程序见附录),得到结果见表五。

表五)从上表可以看出第一种预测方法在第一时段和第二时段比较准确一些,而第二种预测方法在第三时段准确一些,而它们在第四时段是差不多的。

为了定量描述出一种预测方法的综合偏差指数,我们进行多层次分析(AHP),对各个时段的偏差赋予相应的权重。

先来建立递阶层次结构如下图一:(图1)由图1可知,方案在整体上的总偏差,受不同时段的影响,在不同时段,人们对降雨量偏差的感受是不同的。

因此得到下面的判断矩阵,然后用Mathematic计算其权重并进行一致性检验,可得:由于计算时候数据比较大,我们以每一个相同指标中的最大值作为基数,对它们取权值,得到如下结果见表六:表六由以上数据就可以分别得出这两个方案的综合偏差指数:方案一:928523.0; 方案二:998061.0;由此我们得出:第一种预测方法的准确度,比第二种预测方法的准确度要稍微好一些。

二)问题二的分析:现在我们需要考虑公众对降雨量预报的感受问题。

一般在科技领域都常采用定量分时段 1 2 3 41 12 7 5 2 211 4 33 71 41 1 314 51 313 11.00302144.09.0027193.00815789818.4max <====CR RI CI λ⎪⎪⎪⎪⎪⎭⎫⎝⎛=124805.00611978.0286523.0527475.0ϖ析的方法来强化它的科学性。

但现实生活中,公众不会感受到,比如0.001毫米这种细微变化带来的差异,他们更习惯于定性的分析,也就是更习惯于去感知一个范围而不是某一个特殊值。

于是从公众的感知出发,我们将降雨量的数值预报转化为等级预报。

我们按照降雨量的值把降雨化成7个等级,如下(表七):由于预报从特殊值的预报转为定性的预报,因此我们需要对问题一中得到的所有计算结果重新给出定性后的结果。

我们重新作出了)1(i JP 、)2(iJP 的定性描述结果,以及观测点的实际值的定性描述结果(附件二定性结果文件夹)。

重新进行比较判断得到判断表格,由于数据太繁杂,我们仍将其放在附件二判断文件夹中,在这里就以6月18号第一时段两种预报方法的判断表格来举例说明。

1)第一种预报方法的判断表格(表八):√× × … √ √ √ √ × × … √ √ √ √ × × … √ √ √ … … … √ √ √ … √ √ √ √ √ √ … √ √ √ √×√…√√√2)第二种预报方法的判断表格(表九):√ × × … √ √ √√ × × … √ √ √ √ × × … √ √ √ … … … √ √ √ … √ √ √ √ √ √ … √ √ √ √ √ √ … √ √ √(注:表格中√表示预报准确,×预报失误)我们可以采用一些简单的办法对判断表格中的符号加以统计,计算出每一种预报方法在各个观测点不同时段的预报准确度。

预报方法在第一时段的预报情况(表十):由于每一种预报方法对于不同的观测点有各自的优势,同时还将考虑公众感受,我们仍然采用多层次分析的方法来解决问题,这样更加直观和方便。

如图二所示:(图2)同样可以得到判断矩阵:在中间层中的观测点层,我们由于对当地地理位置缺乏详细的资料,认为每个观测点在一个时段中的权重是一样的。

经过总体的一致性的检验后,为了增加计算的可靠性,我们以每一个相同指标中的最大值作为基数,对它们取权值,然后应用MATLAB 数学软件,分别得出了这两个方案总体上的预报综合准确度指数:方案一:940791.0; 方案二:997773.0;对上述两个方案的准确率进行比较之后,可以知道方案一在准确度方面要低于方案二。

相关文档
最新文档