上海XXX盾构区间中间风井施工方案(4层方案)讨论稿

合集下载

盾构过中间风井施工方案

盾构过中间风井施工方案

一、工程概况机场北站~福永站区间风井,位于规划地块内,周边无建(构)筑物,风井西侧约55m处有福永河,河宽约36m。

风井往机场北站及福永站方向均与盾构区间连接(矿山法初支盾构空推),风井施工期间作为矿山法施工竖井,预留矿山法出土孔。

区间风井主体长32米,宽26米,地下三层结构。

风井中心里程为ZDK36+196.958;起点里程ZDK36+180.953;终点里程ZDK36+212.960。

风井设三个风亭(一个新风亭、两个活塞风亭)和一个紧急疏散口,均设在规划地块内,预留合建条件。

本方案主要讨论如何顺利使盾构机在较短时间内快速、高效通过中间风井实现再次始发掘进。

图一中间风井与盾构隧道平面位置关系图图二盾构隧道与风井相对位置剖面图二、洞门加固方案盾构机在到达中风井前,为了维持隧道与风井接口处地层的稳定,避免盾构机到达时因地下水流失而导致地面塌方或塌陷,必须根据实际情况对盾构到达中风井段进行地基处理。

方案一:1)加固方法中间风井盾构洞门加固段采用Φ108大管棚辅助施工。

2)长管棚加固施工工艺⑴管棚布置如管棚布置图所示。

管棚孔口位置在盾构拱部120°范围内,纵向16-22m(根据岩石深度)进行管棚注浆,开挖轮廓线外放300mm位置布置,管棚环向中心间距300mm。

(可根据地质情况适当调整,以保证盾构机顺利到达为准),外插角约1°。

⑵注浆管棚采用Φ108mm,壁厚6mm的无缝钢管,分节安装,两节之间用丝扣连接,注浆钢管上钻注浆孔,孔径Φ10mm,孔间距200mm,呈梅花型布置。

钢管尾部(孔口段)2.0m不钻花孔作为止浆段。

(图三中间风井管棚布置图)图三中间风井管棚布置图⑶浆液采用水泥砂浆,初拟参数:水泥浆水灰比0.8:1~1:1,注浆压力:采用0.2~0.4MPa,施工中应据实际地质情况,并通过试验确定有关施工参数。

⑷从管棚导向管按设计钻孔,钻孔时将钢管随钻头一起钻入地层内,当达到设计深度后停机。

中间风井施工方案

中间风井施工方案

中间风井施工方案目录一、前言 (2)1.1 编制依据 (3)1.2 工程概况 (3)二、施工准备 (4)2.1 施工组织 (5)2.2 施工材料 (6)2.3 施工设备 (7)三、施工方法 (8)3.1 风井开挖 (9)3.2 管道安装 (10)3.3 风井内部施工 (11)3.4 风井防水处理 (12)3.5 风井封顶 (13)四、施工进度计划 (15)五、安全措施 (15)5.1 一般安全措施 (16)5.2 特殊安全措施 (17)六、环境保护 (18)七、质量控制 (19)八、应急预案 (20)一、前言随着我国基础设施建设的不断推进,风能作为一种清洁、可再生的能源,已经成为了国家能源战略的重要组成部分。

在风力发电场的建设过程中,中间风井作为风力发电机组的关键部件之一,其施工质量直接影响到风力发电场的运行效率和安全性能。

制定一套科学、合理的中间风井施工方案,对于确保风力发电场的安全稳定运行具有重要意义。

本文档旨在为风力发电场中间风井施工提供详细的指导和建议,以确保施工过程的质量和进度。

在编制本方案时,我们充分考虑了国内外风力发电场中间风井施工的实际情况和技术发展趋势,结合了相关标准和规范的要求,力求使本方案具有较高的实用性和指导性。

本方案分为五个部分:第一部分为概述,主要介绍了中间风井施工方案的目的、背景和依据;第二部分为施工准备,包括施工组织设计、人员培训、材料设备采购等;第三部分为施工过程,详细阐述了中间风井的施工方法、技术要求和质量控制措施;第四部分为安全管理,重点介绍了施工现场的安全管理措施和应急预案;第五部分为总结与展望,对本方案的实施效果进行了总结,并对未来风力发电场中间风井施工的发展提出了展望。

1.1 编制依据国家及地方相关法规政策。

在方案编制过程中,我们严格遵守国家和地方政府有关建筑工程安全、环保、质量等方面的法规政策,确保施工过程的合规性。

现行设计规范与标准。

本方案参照了行业内的最新设计规范和标准,包括但不限于《建筑工程设计规范》、《建筑施工安全规范》等,确保设计方案的科学性和实用性。

叠交隧道盾构穿越中间井施工技术

叠交隧道盾构穿越中间井施工技术

盾 构先 完成 叠交 段 下 方 的 隧道 推 进 , 完 成 叠 交 再
段 上方 的隧道 推进 。 为此 , 加 强 对施 工 过 程 中土 层 需
筑, 以控制基 坑 变形 , 保基 坑周 边 环境 的安 全 。 确
4 2 盾 构进 、 . 出洞 口土 体加 固施 工
沉 降 的控制 及 尽 量 减 少 对 先 建 隧道 的扰 动 和 后 期 沉 降 的控 制 。区间隧 道施工 总 体筹划 见 图 3 。 1 平 衡压 力 直接 关 系 到 地 面 的最 初 变 形 程 度 以 )
踪 注浆 , 减少 融沉 。
4 在 冻结 施工 前 , 进 行 深层 搅 拌 桩施 工 。采 用 ) 先 进 口 4 5 , 0mm三 轴 搅拌 机 , 用 接 钻 杆 施 工 技 术 , 8 使 对
下 层 洞 口以下 4m 至上层 洞 口以上 3m 的洞 口区土体
3 在基坑 开挖施 工 过程 中, 层承压 水需 要 降 ) ⑨
2 工程 所处 土层 特征
上行线盾构 在④ 、 、 土层 中穿 越 , 行线 盾构 ⑤ ⑤ 下
在④ 、 、 、 、 、 、 土层 中穿越, ⑤ ⑤ ⑤ ⑤ ⑥ ⑦ 中间井主体 结构处于的土层为⑤ ⑥ 、 。主要土层特I见表 1 、 ⑦ 生 。 其中, ⑤ ⑤ ④、 、 和⑥层在场地 内均有分布 , 、 ④ ⑤ 层土为高压缩性、 高灵敏度土层, 盾构推进土层受扰动影
站一 虹 井路站 区间隧道 , 、 行 线 由 3台盾 构 施 工 。 上 下 下行 线 盾 构 从 虹 井 路 站 北 端 头 井 出 发 , 过 中 间井 经 ( 构进 洞 、 移 、 盾 平 出洞 )继 续 推进 至 虹梅 路 站 西 端头 , 井 进洞 ; 上行 线 由2台盾 构分 别从 虹梅 路站 、 虹井 路站 出洞 , 中 间井 方 向推 进 , 后 在 中 间井 完 成 盾 构 进 往 先 洞; 、 上 下行 线 的 盾 构 在 中 间井 附 近 为 叠 交 穿 越 。 中

盾构过中间风井施工方案(机福区间)

盾构过中间风井施工方案(机福区间)

盾构过中间风井施工方案(机福区间)一、工程概况机场北站~福永站区间风井,位于规划地块内,周边无建(构)筑物,风井西侧约55m处有福永河,河宽约36m。

风井往机场北站及福永站方向均与盾构区间连接(矿山法初支盾构空推),风井施工期间作为矿山法施工竖井,预留矿山法出土孔。

区间风井主体长32米,宽26米,地下三层结构。

风井中心里程为ZDK36+196.958;起点里程ZDK36+180.953;终点里程ZDK36+212.960。

风井设三个风亭(一个新风亭、两个活塞风亭)和一个紧急疏散口,均设在规划地块内,预留合建条件。

本方案主要讨论如何顺利使盾构机在较短时间内快速、高效通过中间风井实现再次始发掘进。

图一中间风井与盾构隧道平面位置关系图图二盾构隧道与风井相对位置剖面图二、洞门加固方案盾构机在到达中风井前,为了维持隧道与风井接口处地层的稳定,避免盾构机到达时因地下水流失而导致地面塌方或塌陷,必须根据实际情况对盾构到达中风井段进行地基处理。

方案一:1)加固方法中间风井盾构洞门加固段采用Φ108大管棚辅助施工。

2)长管棚加固施工工艺⑴管棚布置如管棚布置图所示。

管棚孔口位置在盾构拱部120°范围内,纵向16-22m(根据岩石深度)进行管棚注浆,开挖轮廓线外放300mm位置布置,管棚环向中心间距300mm。

(可根据地质情况适当调整,以保证盾构机顺利到达为准),外插角约1°。

⑵注浆管棚采用Φ108mm,壁厚6mm的无缝钢管,分节安装,两节之间用丝扣连接,注浆钢管上钻注浆孔,孔径Φ10mm,孔间距200mm,呈梅花型布置。

钢管尾部(孔口段)2.0m不钻花孔作为止浆段。

(图三中间风井管棚布置图)图三中间风井管棚布置图⑶浆液采用水泥砂浆,初拟参数:水泥浆水灰比0.8:1~1:1,注浆压力:采用0.2~0.4MPa,施工中应据实际地质情况,并通过试验确定有关施工参数。

⑷从管棚导向管按设计钻孔,钻孔时将钢管随钻头一起钻入地层内,当达到设计深度后停机。

区间盾构如何施工方案

区间盾构如何施工方案

区间盾构如何施工方案一、工程概况与目标本工程旨在通过盾构法施工,完成城市地下区间的隧道建设。

工程将穿越不同地质条件,确保隧道施工的质量、安全与进度。

本工程的目标是实现隧道施工的高精度、高效率、高安全性,同时尽可能减少对环境的影响。

二、施工前准备工作地质勘察:详细调查工程区域内的地质情况,包括地层结构、岩石强度、地下水状况等,为盾构机选型与施工参数设定提供依据。

施工方案设计:根据地质勘察结果,结合工程需求,制定详细的施工方案,包括盾构掘进路线、管片拼装方式、浆液配比等。

施工材料准备:根据施工方案,提前采购所需的盾构机、管片、浆液等材料,确保施工顺利进行。

三、盾构机选择与配置根据地质勘察结果,选择适合本工程的盾构机型号,并合理配置相关设备。

盾构机应具备掘进速度快、稳定性好、适应性强等特点,以满足工程需求。

四、盾构掘进技术采用盾构法进行隧道掘进,通过盾构机的切削、推进、排渣等动作,完成隧道的开挖。

掘进过程中,应严格控制掘进参数,确保隧道轴线精度和掘进速度。

五、泥浆与浆液管理盾构掘进过程中,需要使用泥浆和浆液来辅助切削和支撑隧道壁。

应合理选择和配置泥浆和浆液的类型和配比,确保隧道壁的稳定性和掘进效率。

六、管片拼装与加固掘进完成后,应及时进行管片拼装,确保隧道壁的整体性和稳定性。

拼装过程中,应严格按照设计要求进行,并采取必要的加固措施,提高隧道壁的承载能力。

七、监控测量与调整在施工过程中,应实施监控测量工作,对隧道轴线、掘进速度、管片拼装质量等进行实时监测。

一旦发现异常情况,应及时进行调整和优化施工方案,确保施工质量与安全。

八、安全风险与措施盾构施工具有一定的安全风险,如盾构机故障、地质突变等。

应制定完善的安全风险防控措施,加强施工现场安全管理,确保施工人员和设备的安全。

九、环境保护与治理施工过程中应采取有效的环境保护措施,减少噪音、粉尘、废水等对周边环境的影响。

同时,应建立环境治理机制,对施工过程中产生的废弃物进行合理处置和回收利用。

盾构机过风井施工方案

盾构机过风井施工方案

盾构机过风井施工方案目录一、前言 (2)1.1 编制目的和意义 (2)1.2 工程概况 (3)1.3 方案编制依据 (4)二、施工准备 (5)2.1 设备选型与配置 (6)2.2 人员培训与安全交底 (7)2.3 施工材料准备 (8)2.4 施工场地布置 (10)三、盾构机过风井施工工艺 (11)3.1 隧道设计与规划 (13)3.2 盾构机掘进参数选择 (14)3.3 风井结构设计与施工 (16)3.4 转场与吊装方案 (17)四、施工重点与难点 (18)4.1 施工重点 (20)4.2 施工难点及解决方案 (21)五、施工进度计划与资源配置 (23)5.1 工期安排 (24)5.2 人员与设备配置 (25)5.3 物资供应计划 (26)六、质量控制与验收标准 (28)6.1 质量目标与控制措施 (30)6.2 验收程序与标准 (31)七、安全与环境管理 (32)7.1 安全生产责任制 (33)7.2 环境保护措施 (34)7.3 应急预案与救援措施 (34)八、风险评估与应对措施 (35)8.1 风险识别与评估 (36)8.2 风险应对措施 (37)一、前言盾构机过风井施工是城市地下交通建设的重要环节,对工程的质量、进度和安全有着重要影响。

本方案针对XX项目XX线路盾构机过风井施工进行制定,旨在通过详细的施工计划、技术方案和安全措施,确保风井顺利贯通,为后续隧道顺利掘进打下坚实基础。

本方案结合XX项目工况和盾构机过风井施工的经验,立足于安全、经济高效的施工目标,充分考虑了风井位置、尺寸、周围环境和施工季节等因素,提出了科学合理的施工方案,力求实现施工的最佳效果。

1.1 编制目的和意义本文档旨在详细阐述盾构机过风井施工方案的编制目的、意义以及相关技术背景,确保施工过程中能够安全高效地穿越复杂地质环境,同时最大限度地减少对周围环境和既有设施的干扰。

安全性提高:设计一套全面的风险评估和管理措施,确保盾构机的安全通过风井,防止地层塌方等安全事故发生。

中间风井基坑围护与封底冻结施工方案

中间风井基坑围护与封底冻结施工方案

XXX中间风井基坑围护与封底冻结施工方案20 年月一、工程概况上海轨道交通明珠线二期XXX站——XXX站区间中间风井位于里程SK11+949.6处、中山南路与外马路之间、董家渡路南侧,西边紧挨上海市音像制品公司,东边毗邻文庙泵站和黄浦江大堤。

中间风井上部为矩形竖井,竖井内侧矩形的顶点坐标分别为(27811.585,18397.5464),(27816.0018,18407.5552),(27796.6213,18416.1078), (27792.2044, 18406.099),地坪和井底标高分别为+4.250和-18.930,容积为20.984m (长)×10.74m(宽)×23.18m(深),结构风井的外围墙体厚度为380mm,底板厚度为1400mm。

按原设计,基坑围护采用1.2m厚地下连续墙,其深度为29.85m(隧道上方)~45m。

竖井底部由两个矩形暗井分别与下方的上行线隧道和下行线隧道相连,暗井的平面尺寸均为7.82m(长)×3.176m(宽),外围混凝土墙厚度为500mm。

暗井中间设隔墙,隔墙厚度为350mm。

上行线隧道与下行线隧道中心设计标高分别为-29.737m和-30.049m,隧道中心线水平距离为10.984m。

两隧道之间设旁通道和泵站。

按原设计,两个暗井、旁通道及泵站均考虑采用旋喷法加固地层。

本方案为冻结法施工方案,即用冻土帷幕作为竖井、暗井、旁通道及泵站施工的围护结构。

二、工程地面环境及地层特点中间风井位于黄浦江西岸,地势平坦,东侧距文庙污水泵站7~8m,风井内衬结构轮廓线距地下污水管道只有4m左右;西侧紧靠上海音像制品交易市场大楼,风井内衬结构距楼房基础约3m。

上海音像制品交易市场大楼为5层混合结构,条形基础,估计抗地层不均匀沉降能力较差。

根据Q10G16和Q10G17钻孔柱状,中间风井附近地面标高大致为+3.86m~+4.23m,自上而下地层分布为:①杂填土,层厚6m~2m,层底标高-2.14m~+2.23m;②2灰色粉质粘土,层厚10.5m~13.6m,层底标高-12.64m~-11.37m;⑤1灰色粘土,层厚3.5m~5.1m,层底标高-16.14m~-16.47m;⑤-2灰色粉质粘土,层厚4.5m~3.9m,层底标高-20.64m~-20.37m;⑥暗绿色粉质粘土,层厚4.3m~4.4m,层底标高-24.94m~-24.77m;⑦1草黄色砂质粉土,层厚9.2m~8.5m,层底标高-34.14m~-33.27m;⑦2灰黄色粉砂,层底标高-51.14m(未钻透)。

盾构到达风井方案讨论结果

盾构到达风井方案讨论结果

盾构到达风井接受始发方案讨论结果
从安全及可操作性方面考虑趋向于回填平衡法施工。

一、整体平移施工方案:
1、靠转弯环调整盾构姿态不可控,负环管片外围没有回填物,受力不稳定,增加操作难度,存在接受风险。

2、底部回填素砼调整高度,增加导向槽,防止磕头,同时有利于调整盾构机姿态。

3、根据地理位置及目前风井地下水情况判断,该方案存在三个风险:a刀盘破除素砼桩密封风险,b盾构出洞密封风险,c盾构二次始发密封风险。

4、风井空间狭小,靠反力架调整盾构姿态难度较大。

二、回填平衡施工方案:
1、根据工期考虑,单侧回填方法,中间挡墙施工难度较大,施工时间长,建议负三层满回填,回填过程中采用小型压路机压实,保证回填效果,同时缩短回填工期。

2、回填土采用改性土,土质满足换刀条件,无需增设砂浆墙。

3、回填顶部中板预留孔洞处可铺设钢筋网,浇筑砼,临时密封。

4、增加底部回填素砼高度,避免人为上软下硬风险。

5、存在盾构姿态偏差叠加风险,增大测量难度,可能出现盾构刀盘顶到洞门钢环风险。

6、对玻璃纤维筋破除方式再进行细化研究。

增加钢套筒施工方案,从工期、成本、技术、安全等各个方面再进行详细比对,采取合理、经济、可行的施工方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中间风井施工方案(4层方案)1、工程概要1.1方案编制依据1、工程招标文件及合同2、有关规范3、工程地质勘察资料上海市XXXX工程PDNL~NPDQ站区间工程地质勘察报告(详勘)(中船勘察设计研究院)2001年3月4、设计图纸上海市轨道交通XXXX工程中间风井结构施工图(上海隧道工程轨道交通设计研究院)2001年11月1.2工程概述PDNL站~NPDQ站区间隧道工程中间风井(兼泵房及联络通道)位于董家渡路与外马路交叉路口的西南侧,周边有文庙泵站、税务局大楼、音像制品批发市场及鸿宇商务楼,其中心里程为SK11+949.600(XK11+938.400)。

风井平面几何尺寸为矩形,长24.384m,宽14.14m,拟采用逆筑法施工,围护结构采用地下连续墙。

地下墙深度有29.8m和34m二种,墙厚1.2m,采用钢板止水接头,共计12幅,其中29.8m深的有4幅,其墙底距离隧道外径1.2m,34m深的有8幅。

为了控制地墙的竖向沉降量,在每幅地墙内布置2根压浆管插入墙底1m,在地墙施工完成且具有一定的强度后再利用所预埋的注浆管对地墙进行基底注浆,压浆范围为地墙以下1.5m。

基坑开挖前20天,须进行坑内井点降水,降至坑底1~2米,直至整体结构完成并达到设计强度后方可拆除降水设备,其中须打设深井点抽取⑦1层承压水。

风井地下结构为地下5层,基坑底板深度-20.53m(已包括20cm 垫层),采用逆筑法施工,用5道混凝土支撑加3道钢支撑,其中楼板梁和混凝土支撑合二为一,钢筋混凝土内衬地下一层~三层厚0.40m,地下四层~五层厚0.50m,底板厚度1.4m。

底板与其下的隧道用混凝土结构连接,上、下行线各用一长7.82m,宽3.176m矩形通风竖井(又称烟囱或暗井)相连,混凝土壁厚500mm,长约7.8m。

上、下行线之间设置联络通道,联络通道(又称旁通道)中间有一集水井,底标高为-36.20m。

8#盾构(PDNL站)出洞,进行下行线推进,截至2002年1月14日已565环,再有546环就达到风井位置,到达时间预计为2002年3月4日。

计划(NPDQ站)进洞时间为2002年8月7日。

9#盾构上行线推进,计划2002年6月8日(PDNL)出洞,预计到达风井位置时间为2002年11月4日。

计划(NPDQ站)进洞时间2003年3月18日。

1.3 工程地质条件中间风井施工所处的主要土层的地基土物理力学性质如下(按Q10G16号钻孔资料):地质缺陷:1、由表中可见,②2层为粉土层,透水性较好,易引起流砂、管涌;2、⑤1、⑤2层为高压缩性粘性土,易产生较大的变形,施工应防止土体蠕变;3、⑥、⑦1层为Q3硬土层,较难施工;4、本区段自地面28m深度以下为全断面砂质粉土和粉砂层,透水性极好,易液化。

地下水位位于地表下0.5米。

5、⑦层为承压水含水层,埋藏于第七层砂质粉土粉砂层中,为上海地区第一承压含水层,承压水水头离地面埋深为7.58m(标高3.31m)。

联络通道与集水井全部位于第⑦层中。

为确保整个工程的施工安全,应考虑⑦层承压水头所产生的不利影响。

1.4 施工周围环境建筑物:拟建的中间风井位于董家渡路、外马路十字路口西南侧,周围建筑物有:文庙泵站(在建)、上海市国家税务局大楼、上海市音像制品批发交易市场大楼。

文庙泵站为箱形基础,基础底标高-5.76m,音像批发市场大楼为混凝土4层、5层结构,基础为钢筋混凝土桩(200×250×8000mm),桩底标高-9.9m,其中距离音像批发市场大楼最近(约1.5m),施工时必须切实落实防止建筑物沉降的环境保护措施。

地下管线:施工区域内管线已废除。

1.5.工程特点及难点(1)槽壁深(34m),并且精度要求高(垂直度1/300),而且采用刚性接头,施工难度大。

(2)槽壁施工至28m深度以下为全断面砂性土,土质较硬,施工难度大。

(3)基坑安全等级为一级,开挖深度深(20.0m),内衬结构采用逆作法,施工难度高。

(4)基坑底板处于承压水隔水层上,对基坑开挖时控制基底稳定难度大。

(5)距建筑物较近(1.5m),地层变形要求高。

(6)地下结构施工与盾构穿越交叉施工,对土体挠动大,距离近(1.2m)。

2 施工准备2.1 前期准备风井位置上的水产交易市场原址已有部分拆除,但还是不能满足地下连续墙的场布要求,地铁建设有限公司正与有关方面协调,现在场地表层铺着建筑垃圾,施工前要求进行处理,以利施工。

2.2施工方案准备重要原则1.地墙施工后,下行线盾构再穿越风井位置(墙底距离隧道顶1.2m)。

2.地下结构施工至4层,等待上行线盾构穿越,4层楼板与隧道净距12m。

2.地下4层以下的施工,全部采用冻结法加固,取代原设计的满堂旋喷加固。

地下结构为4层方案概述:地下结构由原设计地下5层改为地下4层,挖土深度约20m,原先45m 地墙深度可相应减小到32m左右,(按入土深度0.7计算),隧道上方地墙不变,墙底标高分别为-27.8m和-23.8m,分别处于⑦1和⑥层土中,墙底与隧道外径间距1.2m,先施工下行线区域6幅地墙,盾构在其施工后穿越风井位置,而后施工所剩6幅。

接着打设降水井,通过降水,使基坑内土体满足挖土要求,分段实施基坑开挖及逆筑法内衬结构,采用4道混凝土支撑加1道钢支撑,直至底板结束。

底板地标高为-15.68m,处于⑤2土层中。

底板施工结束后,待上行线盾构穿越风井位置以后,再进入底板以下施工。

底板以下的结构施工采用冻结法,底板与其下的隧道连接通风竖井(烟囱),因底板抬高,其长度相应变为12.6m。

在底板上对其下的土体采用冻结法加固,先开挖联络通道工作竖井,它位于两个烟囱中间,并在其中进行倾斜孔冻结。

冻结封底后,可向下开挖集水井、向两旁开挖联络通道。

并同时可进行通风竖井开挖。

然后浇筑旁通道、集水井和烟囱内衬混凝土,打开隧道管片。

施工顺序下行线6幅地墙施工―――下行线盾构穿越风井―――剩余6幅地墙施工―――基坑井点降水―――基坑开挖―――逆筑法内衬结构施工―――封底―――上行线盾构穿越风井―――底板上垂直冻结法―――联络通道工作井施工―――工作井内倾斜冻结―――联络通道、集水井及通风竖井施工―――打开隧道管片2.2 施工日共计施工日:370天工程完成日期:2003年6月17日3 施工总进度计划(见施工总进度计划表)4 施工方案4.1地下连续墙施工方案1.工程概况1.1.概况风井几何尺寸为矩形,长24.384m,宽14.14m,采用地下连续墙围护结构。

地下墙延长72.246m,深度有29.8m和45m二种,墙厚1.2m,采用止水钢板抗剪接头,共计12幅,其中29.8m深的有4幅,45m深的有8幅。

为了控制地下连续墙的竖向沉降量,需在每幅地下墙内布置2根压浆管,插入墙底1m,在地下墙施工完成且具有一定的强度后再利用所预埋的注浆管对地下墙进行基底注浆,压浆范围为地下墙以下1.5m。

1.2.工程特点地下墙施工采用液压抓斗成槽施工工艺,由于地下墙要穿越7#土层,该土层N值很高,基本上无法测定,因此在该土层中液压抓斗的成槽效率非常底,甚至无法成槽,因此本工程拟采取两钻一抓的施工工艺进行施工,即先在抓斗一抓的两端钻先导孔,先导孔直径为1200mm,深度为45m(29.8m),随后再用液压抓斗将两个孔间将小墙直接抓除,这样可大大提高成槽效率,确保正常施工。

工程地处黄浦江边,受黄浦江江水潮汐的影响,对泥浆配置及成槽稳定性有较大的影响;地下墙钢筋笼重量越55吨,由于采取整幅起吊,对钢筋笼制作要求比较高。

2.施工前期准备2.1.施工场地围护2.2.场地清理①清除工地内民房拆除未净的残垣、建筑垃圾和行道树、电线杆等空间障碍物。

②平整施工场地,并以3‰坡度向明沟方向落坡。

③拟构筑施工道路的地基用压路机压实或人工夯实。

2.3.施工道路①沿地下墙外侧一周施工一圈宽10m,厚0.25m的钢筋砼施工道路,并将道面与导墙、明沟筑成一体。

2.4.施工用电2.4.施工给水2.5.工地排水2.6.行政生活设施搭建2.7.临时施工设施a. 钢筋笼制作场钢筋笼制作场由钢筋加工棚、钢筋堆场和钢筋笼制作胎模组成。

b. 泥浆系统泥浆系统由半埋式泥浆池、集装式泥浆箱、泥浆材料仓库、泥浆拌制机械、泥浆分离设备、泥浆输送泵及泥浆循环管路结合而成。

c. 临时集土坑因地下连续墙成槽作业时挖出的土方带有浆液和烂泥,直接装车外运会沿途滴漏,造成环境污染。

为此,拟在工地上设置一个能容纳 1.5幅地下墙土方的临时集土坑,用来临时收集成槽作业挖出的湿土,待沥干泥浆后,再驳外弃。

3.地下墙施工技术措施3.1.钢筋笼整幅吊装措施钢筋笼长达45m,宽6m,重约55T,对于这种超重、超长的钢筋笼,为了安全起见,通常采用分为2~3段分别起吊入槽,再在槽口逐段拼接成整幅的方法进行吊装作业。

但分段吊装钢筋笼,在拼接部位难免产生折角,不能保证钢筋笼的整体形位精度与平直度,下钢筋笼时常会刮擦槽壁面,造成墙体露筋等质量缺陷。

为了保证本工程地下墙的墙体质量,所有钢筋笼都将采用整幅一次吊装的方法就位。

由于整钢筋笼是一个刚度极差的庞然大物,起吊时极易变形散架,发生安全事故,为此根据以往成功经验,采取以下技术措施:①钢筋笼上设置纵、横向起吊桁架和吊点,使钢筋笼起吊时有足够的刚度防止钢筋笼产生不可复原的变形。

下图为钢筋笼上纵、横向起吊桁架和吊点设置示意图。

②③3.2.止水钢板制作及安放措施止水钢板和钢筋笼是两个分离、各自独立的整体,因此它们必须在不同的胎模上分开来制作、安装,最后分别下放,先下放钢筋笼,再下放止水钢板,①止水钢板制作:每根长45m的止水钢板在场外分三段加工成型并运进施工现场。

②止水钢板拼装:在现场设置止水钢板拼接胎模,将三小段止水钢板固定在胎模上进行焊接拼装,拼装后的止水钢板长度为45m,拼装必须具有非常高的水平精度、强度和平整度。

③采用150吨履带吊和100吨履带吊配合将已经拼接好的长45m的止水钢板吊起,起吊方法同钢筋笼起吊一样,为确保止水钢板入槽过程中始终保持垂直度和避免发生扭转现象,在止水钢板底部增加定位垫箱,垫箱按照设计图纸进行加工。

3.3.钻机钻导向孔地下墙要穿越第7#层硬土,该层土N值通常无法测定,因此使成槽难度大大增加,因此我们拟采用GPS20型反循环钻机(50m孔深度可保证垂直度在1/300以上)在每幅槽段液压抓斗成槽时一抓寸二头先钻二个先导孔,成槽机再在两孔之间进行成槽(即两钻一抓)这样可大大提高成槽效率。

4.主要工序施工方法4.1.地下连续墙施工槽段划分在施工前积极与设计单位联系,根据工程的实际情况进行分幅并取得设计单位的认可后方可进行施工。

4.2.地下连续墙施工采用的工法本工程地下连续墙施工采用由隧道公司编制的国家级工法:“地下连续墙液压抓斗工法”。

相关文档
最新文档