遗传毒性杂质的控制
【医药】如何控制基因毒性杂质

01、何为基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity,GTI)是指能直接或间接损害DNA,引起DNA突变、染色体断裂、DNA重组及DNA 复制过程中共价键结合或插入,导致基因突变或癌症的物质(如卤代烷烃、烷基磺酸酯类等)。
潜在基因毒性杂质(Potential Genotoxic Impurity ,PGI)结构中含有与基因毒性杂质反应活性相似的基团(如肼类、环氧化合物、N-亚硝胺类等),通常也作为基因毒性杂质来评估。
基因毒性杂质主要来源于原料药合成过程中的起始物料、中间体、试剂和反应副产物。
此外,药物在合成、储存或者制剂过程中也可能会降解产生基因毒性杂质。
除此之外,有些药物通过激活正常细胞而产生基因毒性物质导致突变,如化疗药物顺铂等。
02、何为基因毒性杂质“警示结构”由于杂质结构的多样性,一般很难进行归类,因此,在缺乏安全性数据支持的情况下,法规和指导原则采用“警示结构”用来区分普通杂质和基因毒性杂质。
所谓“警示结构”,是指杂质中的特殊基团可能与遗传物质发生化学反应,诱导基因突变或者染色体断裂,因此具有潜在的致癌风险。
对于含有警示结构的杂质,应当进行(Q)SAR预测和体内外遗传毒性和致癌性研究,或者将杂质水平控制在毒理学关注阈值(TTC)之下。
但是含有警示结构并不能说明该杂质一定具有遗传毒性,而确认有遗传毒性的物质也不一定会产生致癌作用。
杂质自身性质和结构特点会对其毒性产生抑制或调节作用。
警示结构的重要性在于它提示了可能存在的遗传毒性和致癌性,为进一步的杂质安全性评价与控制指明方向。
(关于基因毒杂质警示结构的详细信息可参考欧盟发布的警示结构《Development ofstructure alerts for the in vivo micronucleus assay in rodents》)。
03、基因毒性杂质严格控制的必要性基因毒性杂质最主要的特点是在极低浓度时即可造成人体遗传物质的损伤,导致基因突变并促使肿瘤发生。
遗传毒性杂质控制PPT 图文共57页文档

•
26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索
•
27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克
•
28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯
•
29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克
•
30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
5 遗传毒性杂质

ICH M7
目前在第四阶段
FDA
2005年工作小 组成立 2008年指南
内容
一、简介
二、ICH M7
三、遗传毒性杂质的分类
四、限度控制
五、案例
六、总结
ICH M7
• 引言 • 指导原则的范围 • 总体原则
• 上市药品需要考虑的事项
• 原料药和制剂的杂质评估 • 风险评估因素(杂质分类) • 风险表征(控制限度) • 控制策略 • 文件 • 注意事项 词汇表 参考文献 附录
ICH M7对遗传毒性杂质的控制
• 遗传毒性杂质可能出现在起始物料、溶剂、中间
体、副产物和降解产物中,并可能引入到制剂中 • ICH M7提供了一个可用于遗传毒性杂质鉴别、分 类、定量分析和控制的可行性框架。 限制潜在的致癌风险 提供了安全性评估和质量风险控制的概念
对ICHQ3A和Q3B的补充
O
高于1.5g的TTC
• 遗传毒性杂质:致癌性与时间和剂量均有关系;
较短时间内可以承受高于1.5 g/天的剂量,不影 响致癌性。 • 含义:短时间+高浓度和长时间+低浓度得到同样 的效果 • Haber定律:浓度(C)时间(T)=常数(k)
阶段性的TTC限度
放宽限度-阶段性TTC数据
• 低于终身给药剂量的限度(Less-Than-Lifetime):基 于TTC可接受的限度为1.5 g/天是计算患者终生服药的 基础上得出的理论值,按照70岁寿命计算: • 1.5 g/天*365天*70年(25,550天)=38.3mg
分析潜在的杂 质
必要时重复以 上工作
对杂质进行结 构评价
提交完整的控 制策略
遗传毒性杂质的控制原则
遗传毒性杂质在医药工业中的来源与控制路径

遗传毒性杂质在医药工业中的来源与控制路径摘要:制药企业生产出的药品如果存在遗传毒性杂质,使得药品带有可遗传的毒性,会对人类健康造成严重威胁。
近年来,药品中遗传毒性杂质问题已成为了药品监管机构重点关注的问题之一。
本文将简要概括遗传毒性杂质的属性和含义,详细分析遗传毒性杂质的具体来源,并在最后提出如何控制生产药品中遗传毒性杂质的具体途径。
关键词:遗传毒性杂质;医药工业;来源;控制路径在制药环节中,很多药品通过合成或者天然产物结构修饰制成。
相关制药企业为了在复杂的合成过程中尽可能提高生产效率,而使用大剂量的化学试剂。
这种化学试剂过量会使反应继续发生,进而发生副反应,产生副产物最后仍然储存在药品中售卖。
这样的药品中含有大量不明杂质,可能会影响人类的身体健康。
药品监管局了解到这一问题后,开始聚焦遗传毒性杂质在药品中的含量这一指标,这一问题也成了各位专家的研究重点。
一、遗传毒性杂质的属性和含义首先,我们要明确遗传毒性是指物理或化学的某些因素与生物体内的DNA等遗传物质相结合,进而发生作用并最终表现为毒性。
遗传物质进入人体后,会刺激和加快基因突变或者使人体细胞发生癌变,会对人体健康造成不利影响。
因此,遗传毒性杂质本身具有致突变性和致癌性两种基本属性,容易使得生物体发生基因突变或者发生致癌现象,这种突发性大多情况下是无法及时反应或者预测的。
二、遗传毒性杂质的来源遗传毒性杂质主要来源于药品生产过程中。
药品生产过程涉及到的原料或产物有很多,都从属于化学试剂。
例如反应物、催化剂、副产物等等。
根据研究,遗传毒性杂质的遗传毒性机制是嘧啶和嘌呤碱的N原子、O原子以及磷酸二甲酯骨架,在特殊情况下进入DNA找到碱基的亲核中心,破坏连接的键,进而使得整条DNA双链断裂。
遗传毒性杂质的常见来源包括试剂、副反应的生成物和有机溶剂三种方式。
(一)试剂含有遗传毒性杂质的试剂包括硼酸、芳香胺类、烷基卤化物、环氧乙烷、肼试剂、氮氧化物等。
环氧乙烷自身带有环,而DNA中心受到环的张力会与该物质发生亲核反应,进而产生大量遗传毒性杂质。
国内外遗传毒性杂质监管现状

国内外遗传毒性杂质监管现状1 从宏观上解读杂质1.1 杂质与药物不良反应的关系很多同仁都认为杂质与药物的不良反应息息相关,认为杂质越小或越少、临床不良反应发生几率也就越小或越少,进而在进行杂质研究与控制时,力求面面俱到、尽善尽美。
殊不知,引起药物不良反应的原因是多方面的,并不仅仅是药物中的杂质。
人用药品注册技术要求国际协调会(ICH) 于2002年9 月12 日颁布了《疗效--M4E(R1) 人用药品注册的通用技术文档:模块2 的临床回顾和临床概述与模块5 :临床研究报告》。
其中阐述道:关于药物的不良反应,常见的有关因素包括剂量、单位剂量、总剂量、给药方案、疗程、人口统计学特征( 如年龄、性别、种族)、联合用药、其他基础特征( 如肾功能状态)、效能特性和药物浓度等。
可见,药物不良反应主要与主成分的不合理使用以及患者个人体质差异相关。
不同给药方式下杂质与药物不良反应间的关系解读如下。
1.1.1 口服给药口服给药是一种较为安全的给药方式。
但若用法用量不当、超出安全用药浓度上限时,将对人体带来伤害、产生不良反应 ( 如治疗窗狭窄药物常发生此情形)。
目前我国此类药物的主要问题是:部分仿制药质量与原研药存在较大差距,主要是在患者体内生物利用度的差异;生物利用度又与体外溶出行为密切相关。
原国家食品药品监督管理总局(SFDA) 自2008 年起开展“国家药品评价性抽验”工作至今,已发现国内已上市的部分口服固体制剂体外多条溶出曲线与原研制剂有显著性差异。
1.1.2 静脉滴注给药有同仁认为,静脉滴注给药方式已无生物利用度问题,此时不良反应与杂质密切相关,故应着重关注。
笔者认为这种认知是偏颇的。
此种给药方式药学管理与信息使得药物直接进入封闭的血液循环系统中,当外来物质( 包括葡萄糖注射液、氯化钠注射液、药物主成分、少量杂质、辅料和微量颗粒等)“一股脑儿地侵入”时,其中呈现出的不良反应强弱与患者的身体机能以及主成分的自身毒性及用法用量息息相关。
遗传毒性杂质控制指导原则

遗传毒性杂质控制指导原则遗传毒性杂质控制指导原则用于指导药物遗传毒性杂质的危害评估、分类、定性和限值制定,以控制药物中遗传毒性杂质潜在的致癌风险。
为药品标准制修订,上市药品安全性再评价提供参考。
一、总则遗传毒性(Genotoxcity)是指遗传物质中任何有害变化引起的毒性,而不考虑诱发该变化的机制,又称为基因毒性。
遗传毒性杂质(Genotoxic Impurities,GTIs)是指能引起遗传毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。
本指导原则主要关注致突变机制的遗传毒性杂质,非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
药品生产、药品标准提高及上市药品再评价过程中发现杂质后,可按本指导原则进行风险评估,确定其是否为遗传毒性杂质,尤其是致突变性杂质。
如果一个杂质被鉴定为具有潜在的致癌风险,应制定相应的限值。
在制订可忽略致癌风险的杂质限值时,应进一步分析生产工艺,兼顾安全性和质量风险管理成本两方面的因素,综合考虑制定合适的限值。
本指导原则包括危害评估方法、可接受摄入量计算方法和限值制定方法。
本指导原则中描述的对杂质潜在致突变性的评估方法不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射性药物、发酵产品、中药和动物或植物来源的粗制品。
也不适用于已上市药物中使用的辅料、调味剂、着色剂和香料,以及与药物包材相关的可浸出物。
本指导原则中对杂质潜在致突变性的评估方法不适用于用于晚期癌症适应症的原料药和制剂,以及用于其它适应症但本身在治疗剂量下就具有遗传毒性,且预计可能与癌症风险增加有关的原料药。
在这些情况下,致突变性杂质不会显著增加原料药的致癌风险。
遗传毒性杂质控制指导原则

遗传毒性杂质控制指导原则遗传毒性杂质控制指导原则用于指导药物遗传毒性杂质的危害评估、分类、定性和限值制定,以控制药物中遗传毒性杂质潜在的致癌风险。
为药品标准制修订,上市药品安全性再评价提供参考。
一、总则遗传毒性(Genotoxcity)是指遗传物质中任何有害变化引起的毒性,而不考虑诱发该变化的机制,又称为基因毒性。
遗传毒性杂质(Genotoxic Impurities,GTIs)是指能引起遗传毒性的杂质,包括致突变性杂质和其它类型的无致突变性杂质。
其主要来源于原料药的生产过程,如起始原料、反应物、催化剂、试剂、溶剂、中间体、副产物、降解产物等。
致突变性杂质(Mutagenic Impurities)指在较低水平时也有可能直接引起DNA损伤,导致DNA突变,从而可能引发癌症的遗传毒性杂质。
本指导原则主要关注致突变机制的遗传毒性杂质,非致突变机制的遗传毒性杂质在杂质水平的剂量下,一般可忽略其致癌风险。
药品生产、药品标准提高及上市药品再评价过程中发现杂质后,可按本指导原则进行风险评估,确定其是否为遗传毒性杂质,尤其是致突变性杂质。
如果一个杂质被鉴定为具有潜在的致癌风险,应制定相应的限值。
在制订可忽略致癌风险的杂质限值时,应进一步分析生产工艺,兼顾安全性和质量风险管理成本两方面的因素,综合考虑制定合适的限值。
本指导原则包括危害评估方法、可接受摄入量计算方法和限值制定方法。
本指导原则中描述的对杂质潜在致突变性的评估方法不适用于以下类型的原料药和制剂:生物/生物技术制品、肽类、寡核苷酸、放射性药物、发酵产品、中药和动物或植物来源的粗制品。
也不适用于已上市药物中使用的辅料、调味剂、着色剂和香料,以及与药物包材相关的可浸出物。
本指导原则中对杂质潜在致突变性的评估方法不适用于用于晚期癌症适应症的原料药和制剂,以及用于其它适应症但本身在治疗剂量下就具有遗传毒性,且预计可能与癌症风险增加有关的原料药。
在这些情况下,致突变性杂质不会显著增加原料药的致癌风险。
基因毒性杂质控制

3
TTC限度或以下;或进行细菌致 含警示结构的物质,与API结构 突变性试验。 无关,无致突变性数据 如果无致突变性=第5类; 如果有致突变性=第2类。
所含警示结构与活性成份(API) 相同,或与已证实无基因毒性 按一般杂质控制 原料药结构相关化合物的警示 结构相同 无警示结构,或有充分的数据 证明其警示结构无致突变性 按一般杂质控制
d、成品基于TTC的可接受限度为50ppm。
结论: 起始物料Y中杂质B控制限度0.1%可接受,不需提供中试及商业化 批
数据。
案例3:关于结构相似的基因毒性杂质的控制(芳硝基位置异构体 杂质);
需控杂质与已建立可接受限度的中间体物化特性相似,清除方式相似, 且残留更低。
案例4:高反应活性基因毒性物质(二氯亚砜)。
(1)工艺杂质控制 方法1:原料பைடு நூலகம்质量标准中控制在可接受限度以下
至少连续6批中试或连续3批放大检出低于限度30%以下,可周期性检验。
方法2:起始原料或中间体标准或中控过程中控制在可接受限度以下; 方法3:起始原料或中间体标准或中控过程中控制在可接受限度以上;
明确杂质的去向及清除过程; 根据实验室研究,成品残留在可接受限度的30%以下(推荐加标试验); 必要时有中试或商业化批数据支持。
4、基因毒性杂质的限度
(3)非终生暴露(Less than lifetime,LTL)的控制 采用Staged TTC Approach
单个基因毒性杂质可接受摄入量
治疗期 日摄入量 (μg/day)
≤1月 120
>1-12月 20
>1-10年 10
>10年至 终生 1.5
间隔给药按实际给药天数计,例:某药治疗期2年,每周给药一次,2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
少数致癌性物质
• 类黄曲霉素(aflatoxin-like-),N-亚硝基(N-nitroso)和氧化偶氮化合物(azoxy) • 不适用1.5 g/天的TTC标准,应根据具体 指导原则的原理,具体问题具体分析、
O H O H O 黄曲霉素 Aflatoxin O N-亚 硝 基 化 合 物 N-nitroso 偶氮氧化物 Azoxy O R R O O N R N N O R O
PDE的计算方法
• PDE=NO(A)El体重校正/(F1 F2 F3 F4 F5) • F1=种属间差异系数 • F2=个体间差异系数 • F3=短期毒理数据的校正 • F4=对于严重毒性的校正因子 • F5=如果未确定NOEL时的校正因子 • 如无NOAEL数据,可用LOAEL代替
原料药/制剂 的终点控制
ICH M7提供了4种控制方法
• 1、终产品控制:在原料药标准中采用合适 的方法对相关杂质进行检验,达到可接受 的限度。 • 2、中间控制+终产品控制:采用合适的方 法对原材料,起始物料或者中间体的相关 杂质进行检测,或进行生产过程的控制, 使终产品杂质达到可接受的限度。
ICH M7对杂质的控制方法-续
• <1个月,适用于传统的I期药品临床试验的给药时间。 • 1~12个月,适用于涵盖大多数II期和许多III期情况临床试 验的给药时间。适用于市售产品,其(累积)的给药持续 时间不超过12个月。 • 1~10年,涵盖延长期限的III期临床试验(结果研究)和许 多药品上市许可(可能包括用于老年的各种药物)。 • >10年,覆盖药品的所有上市许可,其积累适用通常超过 10年。
作为无致突变的杂质
警示结构
潜在毒性杂质的确定
• 1类:致突变和致癌性数据为阳性。基于文献中报告的动物/人体毒性 。现有的公开数据库,如ToxNet、NTP、InChem、BG-Chemie、日本 现有化学物质数据库和/或市售数据库,如VITIC和Leadscope。 • 2类:致突变数据为阳性,但致癌性未知。依据包括:如已知的细菌 突变Ames试验结构阳性,但是未报告啮齿类动物致癌性数据。 • 3类:有警示结构。有潜在遗传毒性风险。Q(SAR)系统显示警示结构 具有遗传毒性,但与活性物质结构无关。如果细菌突变Ames试验阳 性,划为2类,如果细菌突变Ames试验阴性,划为5类。 • 4类:有警示结构。但是与原料药和原料药结构相似物有关,而细菌 突变Ames研究显示此类物质呈阴性。 • 5类:没有警示结构。没有遗传毒性的文献报告,或在细菌突变Ames 试验阴性,或者有重复的数据证明与警示结构不相关。
TTC法
• 无阈值效应的遗传毒性杂质:引入了毒理 学关注阈值(Threshold of Toxicological Concern)。TTC是在接受患者终生用药的 癌症发生概率不超过10万分之一的基础上 ,从高浓度下进行的致癌性试验数据线性 外推到极低浓度得到的一个理论值。 • 对于无阈值效应的遗传毒性杂质,如果每 日摄入量低于1.5g,那么患者因服药导致 癌症发生的额外风险可以忽略不计。
遗传毒性杂质的控制
• ICH指导原则指出“如果杂质具有非常见毒 性,则应降低限度阈值(报告、鉴定、验 证)”(附件1,注释2) • 什么是非常见毒性?如何处理?
非常见毒性
• ICH Q3专家工作组(1990s)设想为特异的 不可逆的毒性(致畸性、致癌性、生殖毒 性),但未提出限制策略。 • FDA和EMEA对待遗传毒性杂质的态度为零 容忍,(例如1ppm的限度)。 • ICH M7明确对遗传毒性杂质进行控制,根 据风险/获益,阶段性TTC方法。
• 3、中间控制:基于对工艺的认识,采用合 适的分析方法对原材料,起始物料或者中 间体的杂质进行检测,或就那些生产过程 的控制,同时确认这种控制方法能够保证 原料药的杂质水平在可接受的限度以下。 • 4、不进行控制:通过对工艺过程参数控制 和杂质残留水平的认识,有足够的信息保 证原料药中的杂质水平将会在可接受的限 度下。
分类流程
内容
一、简介 二、ICH M7 三、遗传毒性杂质的分类 四、限度控制 五、案例 六、总结
对遗传毒性杂质的控制
遗传毒性 杂质控制
无毒理学数据, 采用TTC法
Hale Waihona Puke 控制控制PDE法
PDE法
• 适用于有阈值效应的遗传毒性杂质:已有 证据表明,该类物质只有在超过一定限度 时才会产生遗传毒性。 • 杂质安全性限度的确定可以参照残留溶剂 限度的计算方法,根据相关动物的无可见 效应剂量(No-Observed Effect Level)计算 其可接受的日暴露量(Permissible Daily Exposure),再根据药品的最大日剂量计算 出杂质的接受限度。
内容
一、简介 二、ICH M7 三、遗传毒性杂质的分类 四、限度控制 五、案例 六、总结
潜在遗传毒性杂质的分类
分类 1类 定义 已知有突变性和致癌性物质 控制方法 控制杂质在可接受的与化合物特性相 关的限度
2类
已知的致突变性但致癌性未知的 物质(细菌突变试验阳性,无啮 齿类动物致癌数据)
含警示结构的物质,与原料药结 构无关联,无致突变性数据
FDA对遗传毒性杂质的控制
• 原先采用对药物批次中遗传毒性杂质的验 证(遗传毒性实验和2年啮齿类动物致癌性 试验)。 • 2004年起由工业界与FDA经过会议,就临 床试验“阶段TTC方法”达成共识。 • 2008年美国FDA发补草案指南,采纳阶段 TTC
对遗传毒性杂质的控制
欧盟
2002年CHMP 工作小组 2006年指南
• 引入与暴露量相关的可接受限度(LessThan-Lifetime):基于TTC可接受的限度为 1.5 g/天是结社患者终生服药的基础上得 出的理论值,按照70岁寿命计算: • 1.5 g/天*365天*70年(25,550天)=38.3mg
治疗时限 <=1个月 1~12个月 1~10年 10年~终生
遗传毒性杂质的研究
选择合成路线 并确定本品是 否适用ICH M7 根据对工艺的 理解确定控制 策略 根据相应的分 类,确定相应 的限度要求 基于ICH M7原 理进行结构分 类 方法学验证/积 累数据
分析潜在的杂 质
必要时重复以 上工作
对杂质进行结 构评价
提交完整的控 制策略
遗传毒性杂质的控制原则
ICH M7对以下问题提供了解决方案
• 药物研发过程中,遗传毒性杂质的可接受水平是 多少? • 上市产品遗传毒性杂质的可接受水平是多少? • 是否可以采用毒理学关注阈值(TTC,Threshold of Toxicology Concern)来规定遗传毒性杂质的水 平 • 计算TTC时,是否可以将多个遗传毒性杂质合并 计算 • 哪些是可接受的特殊情况?日摄入量大于TTC的 情况
ICH M7
目前在第四阶段
FDA
2005年工作小 组成立 2008年指南
内容
一、简介 二、ICH M7 三、遗传毒性杂质的分类 四、限度控制 五、案例 六、总结
适用范围
• M7适用于临床阶段和后期申报上市的新的 原料药和制剂。 • 以下产品不适用M7,生物/生物工程,多肽 ,寡链核酸,放射性药物,发酵产物,草 药,动物器官或植物提取的粗品。 • 按照ICH S9的抗肿瘤新药的申请。 • 药品本身在治疗浓度下具有基因毒性的。
• 杂质谱的分析参见相关指导原则 • 采用多种途径对遗传毒性杂质进行分析: 经验积累,文献报道,软件预测,毒理学 试验等 • 药学部门应与毒理部门紧密配合
全方位的控制
起始物料、 溶剂、中间 体的控制
工艺参数的 控制
遗传毒 性杂质 的控制
生产环节和 设备运行条 件的控制 (GMP)
生产工艺过 程的控制
ICH M7对遗传毒性杂质的控制
• 遗传毒性杂质可能出现在起始物料、溶剂、中间 体、副产物和降解产物中,并可能引入到制剂中 • ICH M7提供了一个可用于遗传毒性杂质鉴别、分 类、定量分析和控制的可行性框架。 限制潜在的致癌风险 提供了安全性评估和质量风险控制的概念 对ICHQ3A和Q3B的补充
相关指导原则及发展历史
• EMA:Guideline on the Limits of Genotoxic Impurities, 2006 • EMA:Questions and Answers on the CHMP Guidelien on the limits of genotoxic impurities, 2008 • FDA:Guidance for industry :Genotoxic and Carcinogenic Impurities in Drug Substances and Products:Recommended Approaches, Draft, 2008 • ICH Q3A(R2):Impurities in New Drug Substances, 2006 • ICH Q3B(R2):Impurities in New Drug Products, 2006 • ICH M7(step4):Assessment and Control of DNA Reactive (Mutagenic) impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk,2014
控制杂质在可接受的限度(合适的 TTC)
控制杂质在可接受的限度(合适的 TTC)或进行细菌突变试验;如无致 突变性,归为5类;如有致突变性, 归为2类 作为无致突变的杂质
3类
4类
含警示结构的物质,但与无致突 变性的原料药结构相似(如中间 体) 无警示结构,或有重复的数据证 明其警示结构无致突变性
5类
高于1.5g的TTC
• 将其应用至遗传毒性杂质:致癌性与时间 和剂量均有关系;较短时间内可以承受高 于1.5 g/天的剂量,不影响致癌性。 • 含义:短时间+高浓度和长时间+低浓度得 到同样的效果 • Haber定律:浓度(C)时间(T)=常数(k)