七年级上第2章《整式的加减》水平测试题(F)
人教版数学七年级上册第二章整式的加减单元测试卷(含答案)

人教版数学七年级上学期第二章整式的加减测试一、选择题(共12小题,总分36分)1.代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是33.多项式6x2y-3x-1的次数和常数项分别是()A 3和-1 B. 2和-1 C. 3和1 D. 2和14.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确是( )A 有5个单项式,1个多项式 B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m n+5n2m=" 0" D.–x =7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-18.多项式23635x x-+与3231257x mx x+-+相加后,不含二次项,则常数的值是( )A. B. 3- C. 2- D. 8-9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣510.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式 ( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y211.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A. 3aB. 6a +bC. 6aD. 10a -b12.两个完全相同的大长方形,长为a ,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是( )(用含a 的代数式表示)A. 12aB. 32a C. a D. 54a 二、填空题(共6小题,总分18分) 13.请写出一个系数是-2,次数是3的单项式:________________.14.若5m x n 3与-6m 2n y 是同类项,则xy 的值等于_________.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________. 18.观察下面的一列单项式:2x,-4x 2,8x 3,-16x 4,…根据你发现的规律,第n 个单项式为__________.三、解答题(共8小题,总分66分)19.化简:(1)3x 2-3x 2-y 2+5y +x 2-5y +y 2; (2) a 2b -0.4ab 2-12a 2b +25ab 2. 20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a 2+4ab +4b 2)=a 2-4b 2(1)求所捂的多项式;(2)当a =-1,b =2时,求所捂的多项式的值.24.已知A =2a 2-a,B =-5a +1.(1)化简:3A -2B +2;(2)当a =-12时,求3A -2B +2的值. 25.先化简,再求值:已知a 2﹣1=0,求(5a 2+2a ﹣1)﹣2(a+a 2)的值.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).答案与解析一、选择题(共12小题,总分36分)1.在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式共有( )A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+21x+,x+xy,3x2+nx+4,﹣x,3,5xy,yx中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.2.下列关于单项式235xy-的说法中,正确的是()A. 系数是25-,次数是2 B. 系数是35,次数是2C. 系数是一3,次数是3D. 系数是35,次数是3【答案】D【解析】【分析】根据单项式系数和次数的定义判断即可.【详解】235xy-的系数是35,次数是3.故选D.【点睛】本题考查单项式系数与次数的定义,关键在于牢记定义即可判断.3.多项式6x2y-3x-1的次数和常数项分别是()A. 3和-1B. 2和-1C. 3和1D. 2和1 【答案】A【解析】【分析】运用多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数即可得出答案.【详解】∵多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数∴多项式6x2y-3x-1的次数和常数项分别是:3和-1.故选A.【点睛】考查了多项式相关概念,正确把握多项式次数和常数项的定义(多项式不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数)是解题关键.4.下列运算中,“去括号”正确的是( )A. a+(b-c)=a-b-cB. a-(b+c)=a-b-cC. m-2(p-q)=m-2p+qD. x²-(-x+y)=x²+x+y【答案】B【解析】【分析】对原式各项进行去括号变形得到结果,即可作出判断.【详解】解:A、a+(b-c)=a+b-c,错误;B、a-(b+c)=a-b-c,正确;C、m-2(p-q)=m-2p+2q,错误;D、x²-(-x+y)=x2+x-y,错误,故选B.【点睛】本题考查了去括号,熟练掌握去括号法则是解本题的关键.5.对于式子:22x y+,2ab,12,3x2+5x-2,abc,0,2x yx+,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:22x y+,2ab,12,3x2+5x﹣2,abc,0,2x yx+,m中:有4个单项式:12,abc,0,m;2个多项式为:22x y+,3x2+5x-2.故选C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6. 下列计算,正确的是( )A. 3+2ab="5ab"B. 5xy–y="5x"C. -52m=" 0" D.–x =m n+5n2【答案】C【解析】分析:根据同类项的概念及合并同类项的法则得出.详解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选C.点睛:本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.7.如果单项式x2y m+2与x n y的和仍然是一个单项式,则m、n的值是( ).A. m=2,n=2B. m=-1,n=2C. m=-2,n=2D. m=2,n=-1【答案】B【解析】试题分析:本题考查同类项的定义,单项式x2y m+2与x n y的和仍然是一个单项式,意思是x2y m+2与x n y是同类项,根据同类项中相同字母的指数相同得出.解:由同类项的定义,可知2=n,m+2=1,解得m=﹣1,n=2.故选B.考点:同类项.8.多项式2x mx x+-+相加后,不含二次项,则常数的值是( )312573635x x-+与32A. B. 3- C. 2- D. 8-【答案】B【解析】由题意可知36+12m=0,解得m=-3,故选B.9.若m﹣x=2,n+y=3,则(m﹣n)﹣(x+y)=( )A. ﹣1B. 1C. 5D. ﹣5【答案】A【解析】【分析】原式去括号整理后,将已知等式代入计算即可求出值.详解】∵m-x=2,n+y=3,∴原式=m-n-x-y=(m-x)-(n+y)=2-3=-1,故选A.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是( )A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【解析】【分析】根据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【点睛】本题主要考查整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.11.长方形一边长为2a+b,另一边为a-b,则长方形周长为()A. 3aB. 6a+bC. 6aD. 10a-b 【答案】C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.12.两个完全相同的大长方形,长为a,各放入四个完全一样的小长方形后,得到图(1)、图(2),那么图(1)阴影部分的周长与图(2)阴影部分的周长的差是()(用含a的代数式表示)A. 12a B.32a C. a D.54a【答案】C【解析】【分析】设小长方形的长为x,宽为y,大长方形宽为b,表示出x、y、a、b之间的关系,然后求出阴影部分周长之差即可.【详解】设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a-x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b-2y)=2a+2b-4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)-(2a+2b-4y)=4y=a,故选C.【点睛】考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,总分18分)13.请写出一个系数是-2,次数是3的单项式:________________.【答案】-2a3(答案不唯一)【解析】分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】解:系数是-2,次数是3单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.14.若5m x n3与-6m2n y是同类项,则xy的值等于_________.【答案】6【解析】【分析】根据同类项定义即可求x 、y 的值出答案.【详解】∵5m x n 3与-6m 2n y 是同类项,∴x=2,y=3∴xy=6.故答案是:6.【点睛】考查同类项的概念,解题的关键是熟练运用同类项的概念(含相同字母,且相同字母的指数也相同)求出x 、y 的值.15.若整式(8x 2-6ax +14)-(8x 2-6x +6)的值与x 的取值无关,则a 的值是________.【答案】1【解析】【分析】把多项式(8x 2-6ax+14)-(8x 2-6x+6)化简整理成(6-6a)x+8的形式,再根据其值与x 无关,可得关于a 的方程,解方程即可.【详解】原式=8x 2-6ax+14-8x 2+6x-6=(6-6a)x+8,∵整式(8x 2-6ax+14)-(8x 2-6x+6)的值与x 无关,∴6-6a=0,解得:a=1,故答案是:1.【点睛】考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.16.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.【答案】2【解析】试题分析:由题意可得:2x 2+3x+7=10,所以移项得:2x 2+3x=10-7=3,所求多项式转化为:6x 2+9x ﹣7=3(6x 2+9x)-7=3×3-7=9-7=2,故答案为2.考点:求多项式的值.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母,则的值为__________.【答案】1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为118.观察下面的一列单项式:2x,-4x2,8x3,-16x4,…根据你发现的规律,第n个单项式为__________.【答案】(-1)n+1·2n·x n【解析】分析】通过观察题意可得:n为奇数时,单项式为正数;n为偶数时,单项式为负数.x的指数为n的值,2的指数为(n-1).由此可解出本题.【详解】解:∵2x=(-1)1+1•21•x1;-4x2=(-1)2+1•22•x2;8x3=(-1)3+1•23•x3;-16x4=(-1)4+1•24•x4;第n个单项式为(-1)n+1•2n•x n,故答案为:(-1)n+1•2n•x n.三、解答题(共8小题,总分66分)19.化简:(1)3x2-3x2-y2+5y+x2-5y+y2; (2) a2b-0.4ab2-12a2b+25ab2.【答案】(1) x2;(2)12a2b.【解析】【分析】直接合并同类项即可.【详解】(1)原式=(3x2-3x2+x2)+(y2-y2)+(5y-5y)=x2.(2)原式=(a2b-12a2b)+(-0.4a b2+25ab2)=12a2b.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.先化简,再求值:(1)2xy -12 (4xy -8x 2y 2)+2(3xy -5x 2y 2),其中x =13,y =-3. (2)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =1,b =-2.【答案】(1)-12;(2)-4.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值;【详解】(1)2xy -12(4xy -8x 2y 2)+2(3xy -5x 2y 2) =2xy -2xy +4x 2y 2+6xy -10x 2y 2=6xy -6x 2y 2,当x =13,y =-3时,原式=6×13×(-3)-6×21()3×(-3)2=-6-6=-12. (2)原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=(-1-1+2)a 2b +(3-4)ab 2=-ab 2,当a =1,b =-2时,原式=-1×(-2)2=-4. 【点睛】考查了整式的加减-化简求值,熟练掌握整式的运算法则是解本题的关键.21.如果x 2-x+1的2倍减去一个多项式得到3x 2+4x-1,求这个多项式.【答案】263x x --+【解析】试题分析:==这个多项式为考点: 整式的加减22.若3x m y n 是含有字母x 和y 的五次单项式,求m n 的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:-(a2+4ab+4b2)=a2-4b2(1)求所捂的多项式;(2)当a=-1,b=2时,求所捂的多项式的值.【答案】(1) 2a2+4ab;(2)-6.【解析】【分析】(1)根据题意列出整式相加减的式子,再去括号,合并同类项即可;(2)把3(1)中的式子即可.【详解】(1)所捂的多项式为:(a2-4b2)+(a2+4ab+4b2)=a2-4b2+a2+4ab+4b2=2a2+4ab.(2)当a=-1,b=2时,2a2+4ab=2×(-1)2+4×(-1)×2=2-8=-6.【点睛】考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-12时,求3A-2B+2的值.【答案】(1)6a2+7a(2)-2 【解析】试题分析:(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把a=-12代入上式计算.试题解析:解:(1)3A﹣2B+2, =3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当a=-12时,3A﹣2B+2=6×(-12)2+7×(-12)=-2.考点:整式的加减—化简求值;整式的加减25.先化简,再求值:已知a2﹣1=0,求(5a2+2a﹣1)﹣2(a+a2)的值.【答案】2.【解析】【分析】原式去括号整理后,将已知等式变形后代入计算即可求出值.【详解】解:(5a2+2a-1)-2(a+a2)=5a2+2a-1-2a-2a2=3a2-1,因为a2-1=0,所以a2=1,所以原式=3×1-1=2.【点睛】考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.。
新人教版七年级数学上册第2章:整式的加减测试题

七年级数学第2章:整式的加减测试题姓名_________ 评价___________一、填空题:1、单项式256x y-的系数是 ,次数是 ;2、多项式2324xy x y --的各项为 ,次数为 ;3、化简32()x x y --的结果是 ;4、已知单项式23m a b 与4112n a b --的和是单项式,那么= ,= ; 5、三个连续的偶数中,n 是最小的一个,这三个数的和为 ; 6、写出325x y -的一个同类项 ; 7、当a=-2时,-a 2-2a+1=______;8、已知轮船在静水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的速度是 千米/时;二、选择题:1、下列说法正确的是( )A :23xyz 与23xy 是同类项 B :1x和2x 是同类项 C :320.5x y -和232x y 是同类项 D :25m n 和22nm -是同类项 2、下面计算正确的是( )A :2233x x -=B :235325a a a +=C :33x x +=D :10.2504ab ab -+= 3、下列各题去括号错误的是( )A :11(3)322x y x y --=-+ B :()m n a b m n a b +-+-=-+- C :1(463)2332x y x y --+=-++ D :112112()()237237a b c a b c +--+=++-4、已知622x y 和-313m n x y 是同类项,则29517m mn --的值是 ( )A :-1B :-2C :-3D :-45、甲乙两车同时同地同向出发,速度分别是x 千米/时,y 千米/时,3小时后两车相距( )千米。
A :3(x +y )B :3(x -y )C :3(y -x )D :以上答案都不对6、已知,2,3=+=-d c b a 则)()(d a c b --+的值是( )A :1-B :1C :5-D :15 7、-(m - n )去括号得 ( )A :n m -B :n m --C :n m +-D :n m +三、解答题: 1、化简:①3(2)(3)3ab a a b ab -+--+ ②22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦2、化简再求值:()22463421x y xy xy x y ⎡⎤----+⎣⎦,其中12,2x y ==-。
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)

人教版七年级数学上册第二章《整式的加减》考试卷(含答案)一、单选题1.下列代数式中,为单项式的是( ) A .5xB .aC .3a ba+ D .22x y +2.代数式1x, 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个3.单项式322π3a b c -的系数和次数分别是( ) A .2π3-,6B .23-,6C .2π3-,5D .2π3,64.某品牌冰箱进价为每台m 元,提高20%作为标价.元旦期间按标价的9折出售,则出售一台这种冰箱可获得利润( ) A .0.1m 元B .0.2m 元C .0.8m 元D .0.08m 元5.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( ) A .七次多项式B .七次整式C .四次多项式D .四次整式6.多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( ) A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关7.如图,两个大小正方形的边长分别是4cm 和x cm (0<x <4).用含x 的式子表示图中阴影部分的面积为( )cm 2.A .214xB .212xC .()2144x + D .()2142x + 8.若当x =2时,335ax bx ++=,则当x =-2时,求多项式2132ax bx --的值为( ) A .-5 B .-2 C .2 D .59.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a ,宽为b )的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示.则图①中两块阴影部分周长和是( )A .4aB .4bC .()2a b +D .()4a b -10.按框图的程序计算,若开始输入的n 值为3,则最后输出的结果是( ).A .2B .151C .153D .168二、填空题11.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.12.甲、乙两地相距400千米,某车以80千米/小时的速度从甲地开往乙地,行驶了t (t ≤5)小时,此时该车距乙地的路程为____________千米. 13.多项式2342x y xy x -++-的次数与项数之比为______.14.已知多项式4916252581114357911a a a a a b b b b b-+-+……,(0)ab ≠,该多项式的第7项为_______,用字母a 、b 和n 表示多项式第n 项____________.(n 为正整数) 15.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:_______________________. 三、解答题的指出项和次数:4232223431,,1,,331,32,227m n a b x y x x y xy x t x y -+--++--.17.列式表示(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付100元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第二次降价每件又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m ,小李跑了()m 45000a a >,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?18.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.19.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.20.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.21.如图是某居民小区的一块长为2a 米,宽为 b 米的长方形空地,为了美化环境,b 米的扇形花台,然后在花台内种花,准备在这个长方形的四个顶点处修建一个半径为12其余种草.如果建造花台及种花费用每平方米需要资金100 元,种草每平方米需要资金50 元,那么美化这块空地共需资金多少元?参考答案1.B 2.B 3.A 4.D 5.D 6.C 7.B 8.B 9.B 10.D 11.312.(400﹣80t )13.3414.492015ab ()()23121nn n a b -+-15.22(1)(1)21n n n n n --=+-=- 16.17.(1)(15)t +℃;(2)nc 元,(100)nc -元;(3)0.8b 元,(0.810)b -元;(4)m,1500m,1500.3030a a m ⎛⎫- ⎪⎝⎭18.解:(1)①2A +B =4a 2b ﹣3ab 2+4abc ,①B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc) =4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc =-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc =8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0.19.添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号. ①a 2+b 2=5,1-b =-2,①-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7. 20.由题意可知0a c -<,0b >,0b a ->,0b a +<, ||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+. 21.解:100×14πb 2+50(2ab ﹣14πb 2)=252πb 2+100ab (元).。
人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)

人教版数学七年级上册第二章《整式的加减》综合测试卷(含答案)一、单选题1.代数式22a b +的意义是( ).A .a 的平方与b 的和B .a 与b 的平方的和C .a 与b 两数的平方和D .a 与b 的和的平方 2.用a 表示的数一定是( )A .正数B .正数或负数C .正整数D .以上全不对 3.若2x y +=,3z y -=-,则x z +的值等于( )A .5B .1C .-1D .-54.已知3,2a b c d +=-=,则()()a c b d +--+的值是( )A .5B .-5C .1D .-15.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( )A .8-B .5-C .1-D .166.不改变代数式22a a b c +-+的值,下列添括号错误的是( )A .2(2)a a b c +-+B .2(2)a a b c --+-C .2(2)a a b c --+D .22()a a b c ++-+ 7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第①个图案中有9个正方形,第①个图案中有13个正方形,第①个图案中有17个正方形,此规律排列下去,则第①个图案中正方形的个数为( )A .32B .34C .37D .418.化简(2a ﹣b )﹣(2a +b )的结果为( )A .2bB .﹣2bC .4aD .4a9.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==10.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元 B .()2024a +元 C .()17 3.6a +元 D .()20 3.6a +元 11.如图,将图1中的长方形纸片前成①号、①号、①号、①号正方形和①号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是( )A .只需知道图1中大长方形的周长即可B .只需知道图2中大长方形的周长即可C .只需知道①号正方形的周长即可D .只需知道①号长方形的周长即可12.将全体正偶数排成一个三角形数阵:按照以上排列的规律,第10行第5个数是( )A .98B .100C .102D .10413.化简1(93)2(1)3x x --+的结果是( ) A .21x - B .1x + C .53x + D .3x -14.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm15.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%16.多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-17.代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值A .与x ,y 有关B .与x 有关C .与y 有关D .与x ,y 无关18.有n 个依次排列的整式:第一项是a 2,第二项是a 2+2a +1,用第二项减去第一项,所得之差记为b 1,将b 1加2记为b 2,将第二项与b 2相加作为第三项,将b 2加2记为b 3,将第三项与b 3相加作为第四项,以此类推;某数学兴趣小组对此展开研究,得到4个结论: ①b 3=2a +5;①当a =2时,第3项为16;①若第4项与第5项之和为25,则a =7;①第2022项为(a +2022)2;①当n =k 时,b 1+b 2+…+bk =2ak +k 2;以上结论正确的是( )A .①①①B .①①①C .①①①D .①①①19.将正整数按如图所示的规律排列下去,若有序数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示8,已知1+2+3+…+n=()12n n +,则表示2020的有序数对是( ).A .(64,4)B .(65,4)C .(64,61)D .(65,61) 20.当1x =-时,3238ax bx -+的值为18,则1282b a -+的值为( )A .40B .42C .46D .56二、填空题21.化简()x y x y +--=___________.22.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.23.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.24.22213x x ⎛⎫-+ ⎪⎝⎭-_________________=2325x x -+. 25.a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知112a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a =________.三、解答题26.有这样一道题:“求(2x 3﹣3x 2y ﹣2xy 2)﹣(x 3﹣2xy 2+y 3)+(﹣x 3+3x 2y ﹣y 3)的值,其中x =2020,y =﹣1”.小明同学把“x =2a ab --”错抄成了“x =﹣3m n -”,但他的计算结果竟然正确,请你说明原因,并计算出正确结果.27.如图,用字母表示图中阴影部分的面积.28.小刘、小张两位同学玩数学游戏,小刘说“任意选定一个数,然后按下列步骤进行计算:加上20,乘2,减去4,除以2,再减去你所选定的数”,小张说“不用算了,无论我选什么数,结果总是18”,小张说得对吗?说明理由.29.(1)若(a﹣2)2+|b+3|=0,则(a+b)2019=.(2)已知多项式(6x2+2ax﹣y+6)﹣(3bx2+2x+5y﹣1),若它的值与字母x的取值无关,求a、b的值;(3)已知(a+b)2+|b﹣1|=b﹣1,且|a+3b﹣3|=5,求a﹣b的值.30.已知:a是单项式-xy2的系数,b是最小的正整数,c是多项式2m2n-m3n2-m-2的次数.请回答下列问题:(1)请直接写出a、b、c的值.a=,b=,c=.(2)数轴上,a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用含t的关系式表示);①请问:BC-AB的值是否会随着时间t的变化而改变?若变化,请说明理由;若不变,请求出其值.参考答案1--10CDCAC CCBCD 11--20BBDDB BDACB21.2y22.323.1324.2443x x -+- 25.12- 26.解:原式=2x 3﹣3x 2y ﹣2xy 2﹣x 3+2xy 2﹣y 3﹣x 3+3x 2y ﹣y 3=﹣2y 3,①此题的结果与x 的取值无关,y =﹣1时,原式=﹣2×(﹣1)3=2.27.解:由题意得:==S S S mn pq --阴影大长方形空白长方形,①阴影部分的面积为mn pq -.28.正确,理由如下:设此整数是a ,由题意得()a 20242+⨯--a =a+20-2=18,所以说小张说的对.29.解:(1)①(a ﹣2)2+|b +3|=0,且(a ﹣2)2≥0,|b +3|≥0,①a ﹣2=0,b +3=0,解得a =2,b =﹣3,①(a +b )2019=(2﹣3)2019=﹣1.故答案为:﹣1;(2)原式=6x 2+2ax ﹣y +6﹣3bx 2﹣2x ﹣5y +1,=(6﹣3b )x 2+(2a ﹣2)x ﹣6y +7,由结果与x 取值无关,得到6﹣3b =0,2a ﹣2=0,解得:a =1,b =2;(3)①(a +b )2+|b ﹣1|=b ﹣1,①(a +b )2+|b ﹣1|-(b ﹣1)=0,①|b ﹣1|≥(b ﹣1),①|b ﹣1|-(b ﹣1)≥0,(a +b )2≥0,①a +b =0且|b ﹣1|=b ﹣1,①010a b b +=⎧⎨-≥⎩, 解得,1a b b =-⎧⎨≥⎩, ①|a +3b ﹣3|=5,①a +3b ﹣3=5或a +3b ﹣3=-5,①a +3b =8或a +3b =﹣2,把a =﹣b 代入上式得:b =4或﹣1(舍去),①a ﹣b =﹣4﹣4=﹣8.30.(1)解:由题意得,单项式-xy 2的系数a =-1,最小的正整数b =1,多项式2m 2n -m 3n 2-m -2的次数c =5; 故答案为:-1,1,5(2)①t 秒后点A 对应的数为a -t ,点B 对应的数为b +t ,点C 对应的数为c +3t ,故AC =|c +3t -a +t |=|5+4t +1|=6+4t ; 故答案为:6+4t ①①BC =5+3t -(1+t )=4+2t ,AB =1+t -(-1-t )=2+2t ;①BC -AB =4+2t -2-2t =2, 故BC -AB 的值不会随时间t 的变化而改变.其值为2.。
人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)

人教版七年级数学上册《第二章整式的加减》单元测试卷(附答案)一、单选题(每题3分,共24分) 1.下列代数式书写规范的是( )A .22x yB .2m n ÷C . 5a ⨯D .213a 2.多项式22325xy xy -+的次数及最高次项的系数分别是( )A .3,-3B .2,-3C .5,-3D .3,33.若单项式242ab c -3的系数、次数分别是m 、n ,则( ) A .m=23,n=6 B .-m=23,n=6 C .m=23,n=7 D .-m=23,n=7 4.下列说法中,不正确...的是( ) A .13xy - 是整式 B .22+R R ππ是二次二项式C .多项式233a b ab --的三次项的系数为3- D .263+1x x -的项有 26 3 1x x -,, 5.若2110x +=,则42x +=( )A .19B .20C .21D .226.已知25x y -+=,则23(2)6125x y x y --+-的值是( )A .40B .100C .20-D .57.若12m x y -与2n x y 的和仍是单项式,则m n 的值( )A .3B .6C .8D .98.当1x =时,代数式334ax bx -+的值为7,则当=1x -时,这个式子的值为( )A .7B .6C .2D .1二、填空题(每题3分,共24分) 9.单项式235x yz π-的系数是 10.已知320a b -++=,则2+a b = .11.一个两位数的个位数字为m ,十位数字为n ,则这两位数表示为 .12.多项式25323ab a π+-的次数是 .三、解答题(共72分)17.化简:(1)3245a a +--;(2)()()22235x x +--;(3)()()22643241m m m m --+-+.18.先化简,再求值:()()22222825a b ab a b ab a b -+----,其中1a =-和13b =.19.有理数a ,b ,c 在数轴上的位置如图,化简a c a b c b -++--.20.若关于,x y 的多项式:2223332m m m m x y mx y nx y x y m n ----++-++,化简后是四次三项式,求m n +的值.21.如果关于x ,y 的单项式2m ax y 与235m bx y -的次数相同.(1)求m 的值.(2)若23250m m ax y bx y +=﹣且0xy ≠,求20132(25)m a b ++的值.22.已知22321A a ab a =+--和21B a ab =-+-.(1)若1a =-,15b =求()432A A B --的值. (2)若2A B +的值与a 的取值无关,求b 的值.23.如图,某公园有一块长为()21a -米,宽为a 米的长方形土地(一边靠着墙),现将三面留出宽都是x 米的小路,余下部分设计成花圃进行美化,并用篱笆把不靠墙的三边围起来.(1)用代数式表示所用篱笆的总长度;(2)6,3a x ==米,若篱笆的造价为60元/米,请计算全部篱笆的造价.24.如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.x 时,试计算该住宅的面积.(2)当6参考答案: 1.A2.A3.D4.C5.B6.B7.C8.D9.35π-10.1-11.10n m +/10m n + 12.3/三13.23x - -114.202315.()21826m y x ++ 16.1017.(1)3a --(2)231x +(3)2882m m --18.218ab -,2 19.2a -20.421.(1)3m =(2)022.(1)2-(2)25b =23.(1)()662a x --米;(2)篱全部篱笆的造价是960元24.(1)()22218m x x ++(2)266m。
上海市七年级数学上册第二章《整式的加减》经典测试(含答案解析)

1.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.2.下面用数学语言叙述代数式1a﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.5.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.6.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.7.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 8.化简2a-[3b-5a-(2a-7b)]的值为()A.9a-10b B.5a+4bC.-a-4b D.-7a+10b A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.9.下列去括号正确的是()A.112222x y x y⎛⎫=⎭-⎪⎝---B.()12122x y x y++=+-C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D【分析】 根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 10.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】 22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A 解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.13.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 14.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D 解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.15.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4A 解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.1.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.2.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.3.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.4.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.5.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.6.一列数a1,a2,a3…满足条件a1=12,a n=111na--(n≥2,且n为整数),则a2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.7.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.8.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
七年级数学(上)第二单元《整式的加减》测试卷 含答案

七年级数学(上)第二单元《整式的加减》测试卷一、填空题(每题2分,共32分)1.“x 的平方与2的差”用代数式表示为_____ ___.2.单项式853ab -的系数是 ,次数是 ;当5,2a b ==-时,这个代数式的值是________.3.多项式34232-+x x 是________次________项式,常数项是________.4.单项式25x y 、223x y 、24xy -的和为 .5.若32115k x y +与3873x y -是同类项,则k = . 6.计算:22224(2)(2)a b ab a b ab --+= ;7.已知单项式32b a m 与-3214-n b a 的和是单项式,那么m = ,n = . 8.已知轮船在逆水中前进的速度是m 千米/时,水流的速度是2千米/时,则这轮船在静水中航行的速度是 千米/时.9.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.10.若53<<a ,则_________35=-+-a a .11.一个多项式加上22x x -+-得到12-x ,则这个多项式是 .12.若22210,24x x x x -+=-=则 .13.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费 元.14.观察下列单项式:x ,-3x 2,5x 3,-7x 4,9x 5,……按此规律,可以得到第2008个单项式是______.第n 个单项式怎样表示________.15.规定一种新的运算:1a b a b a b ∆=⋅--+,比如3434341∆=⨯--+,请比较大小:()()3 4 43-∆∆- (填“>”、“=”或“>”).16.下面是一组数值转换机,写出(1)的输出结果(写在横线上),找出(2)的转换步骤(填写在框内).二、解答题(共68分)17.(3分)阅读下面一段材料,回答问题.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出右下表,此表揭示了n b a )(+(n 为非负整数)展开式的各项系数的规律,例如: 1)(0=+b a ,它只有一项,系数为1;b a b a +=+1)(,它有两项,系数分别为1,1;2222)(b ab a b a ++=+,它有三项,系数分别为1,2,1;3223333)(b ab b a a b a +++=+,它有四项,系数分别为1,3,3,1;……根据以上规律,4)(b a +展开式共有五项,系数分别为 .18.合并同类项: (6分)(1)a a a a 742322-+-;2⨯-3 输入x 输出 输入x 输出 23+x(2)[])3(43b a b a --+- .19.计算:(6分)(1)3(-2ab +3a )-(2a -b )+6ab ;(2)212a -[21(ab -2a )+4ab ]-21ab .20.求值:(8分)(1)4y x 2-[6xy -2(4xy -2)-y x 2]+1,其中x =-21,4y =.(2)22(2)x y --4(2)y x -+2(2)x y --3(2)x y -,其中x =-1,y =12.21.(6分)已知22222,3A a ab b B a ab b =-+=---,求:(1)A B +;(2)23A B -.22.(5分)已知210x x --=,求9442++-x x 的值.23.(5分)如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4=x 时,阴影部分的面积.(π取3.14)24.(5分)有这样一道题,“当2,2a b ==-时,求多项式3323322113424a b a b b a b a b b ⎛⎫-+--- ⎪⎝⎭223b -+ 33214a b a b ⎛⎫++ ⎪⎝⎭的值”,马小虎做题时把2a =错抄成2a =-,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.25.(6分)已知多项式32x +m y -8与多项式-n 2x +2y +7的差中,不含有x 、y ,求m n +m n 的值.26.(6分)请按照下列步骤进行:①任意写一个三位数,百位数字比个位数字大2;②交换百位数字与个位数字,得到另一个三位数;③用上述中的一个较大的三位数减去较小的一个三位数,所得差为三位数;④交换差的百位数字与个位数字之后又得到一个三位数;⑤把这两个三位数相加;结果是多少?用不同的三位数再做几次,结果都是一样吗?你能解释其中的原因吗?27.(6分)王明在计算一个多项式减去522-+b b 的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是132-+b b .据此你能求出这个多项式吗?并算出正确的结果吗?28.(6分)某厂家生产的产品按订货商的要求需要按图三种打包方式中的一种打包,若厂家为节省绳子须选用哪种方式打包?(其中b >a >c ).七年级数学(上)整式的加减测试一、填空题1.22x - 2.5,4,258- 3.3,3,3- 4.2222534x y x y xy +- 5.726.22310a b ab - 7.4,3 8.(2)m + 9.1120a + 10.2 11.221x x -+ 12.2- 13.1.224x - 14.20084015x -,当n 为奇数时:(21)n n x -,当n 为偶数时:(12)nn x - 15.= 16.23x -,3,2+÷二、解答题 17.432234464a a b a b ab b ++++ 18.(1)279a a -;(2)47a b -+ 19.(1)7a b +;(2)25a ab - 20.(1)2;(2)10 21.(1)5ab -;(2)22555a ab b ++ 22.5 23.224x x π-,3.44 24.略25.3 26.27.2324b b ++,29b b ++ 28.第(2)种。
人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上第2章《整式的加减》水平测试题(F )
一、填空题(每题2分,共24分)
1,把多项式2x 3y 2-3x 2y 3-5x 4y +6xy 4-5按x 的降幂排列是 .
2,a -b -c -d = ( a -b )- .
3,多项式2a 3b -3ab 3-2
1a 2b +5ab 是 次 项式. 4, 化简-3a -a +b +2b 2+a +b -2b 2= .
5,有四个连续偶数,其中最小的一个是2n ,其余三个是 ,这四个连续偶数的和是_.
6,若3<a <5,则a -5+a -3= + = .
7,一个多项式加上-2+x -x 2得到x 2-1,则这个多项式是 .
8,写出一个含有两个字母的四次四项式,使三次项的系数和常数项都是-1,这个多项式为 .
9,(-a -b +c )(a -b +c )=-[a +( )][a -( )].
10,观察下列各式:12+1=1×2,22+2=2×3,32+3=3×4,…,请你将猜想到的规律用自然数n (n ≥0)表示出来___.
11,多项式3a n +3-9a n +2+5a n +1-2a n 与-a n +10a n +3-5a n +1-7a n +2的差是 . 12,若a +b =0,则多项式a 3+a 2b -ab 2-b 3的值是 .
二、选择题(每题2分,共24分)
13,下面的正确结论是 ( )
A ,0不是单项式
B ,52abc 是五次单项式
C ,-4和4是同类项
D ,3m 2n 3-3m 3n 2=0
14,下面的错误结论是 ( )
A ,(m -n )-3(n -p )=m -4n +3p
B ,-3x 2y 3z 与
31z x 2y 3是同类项 C ,1-a -ab 是二次三项式 D ,a +a
1-b -2ab 是多项式 15,x 表示一个两位数,把3写到x 的右边组成一个三位数,则表示这个三位数的代数式是( )
A ,3x
B ,10x +3
C ,100x +3
D ,3×100+x
16,a =3,b =2且b<0,则a -b 的值是 ( )
A ,5或-1
B ,-5或1
C ,-1或-5
D ,5或-5
17,a -b =5,那么3a +7+5b -6(a +3
1b )等于( ) A ,-7 B ,-8 C ,-9 D ,10
18,下列各组代数式中互为相反数的有( )
(1)a -b 与-a -b ;(2)a +b 与-a -b ;(3)a +1与1-a ;(4)-a +b 与a -b .
A ,(1)(2)(4)
B ,(2)与(4)
C ,(1)(3)(4)
D ,(3)与(4) 19,一个多项式A 与多项式B =2x 2-3xy -y 2的差是多项式C =x 2+xy +y 2,则A 等于( )
A ,x 2-4xy -2y 2
B ,-x 2+4xy +2y 2
C ,3x 2-2xy -2y 2
D ,3x 2-2xy
20,若A 是一个三次多项式,B 是一个四次多项式,则A +B 一定是 ( )
A ,三次多项式
B ,四次多项式
C ,七次多项式
D ,四次七项式
21,把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果应是( )
A ,-4(x -3)2-(x -3)
B ,4(x -3)2-x (x -3)
C ,4(x -3)2-(x -3)
D ,-4(x -3)2+(x -3)
22,当x 分别取2和-2时,多项式x 5+2x 3-5的值( )
A ,互为相反数
B ,互为倒数
C ,相等
D ,异号不等
23,已知2001x n +7y 与-2002x 2m +3y 是同类项,则(2m -n )2的值是( )
A ,16
B ,4×2001
C ,-4×2002
D ,5
24,已知x
1-y 1=10,则x xy y x xy y -+--2363的值是 ( ) A ,-2 B ,2 C ,-2 D ,2
三、解答题(第25题9分,第26-30题,每题5分,第31-33题,每题6分,共52分) 25,化简:(1)(2x 2-3x 3-4x 4-1)+(1+5x 3-3x 2+4x 4);
(2)3[
34a -(32a -31)]-23a ; (3)(7m 2n -5mn )-(4m 2n -5mn ).
26,化简求值:3xy 2-[xy -2(xy -
23x 2y )+3 xy 2]+3x 2y ,其中x =3,y =-31.
27,已知A =2x 3-xyz ,B =y 3-z 2+xyz ,C =-x 2+2y 2-xyz ,且(x +1)2+1-y +z =0.求:A -(2B -3C )的值.
28,已知x +4y =-1,xy =5,求(6xy +7y )+[8x -(5xy -y +6x )]的值.
29,已知a 、b 、c 在数轴上的对应点如图所示,化简a -b a ++c
30,若a 3+b 3=35,a 2b -ab 2=-6,则(a 3-b 3)+(3ab 2-a 2b )-2(ab 2-b 3)的值是多少?
a
b c 0
31,若2x +5y +4z =6,3x +y -7z =-4,那么x +y -z 的值是多少?
32,先阅读下面文字,然后按要求解题.
例 1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.
因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.
解 1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×_=_.
(1)补全例题解题过程;
(2)计算a +(a +b )+(a +2b )+(a +3b )+…+(a +99b ).
33,如果
“三角” 表示3(2x +5y +4z ),
表示-4[(3a+b )-(c -d )]. 的值.
z x y - -1 x 2
2x
参考答案
一、1,-5x 4y +2x 3y 2-3x 2y 3+6xy 4-5;2,(c +d );3,四次三项式;4,-3a +2b ;5,2n +2、2n +4、2n +6、8n +12;6,(5-a )、(a -3)、2;7,2x 2-x +1;8,略;9,(b -c )、(b -c );10,n 2+n =n (n +1);11,-7a n +3-2a n +2+10a n +1-a n ;12,0.
二、13,C ;14,D ;15,B ;16,A ;17,B ;18,B ;19,D ;20,B ;21,A ;22,D ;23,A ;24,B .
三、25,(1)2x 3-x 2 、(2)21a +1、(3)3m 2n ;26,-3
2;27,-1;28,3;29,3a -2c ;30,41;31,因为4(2x +5y +4z )+6(3x +y -7z )=26(x +y -z )=0,所以x +y -z =0;32,(1)50、5050,(2)(100a +4950b );33,因为有题意可知3(2x +5y +4z )=3(2x 2+10x -4)=6x 2+30 x -12,-4[(3a+b )-(c -d )]=-4(3-3x 2+x +1-2x 2+x +3)=20x 2-8x -28,所以可求 得
- -1 x 2 2x =14x 2-38x -16.。