2019年中考数学真题知识分类练习试卷:因式分解、分式(含答案)
中考试题 因式分解(解析版)2019数学全国中考真题

2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。
1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。
2019届中考数学专项检测:《因式分解》基础测试(含答案)

2019年全国各地中考数学试题分类汇编(第二期) 专题3 整式与因式分解(含解析)

整式与因式分解一.选择题1.(2019•贵阳•3分)32可表示为()A.3×2 B.2×2×2 C.3×3 D.3+3【分析】直接利用有理数乘方的意义分析得出答案.【解答】解:32可表示为:3×3.故选:C.【点评】此题主要考查了有理数的乘方,正确把握有理数的乘方定义是解题关键.2. .(2019•贵阳•3分)选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【分析】直接利用平方差公式计算得出答案.【解答】解:选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.故选:B.【点评】此题主要考查了多项式乘法,正确应用公式是解题关键.3. (2019•海南•3分)当m=﹣1时,代数式2m+3的值是()A.﹣1 B.0 C.1 D.2【分析】将m=﹣1代入代数式即可求值;【解答】解:将m=﹣1代入2m+3=2×(﹣1)+3=1;故选:C.【点评】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.4. (2019•海南•3分)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【点评】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.5.(2019•河南•3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.6. 小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7. (2019•江苏无锡•3分)分解因式4x2﹣y2的结果是()A.(4x+y)(4x﹣y)B.4(x+y)(x﹣y)C .(2x +y )(2x ﹣y )D .2(x +y )(x ﹣y )【分析】直接利用平方差公式分解因式得出答案. 【解答】解:4x 2﹣y 2=(2x +y )(2x ﹣y ). 故选:C .【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.8. (2019•江苏宿迁•3分)下列运算正确的是( ) A .a 2+a 3=a 5B .(a 2)3=a 5C .a 6÷a 3=a 2D .(ab 2)3=a 3b 6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别分析得出答案.【解答】解:A 、a 2+a 3,无法计算,故此选项错误; B 、(a 2)3=a 6,故此选项错误; C 、a 6÷a 3=a 3,故此选项错误; D 、(ab 2)3=a 3b 6,正确; 故选:D .【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.9. (2 019·江苏盐城·3分)下列运算正确的是( )【答案】B【解析】725a a a =⋅,故A 错;a a a 32=+,故C 错;632)(a a =,故D 错。
2019年全国中考数学真题分类 分式(印刷版)

2. 分 式一、 选择题1. (2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( ) A. x =-1B. x =3C. x ≠-1D. x ≠32. (2019·扬州)分式13-x可变形为( )A. 13+xB. -13+xC. 1x -3D. -1x -33. (2019·江西)计算1a ÷⎝ ⎛⎭⎪⎫-1a 2的结果为( ) A. a B. -a C. -1a 3D. 1a 34. (2019·湖州)计算a -1a +1a 的结果是( )A. 1B. 12 C. aD. 1a5. (2019·天津)计算2a a +1+2a +1的结果是( )A. 2B. 2a +2C. 1D.4a a +16. (2019·陇南)下面的计算过程中,开始出现错误的是( )第6题A. ①B. ②C. ③D. ④7. (2019·临沂)计算a 2a -1-a -1的结果是( )A. -1a -1B.1a -1C. -2a -1a -1D.2a -1a -18. (2019· 河北)如图,若x 为正整数,则表示(x +2)2x 2+4x +4-1x +1的值的点落在( )第8题A. 段①B. 段②C. 段③D. 段④9. (2019·北京)如果m +n =1,那么代数式(2m +n m 2-mn +1m)(m 2-n 2)的值为( )A. -3B. -1C. 1D. 3二、 填空题10. (2019·泰州)若分式12x -1有意义,则x 的取值范围是________. 11. (2019·北京)若分式x -1x 的值为0,则x 的值是________.12. (2019· 贵阳)若分式x 2-2xx 的值为0,则x 的值是________.13. (2019·新疆)计算:a 2a -b -b 2a -b =________.14. (2019·山西)化简2x x -1-x1-x 的结果是________.15. (2019·吉林)计算:y 2x 2·xy =________. 16. (2019·武汉)计算2a a 2-16-1a -4的结果是________.17. (2019·绥化)当a =2 018时,代数式(a a +1-1a +1)÷a -1(a +1)2的值是________.三、 解答题18. (2019·徐州)计算:x 2-16x +4÷2x -84x .19.(2019·大连)计算:2a -1÷2a -4a 2-1+12-a. 20.(2019·陕西)化简:⎝ ⎛⎭⎪⎫a -2a +2+8a a 2-4÷a +2a 2-2a . 21.(2019·青岛)化简:m -n m ÷⎝ ⎛⎭⎪⎫m 2+n 2m -2n . 22.(2019·宜昌)已知x ≠y ,y =-x +8,求代数式x 2x -y +y 2y -x的值.23.(2019·杭州)化简:4x x 2-4-2x -2-1.圆圆的解答过程如下:4x x 2-4-2x -2-1=4x -2(x +2)-(x 2-4)=-x 2+2x.圆圆的解答正确吗?如果不正确,写出正确的答案.24.(2019·广州)已知P =2a a 2-b 2-1a +b(a ≠±b).(1) 化简P ;(2) 若点(a ,b)在一次函数y =x -2的图象上,求P 的值. 25.(2019·宿迁)先化简,再求值:⎝ ⎛⎭⎪⎫1+1a -1÷2a a 2-1,其中a =-2.26.(2019·福建)先化简,再求值:(x -1)÷⎝ ⎛⎭⎪⎫x -2x -1x ,其中x =2+1. 27.(2019·深圳)先化简⎝ ⎛⎭⎪⎫1-3x +2÷x -1x 2+4x +4,再将x =-1代入求值. 28.(2019·广东)先化简,再求值:⎝ ⎛⎭⎪⎫xx -2-1x -2÷x 2-x x 2-4,其中x = 2.29. (2019·河南)先化简,再求值:⎝ ⎛⎭⎪⎫x +1x -2-1÷x 2-2xx 2-4x +4,其中x = 3. 30.(2019·南通)先化简,再求值:⎝ ⎛⎭⎪⎫m +4m +4m ÷m +2m 2,其中m =2-2. 31.(2019·苏州)先化简,再求值:x -3x 2+6x +9÷⎝ ⎛⎭⎪⎫1-6x +3,其中x =2-3. 32.(2019·泰安)先化简,再求值:⎝ ⎛⎭⎪⎫a -9+25a +1÷⎝ ⎛⎭⎪⎫a -1-4a -1a +1,其中a = 2. 33. (2019·长沙)先化简,再求值:⎝ ⎛⎭⎪⎫a +3a -1-1a -1÷a 2+4a +4a 2-a ,其中a =3.34.(2019· 宿迁)先化简,再求值:⎝ ⎛⎭⎪⎫5x +3y x 2-y 2+2x y 2-x 2÷x3(x -y ),其中x =33,y =12.35.(2019·成都)先化简,再求值:⎝ ⎛⎭⎪⎫1-4x +3÷x 2-2x +12x +6,其中x =2+1.36. (2019·鄂州)先化简⎝ ⎛⎭⎪⎫x 2-2x x 2-4x +4-4x -2÷x -4x 2-4,再从-1,2,3,4中选一个合适的数作为x 的值代入求值.37.(2019·安顺)先化简⎝ ⎛⎭⎪⎫1+2x -3÷x 2-1x 2-6x +9,再从不等式组⎩⎨⎧-2x<4,3x<2x +4的整数解中选一个合适的x 的值代入求值.38.(2019·大庆)已知ab =1,b =2a -1,求代数式1a -2b 的值.39.(2019·本溪)先化简,再求值:⎝ ⎛⎭⎪⎫a 2-4a 2-4a +4-12-a ÷2a 2-2a ,其中a 满足a 2+3a -2=0.40.(2019·菏泽)先化简,再求值:1x -y ⎝ ⎛⎭⎪⎫2y x +y -1÷1y 2-x 2,其中x =y +2 019. 41.(2018·曲靖)先化简,再求值:⎝ ⎛⎭⎪⎫1a -b -b a 2-b 2÷a 2-ab a 2-2ab +b 2,其中a ,b 满足a +b -12=0.42.(2018·烟台)先化简,再求值:⎝ ⎛⎭⎪⎫1+x 2+2x -2÷x +1x 2-4x +4,其中x 满足x 2-2x-5=0.2. 分 式一、 1. D 2. D 3. B 4. A 5. A 6. B 7. B 8. B 9. D二、 10. x ≠12 11. 1 12. 2 13. a +b 14. 3x x -115. 12x16. 1a +4 17. 2 019三、 18. 原式=(x +4)(x -4)x +4÷2(x -4)4x =(x -4)·2xx -4=2x19. 原式=2a -1·(a -1)(a +1)2(a -2)-1a -2=a +1a -2-1a -2=aa -220. 原式=(a -2)2+8a (a +2)(a -2)·a (a -2)a +2=(a +2)2(a +2)(a -2)·a (a -2)a +2=a21. 原式=m -n m ÷m 2+n 2-2mn m =m -n m ·m (m -n )2=1m -n22. 原式=x 2x -y -y 2x -y =(x +y )(x -y )x -y =x +y.当y =-x +8时,原式=x +(-x +8)=823. 圆圆的解答不正确.正确的答案:4x x 2-4-2x -2-1=4x(x -2)(x +2)-2(x +2)(x -2)(x +2)-(x -2)(x +2)(x -2)(x +2)=4x -2x -4-x 2+4(x -2)(x +2)=2x -x 2(x -2)(x +2)=-xx +224. (1) P =2a a 2-b 2-1a +b =2a(a +b )(a -b )-a -b (a +b )(a -b )=2a -a +b (a +b )(a -b )=1a -b (2) ∵ 点(a ,b)在一次函数y =x -2的图象上,∴ b=a - 2.∴ a -b = 2.∴ P =2225. 原式=a a -1·(a +1)(a -1)2a =a +12.当a =-2时,原式=-2+12=-1226. 原式=(x -1)÷x 2-2x +1x =(x -1)·x (x -1)2=xx -1.当x =2+1时,原式=2+12+1-1=1+2227. 原式=x -1x +2·(x +2)2x -1=x +2.将x =-1代入,得原式=-1+2=128. 原式=x -1x -2·(x +2)(x -2)x (x -1)=x +2x .当x =2时,原式=2+22=1+229. 原式=⎝ ⎛⎭⎪⎫x +1x -2-x -2x -2÷x (x -2)(x -2)2=3x -2·x -2x =3x .当x =3时,原式=33= 330. 原式=m 2+4m +4m ·m 2m +2=(m +2)2m ·m 2m +2=m 2+2m.当m =2-2时,原式=m 2+2m =m(m +2)=(2-2)×2=2-2 231. 原式=x -3(x +3)2÷⎝ ⎛⎭⎪⎫x +3x +3-6x +3=x -3(x +3)2÷x -3x +3=x -3(x +3)2·x +3x -3=1x +3.当x =2-3时,原式=12-3+3=22 32. 原式=⎝ ⎛⎭⎪⎫a 2-8a -9a +1+25a +1÷⎝ ⎛⎭⎪⎫a 2-1a +1-4a -1a +1=a 2-8a +16a +1÷a 2-4aa +1=(a -4)2a +1·a +1a (a -4)=a -4a .当a =2时,原式=2-42=1-2 233. 原式=a +2a -1·a (a -1)(a +2)2=a a +2.当a =3时,原式=33+2=3534. 原式=5x +3y -2x x 2-y 2÷x3(x -y )=3(x +y )(x +y )(x -y )·3(x -y )x =9x .当x =33,y =12时,原式=933= 335. 原式=⎝ ⎛⎭⎪⎫x +3x +3-4x +3·2(x +3)(x -1)2=x -1x +3·2(x +3)(x -1)2=2x -1.当x =2+1时,原式=22+1-1= 236. 原式=⎣⎢⎡⎦⎥⎤x (x -2)(x -2)2-4x -2÷x -4x 2-4=(x x -2-4x -2)÷x -4x 2-4=x -4x -2·(x -2)(x +2)x -4=x +2.∵ x -2≠0,x -4≠0,x 2-4≠0,∴ x ≠2,x ≠4且x ≠-2.∴ 当x =-1时,原式=-1+2=1(或当x =3时,原式=3+2=5)37. 原式=x -3+2x -3·(x -3)2(x +1)(x -1)=x -3x +1.解不等式组⎩⎨⎧-2x<4,3x<2x +4,得-2<x <4.∴ 其整数解为-1,0,1,2,3.∵ 要使原分式有意义,∴ x 可取0,2.∴当x =0 时,原式=-3⎝ ⎛⎭⎪⎫或当x =2 时,原式=-13 38. ∵ ab =1,b =2a -1,∴ b -2a =-1.∴ 1a -2b =b -2a ab =-11 =-139. 原式=⎣⎢⎡⎦⎥⎤(a +2)(a -2)(a -2)2+1a -2·a (a -2)2=(a +2a -2+1a -2)·a (a -2)2=a +3a -2·a (a -2)2 =a (a +3)2 =a 2+3a2.∵ a 2+3a -2=0,∴ a 2+3a =2.∴原式=22=140. 原式=1x -y ·2y -(x +y )x +y·(y +x)(y -x) =-(2y -x -y)=x -y.∵ x =y +2 019,∴ 原式=y +2 019-y =2 01941. 原式=a +b -b (a +b )(a -b )·(a -b )2a (a -b )=1a +b .∵ a +b -12=0,∴ a +b =12.∴ 原式=242. 原式=x -2+x 2+2x -2·(x -2)2x +1=x (x +1)x -2·(x -2)2x +1=x(x -2)=x 2-2x.∵ x 2-2x -5=0,∴ x 2-2x =5.∴ 原式=5。
中考数学因式分解试题考点归类解析

2019年中考数学因式分解试题考点归类解析以下是查字典数学网为您推荐的2019年中考数学因式分解试题考点归类解析,希望本篇文章对您学习有所帮助。
2019年中考数学因式分解试题考点归类解析一、选择题1.(2019浙江金华、丽水3分)下列各式能用完全平方公式进行分解因式的是A、x2+1B、x2+2x﹣1C、x2+x+1D、x2+4x+4【答案】D。
【考点】运用公式法因式分解。
【分析】完全平方公式是:( )2= 22 + 2,由此可见选项A、B、C都不能用完全平方公式进行分解因式,只有D选项可以。
故选D。
2.(2019辽宁丹东3分)将多项式分解因式.结果正确的是A. B. C. D.【答案】D。
【考点】提公因式法与公式法因式分解。
【分析】先提取公因式,再根据平方差公式进行二次分解:。
故选D。
3.(2019广西南宁3分)把多项式x3-4x分解因式所得结果是A.x(x2-4)B.x(x+4)(x-4)C.x(x+2)(x-2)D.(x+2)(x-2)【答案】C。
【考点】提取公因式法和应用公式法因式分解。
【分析】根据提取公因式法和应用公式法因式分解,将多项式分解到不能再分解:,故选C。
4.(2019广西梧州3分)因式分解x2y-4y的正确结果是(A)y(x+2)(x-2)(B)y(x+4)(x-4)(C)y(x2-4) (D)y(x-2)2【答案】A。
【考点】提取公因式和应用公式法因式分解。
【分析】根据提取公因式和应用平方差公式因式分解:x2y-4y=y(x2-4)=y(x+2)(x-2)。
故选A。
6.(江苏无锡3分)分解因式2x24x+2的最终结果是A.2x(x-2)B.2(x2-2x+1)C.2(x-1)2D.(2x-2)2【答案】C。
【考点】提取公因式法和应用公式法因式分解。
【分析】利用提公因式法和运用公式法,直接得出结果:。
故选C。
7.(2019河北省2分)下列分解因式正确的是A、﹣+ 3=﹣(1+ 2)B、2﹣4 +2=2(﹣2 )C、2﹣4=(﹣2)2D、2﹣2 +1=(﹣1)2【答案】D。
2019年中考数学《因式分解》专题复习试卷(含答案) (1)

【分析】通过观察式子,两个加数项中分别存在一个 962,所以采取的简便方法为提取公因式法,将 962 提出公因式,进行接下来的计算即可。 7.【答案】C 【解析】【解答】解:xy2﹣9x, =x(y2﹣9), =x(y+3)(y﹣3). 故答案为:C. 【分析】先提取公因式再利用平方差公式. 8.【答案】A 【解析】【解答】解:(﹣2)2002+(﹣2)2001=﹣2×(﹣2)2001+(﹣2)2001 =(﹣2)2001×(﹣2+1)=22001 故选:A. 【分析】首先把(﹣2)2002 化为﹣2×(﹣2)2001 , 再提公因式(﹣2)2001 9.【答案】D 【解析】【解答】解:A、15a2+5a=5a(3a+1),正确; B、﹣x2+y2=(y+x)(y﹣x),正确; C、ax+x+ay+y=(ax+ay)+(x+y)=(a+1)(x+y),正确; D、﹣a2﹣4ax+4x2=﹣a(a+4x)+4x2 结果不是积的形式,故本选项错误. 故选 D. 【分析】根据提公因式法,平方差公式,分组分解法,完全平方公式,对各选项分解因式后利用排除法求 解. 10.【答案】B 【解析】【解答】解:A、不符合要求,没有公因式可提,故本选项错误; B、x2+2x 可以提取公因式 x,正确; C、不符合要求,没有公因式可提,故本选项错误; D、不符合要求,没有公因式可提,故本选项错误; 故选 B. 【分析】根据找公因式的要点提公因式分解因式. 11.【答案】B 【解析】【解答】解:A、没把一个多项式转化成几个整式积的形式,故 A 错误; B、把一个多项式转化成几个整式积的形式,故 B 正确; C、是乘法交换律,故 C 错误; D、是整式的乘法,故 D 错误; 故选:B. 【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 12.【答案】D 【解析】解:(a2+1)2﹣4a2 =(a2+1﹣2a)(a2+1+2a) =(a﹣1)2(a+1)2 . , 即可进行计算. ,
2019年全国中考数学真题因式分解集锦

2019年全国中考数学真题因式分解填空题集锦1. (2019湖南怀化)因式分解:a2-b2=2. (2019湖南省岳阳市)因式分解:ax-ay= .3. (2019四川省眉山市)分解因式:3a3-6a2+3a= .4. (2019四川攀枝花)分解因式:a2b-b=。
5.(2019四川省自贡市)分解因式:2x2-2y2= .6.(2019浙江湖州)分解因式:x2-9=.7. (2019浙江宁波)分解因式:x2+xy=________.8. (2019浙江台州)分解因式:ax2-ay2=________.9.(2019山东淄博)分解因式:32x x x++=5610. (2019四川南充)因式分解:32++=.a a a211. (2019甘肃武威)因式分解:24-=.xy x12. (2019甘肃省)分解因式:34-=.x y xy13. (2019广东广州)分解因式:x2y+2xy+y=.14. (2019贵州黔东南)分解因式:9x2﹣y2=.15. (2019湖北鄂州)因式分解:4ax2﹣4ax+a=.16.(2019江苏南京)分解因式(a﹣b)2+4ab的结果是17. (2019江苏宿迁)分解因式:a2﹣2a=.18. (2019广东深圳)分解因式:ab2-a=____________.19. (2019广西北部湾)因式分解:3ax2-3ay2= .20. (2019贵州省毕节市)分解因式:x4﹣16=.21. (2019贵州黔西南州)分解因式:9x2﹣y2=.22. (2019·湖南张家界)因式分解:x2y-y=.23. (2019黑龙江哈尔滨)分解因式:2392-= .6aba+ab24. (2019湖北仙桃)分解因式:x4﹣4x2=.25. (2019山东东营)因式分解:x(x-3)-x+3=____________.26. (2019年陕西省)因式分解:33-=.x y xy927. (2019黑龙江大庆)分解因式:a2b+ab2-a-b=________.28. (2019内蒙古赤峰)因式分解:x3﹣2x2y+xy2=.29. (2019广西河池)分解因式:2x x-+-(1)2(5)30. (2019江苏扬州)分解因式:39-=.a b ab31.(2019四川广安)因式分解:44-=.a b3332. (2019四川绵阳)因式分解:m2n+2mn2+n3=.33. (2019四川宜宾)分解因式:222++-=.2b c bc a34. (2019浙江嘉兴)分解因式:25-=.x x35(2019浙江温州)因式分解:244++=.m m。
2019年全国各地中考数学试题分类汇编(第一期) 专题7 分式与分式方程(含解析)

专题7 分式与分式方程一.选择题1. ( 2019甘肃省兰州市) (4分)化简:12112+-++a a a = ( ) A. a -1 . B. a +1 . C.11+-a a . D. 11+a . 【答案】A . 【考点】分式计算. 【考察能力】运算求解能力. 【难度】简单【解析】12112+-++a a a =1212+-+a a =1)1)(1(+-+a a a =a -1 . 故选A.2.(2019甘肃省陇南市)(3分)下面的计算过程中,从哪一步开始出现错误( )A .①B .②C .③D .④【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:﹣=﹣==.故从第②步开始出现错误. 故选:B .【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.3. (2019甘肃省天水市)(4分)分式方程-=0的解是______.【答案】x=2【解析】解:原式通分得:=0去分母得:x-2(x-1)=0去括号解得,x=2经检验,x=2为原分式方程的解故答案为x=2先通分再去分母,再求解,最后进行检验即可本题主要考查解分式方程,解分式方程主要将方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.4.(2019•浙江宁波•4分)若分式有意义,则x的取值范围是()A.x>2 B.x≠2C.x≠0D.x≠﹣2【分析】分式有意义时,分母x﹣2≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.5. (2019•湖北十堰•3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15 B.﹣=15C.﹣=20 D.﹣=20【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.6. (2019•湖南衡阳•3分)如果分式在实数范围内有意义,则x的取值范围是()A.x≠﹣1 B.x>﹣1 C.全体实数D.x=﹣1【分析】根据分式有意义的条件即可求出答案.【解答】解:由题意可知:x+1≠0,x≠﹣1,故选:A.【点评】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.7. (2019•甘肃武威•3分)下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:﹣=﹣==.故从第②步开始出现错误.故选:B.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.8. (2019•山东省聊城市•3分)如果分式的值为0,那么x的值为()A.﹣1 B.1 C.﹣1或1 D.1或0【考点】分式的值为零【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意,得|x |﹣1=0且x +1≠0, 解得,x =1. 故选:B .【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9. (2019•山东省济宁市 •3分)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .﹣=45 B .﹣=45 C .﹣=45D .﹣=45【考点】由实际问题抽象出分式方程【分析】直接利用5G 网络比4G 网络快45秒得出等式进而得出答案.【解答】解:设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是:﹣=45.故选:A .【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键. 10. (2019•江苏苏州•3分)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为() A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 【分析】考察分式方程的应用,简单题型 【解答】找到等量关系为两人买的笔记本数量 15243x x ∴=+ 故选A11. (2019•江苏泰州•3分)若分式有意义,则x 的取值范围是 x ≠ .【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣1≠0,解得x≠.故答案为:x≠.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12. (2019•湖南株洲•3分)关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(2019▪黑龙江哈尔滨▪3分)方程=的解为()A.x=B.x=C.x=D.x=【分析】将分式方程化为,即可求解x=;同时要进行验根即可求解;【解答】解:=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x =; 故选:C .【点评】本题考查解分式方程;熟练掌握分式方程的解法及验根是解题的关键.14.(2019,四川成都,3分)分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x【解析】此题考查分式方程的求解.选A15.(2019,山东淄博,4分)解分式方程=﹣2时,去分母变形正确的是( )A .﹣1+x =﹣1﹣2(x ﹣2)B .1﹣x =1﹣2(x ﹣2)C .﹣1+x =1+2(2﹣x )D .1﹣x =﹣1﹣2(x ﹣2)【分析】分式方程去分母转化为整式方程,即可得到结果. 【解答】解:去分母得:1﹣x =﹣1﹣2(x ﹣2), 故选:D .【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.二.填空题1.(2019•浙江衢州•4分)计算: =________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解、分式及二次根式一、单选题1.下列分解因式正确的是()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】C2.化简的结果为()A. B. a﹣1 C. a D. 1【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:根据同分母分式加减法的运算法则进行计算即可求出答案.详解:原式=,=,=a﹣1故选:B.点睛:本题考查同分母分式加减法的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.3.已知,,则式子的值是()A. 48B.C. 16D. 12【来源】湖北省孝感市2018年中考数学试题【答案】D4.若分式的值为0,则x的值是()A. 2B. 0C. -2D. -5【来源】浙江省温州市2018年中考数学试卷【答案】A【解析】分析: 根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值.详解: 根据题意得:x-2=0,且x+5≠0,解得x=2.故答案为:A.点睛: 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.5.计算的结果为()A. 1B. 3C.D.【来源】天津市2018年中考数学试题【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.若分式的值为零,则x的值是()A. 3B. -3C. ±3D. 0【来源】浙江省金华市2018年中考数学试题【答案】A【解析】试题分析:分式的值为零的条件:分子为0且分母不为0时,分式的值为零.由题意得,,故选A.考点:分式的值为零的条件点评:本题属于基础应用题,只需学生熟练掌握分式的值为零的条件,即可完成.学科@网7.计算的结果为A. B. C. D.【来源】江西省2018年中等学校招生考试数学试题【答案】A8.若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.9.估计的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】B二、填空题10.分解因式:16﹣x2=__________.【来源】江苏省连云港市2018年中考数学试题【答案】(4+x)(4﹣x)【解析】分析:16和x2都可写成平方形式,且它们符号相反,符合平方差公式特点,利用平方差公式进行因式分解即可.详解:16-x2=(4+x)(4-x).点睛:本题考查利用平方差公式分解因式,熟记公式结构是解题的关键.11.分解因式:2x3﹣6x2+4x=__________.【来源】山东省淄博市2018年中考数学试题【答案】2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为:2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.12.分解因式:a2-5a =________.【来源】浙江省温州市2018年中考数学试卷【答案】a(a-5)13.已知,,则代数式的值为__________.【来源】四川省成都市2018年中考数学试题【答案】0.36【解析】分析:原式分解因式后,将已知等式代入计算即可求出值.详解:∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36.故答案为:0.36点睛:此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.14.因式分解:____________.【来源】山东省潍坊市2018年中考数学试题【答案】【解析】分析:通过提取公因式(x+2)进行因式分解.详解:原式=(x+2)(x-1).故答案是:(x+2)(x-1).点睛:考查了因式分解-提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.15.分解因式:2a3b﹣4a2b2+2ab3=_____.【来源】四川省宜宾市2018年中考数学试题【答案】2ab(a﹣b)2.16.因式分解:__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:原式提取2,再利用平方差公式分解即可.详解:原式=2(9-x2)=2(x+3)(3-x),故答案为:2(x+3)(3-x)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.分解因式:________.【来源】2018年浙江省舟山市中考数学试题【答案】【解析】【分析】用提取公因式法即可得到结果.【解答】原式=.故答案为:【点评】考查提取公因式法因式分解,解题的关键是找到公因式.18.因式分解:__________.【来源】2018年浙江省绍兴市中考数学试卷解析【答案】【解析】【分析】根据平方差公式直接进行因式分解即可.【解答】原式故答案为:【点评】考查因式分解,常用的方法有:提取公因式法,公式法,十字相乘法. 19.若分式的值为0,则x的值为______.【来源】山东省滨州市2018年中考数学试题【答案】-320.若分式有意义,则的取值范围是_______________ .【来源】江西省2018年中等学校招生考试数学试题【答案】【解析】【分析】根据分式有意义的条件进行求解即可得.【详解】由题意得:x-1≠0,解得:x≠1,故答案为:x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键. 21.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】3【解析】分析:先运用用平方差公式把括号展开,再根据二次根式的性质计算可得.详解:原式=()2-()2=6-3=3,故答案为:3.点睛:本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.学科@网三、解答题22.先化简,再求值:,其中.【来源】江苏省盐城市2018年中考数学试题【答案】原式=x-1=23.先化简,再求值:,其中.【来源】广东省深圳市2018年中考数学试题【答案】,.【解析】【分析】括号内先通分进行分式的加减法运算,然后再进行分式的乘除法运算,最后把数值代入化简后的结果进行计算即可.【详解】,,,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键. 24.计算:.【来源】广东省深圳市2018年中考数学试题【答案】325.(1).(2)化简.【来源】四川省成都市2018年中考数学试题【答案】(1);(2)x-1.【解析】分析:(1)利用有理数的乘方、立方根、锐角三角函数和绝对值的意义进行化简后再进行加减运算即可求出结果;(2)先将括号内的进行通分,再把除法转化为乘法,约分化简即可得解.详解:(1)原式=;(2)解:原式.点睛:本题考查实数运算与分式运算,运算过程不算复杂,属于基础题型.26.先化简,再求值:,其中.【来源】贵州省安顺市2018年中考数学试题【答案】,.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵,∴,舍去,当时,原式.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.27.先化简,再求值:(xy2+x2y)×,其中x=π0﹣()﹣1,y=2sin45°﹣.【来源】山东省滨州市2018年中考数学试题【答案】28.计算.【来源】江苏省南京市2018年中考数学试卷【答案】【解析】分析:先计算,再做除法,结果化为整式或最简分式.详解:.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.29.计算:.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】原式30.先化简,再求值: ,其中.【来源】湖南省娄底市2018年中考数学试题【答案】原式==3+2【解析】【分析】括号内先通分进行加减运算,然后再进行分式的乘除法运算,最后把数值代入化简后的式子进行计算即可.【详解】原式===,当x=时,原式==3+2.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.31.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.32.(1)计算:;(2)化简并求值:,其中,.【来源】2018年浙江省舟山市中考数学试题【答案】(1)原式;(2)原式=-1【解析】【分析】(1)根据实数的运算法则进行运算即可.(2)根据分式混合运算的法则进行化简,再把字母的值代入运算即可.【解答】(1)原式(2)原式.当,时,原式.【点评】考查实数的混合运算以及分式的化简求值,掌握运算法则是解题的关键.33.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)34.先化简,再求值:,其中.【来源】山东省泰安市2018年中考数学试题【答案】.。