2014年中考数学模拟试题1
2014年中考数学模拟试卷及答案

第1页 共10页 2014年中考数学模拟试卷及答案(满分120分,考试用时120分钟)一、选择题:(本大题共10小题,每小题3分,满分30分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不不给分)1.-3的倒数是( )A .13B .— 13C .3D .—3 2.如图中几何体的主视图是 ( )A .B .C .D .3.下列运算正确..的是 ( ) A . B . C . D .4.预计A 站将发送旅客342.78万人,用科学记数法表示342.78万正确的是( )A .3.4278×107B .3.4278×106C .3.4278×105D .3.4278×1045.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( )A .相交B .内切C .外切D .内含6. 如图,函数11-=x y 和函数xy 22=的图像相交于点M (2,m ),N (-1,n ),若21y y >,则x 的取值范围是 A. 1-<x 或20<<x B. 1-<x 或2>xC. 01<<-x 或20<<xD. 01<<-x 或2>x7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858. 如图是一个正六棱柱的主视图和左视图,则图中的=a A. 32 B. 3 C. 2 D. 19.如图,直线l 1//l 2,则α为( ) A .150° B .140° C .130° D .120°l 1 l 2 50°70°α。
2014年中考数学模拟试卷

2014年中考数学模拟试卷(一)注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号。
每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1. 5-的绝对值是( )A .5B .15C .5-D .0.52.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( ) A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯3.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20 B .50,30 C .50,50 D .135,504.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( )A .15 B .25 C .12 D .355.下列各运算中,错误的个数是( )①01333-+=-②523-= ③235(2)8a a = ④844a a a -÷=- A .1 B .2 C .3 D .46.如图是由4个大小相同的正方体搭成的几何体,其主视图是( )(第6题)7.下列调查方式中,合适的是( )A .要了解约90万顶救灾帐蓬的质量,采用普查的方式B .要了解外地游客对旅游景点“新疆民街”的满意程度,采用抽样调查的方式C .要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D .要了解全疆初中学生的业余爱好,采用普查的方式 8.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( )A .8种B .9种C .16种D .17种9.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ) A .15° B .30° C .45° D .60°10.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB ∥且12EF AB =;②BAF CAF ∠=∠;③12ADFE S AF DE =四边形AF.DE ④2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.如下图,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.12.已知双曲线k y x=经过点(2,5),则k = . 13.如下图,将一副七巧板拼成一只小猫,则下图中AOB ∠= . 14.分式方程513x =+的解是______. 三、(本题共 2 小题,每小题 9 分,满分 18 分)15.计算()116133-⎛⎫-+-- ⎪⎝⎭16.如图,在等腰梯形ABCD 中,AD BC ∥,M 是AD 的中点,求证:MB MC =.ADBFCE(第10题)bac d 123 4合计四、(本题共 2 小题,每小题 9 分,满分 18 分)17.已知一次函数y=ax+b的图像与反比例函数4yx=的图像交于A(2,2),B(-1,m),求一次函数的解析式.18.如图,在平面直角坐标系xoy中,(15)A-,,(10)B-,,(43)C-,.(1)求出ABC△的面积.(5分)(2)在下图中作出ABC△关于y轴的对称图形111A B C△.(3分)(3)写出点111A B C,,的坐标.(3分)五、(本题11 分)19.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?20.(12分)如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,过P点作⊙O的切线,切点为C,连结AC.(1)若∠CP A=30°,求PC的长;(2)若点P在AB的延长线上运动,∠CP A的平分线交AC于点M. 你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的大小.六、(本题满分 14 分)21.我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A、B、C三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:超市态度A B C赞同27555 150不赞同2317无所谓57228 105(1)此次共调查了多少人?(2)请将图表补充完整;(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度.七、(本题满分 14 分)22.如图,在ABCD中,E,F分别为边AB,CD的中点,连接E、BF、BD.(1)求证:ADE CBF△≌△.(6分)(2)若A D⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.(6分)MPOCBA15010050无所谓不赞同赞同态度人数A、B两超市共计50%15%无所谓不赞同赞同A、B、C三家超市共计中考数学模拟试卷(二)注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本题共10 小题,每小题4 分,满分40分)1.55°角的余角是( ) A. 55° B.45° C. 35° D. 125°2.如图1,数轴上A 、B 两点所表示的两数的( ) A. 和为正数 B. 和为负数 C. 积为正数D. 积为负数(第2题)3.如果点M 在直线1y x =-上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1) 4.如图2,直线l 截两平行直线a 、b ,则下列式子不一定成立的是( ) A .∠1=∠5 B . ∠2=∠4C . ∠3=∠5D . ∠5=∠25.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是() A .内切 B .相交 C .外切 D .外离 6. 如图,已知D 、E 分别是ABC ∆的AB 、AC 边上的点,,DE BC //且S ⊿ADE :S 四边形DBCE =1:8,那么:AE AC 等于( ) A .1 : 9 B .1 : 3C .1 : 8D .1 : 27.下列计算正确的是( ) (第6题) A .246x x x +=B .235x y xy +=C .326()x x =D .632x x x ÷=8.下列调查中,适合用全面调查方式的是( ) A .了解某班学生“50米跑”的成绩 B .了解一批灯泡的使用寿命 C .了解一批炮弹的杀伤半径 D .了解一批袋装食品是否含有防腐剂9.两个完全相同的长方体的长、宽、高分别是5cm ,4cm ,3cm ,把它们按不同方式叠放在一起分别组成新的长方体,在这些新长方体中表面积最大的是( )A .2158cm B .2176cm C .2164cm D .2188cm10.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.方程02=-x x 的解是 .12.反比例函数ky x=的图象经过点(-2,1),则k 的值为 .13.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠在一起(如图),则重叠四边形的面积为_______2.cm14.如图4,在12×6的网格图中(每个小正方形的 边长均为1个单位),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 相切,那么⊙A 由图示位置需向 右平移 个单位.三、(本题共 2 小题,每小题 8 分,满分 16 分)15.计算:019(π4)sin 302--+--16. 如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB , 过C 作CF ⊥DE ,垂足为F .(1)猜想:AD 与CF 的大小关系; (2)请证明上面的结论.四、(本题共 2 小题,每小题 8 分,满分 16 分)17.根据北京奥运票务网站公布的女子双人3米跳板跳水决赛 的门票价格(如表1),小明预定了B 等级、C 等级门票共 7张,他发现这7张门票的费用恰好可以预订3张A 等级 门票.问小明预定了B 等级、C 等级门票各多少张?A BO -3 第4题54321lbaB A CDE AB(图4)BACD EF等级 票价(元/张) A 500 B 300 C 150合计18.如下图,某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行,请你根据图中数据计算回答:小敏身高1.85米,他乘电梯会有碰头危险吗?(sin28o ≈0.47,tan28o ≈0.53)五、(本题共 2 小题,每小题 10 分,满分 20分)19.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?20.我国政府规定:从2008年6月1日起限制使用塑料袋.5月的某一天,小明和小刚在本市的A 、B 、C 三家大型超市就市民对“限塑令”的态度进行了一次随机调查.结果如下面的图表:超市态度 ABC赞同 20 75 55 150 不赞同 2317 无所谓57 2028105(1)此次共调查了多少人? (2)请将图表补充完整;(3)用你所学过的统计知识来说明哪个超市的调查结果更能反映消费者的态度.六、(本题满分 12 分)21.一条抛物线2y x mx n =++经过点()03,与()43,.(1)求这条抛物线的解析式,并写出它的顶点坐标;(2)现有一半径为1、圆心P 在抛物线上运动的动圆,当⊙P 与坐标轴相切时,求圆心P 的坐标;(3)⊙P 能与两坐标轴都相切吗?如果不能,试通过上下平移抛物线2y x mx n =++使⊙P 与两坐标轴都相切(要说明平移方法).七、(本题满分 12 分)22.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB、BC匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?八、(本题满分 14 分)23..如图,已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴交于点C ,直线y =-2x-1经过抛物线上一点B (-2,m ),且与y 轴、直线x =2分别交于点D 、E . (1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点;(3)若P (x ,y )是该抛物线上的一个动点,是否存在这样的点P ,使得PB =PE ,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由.1米1米15010050无所谓不赞同赞同态度人数A 、B 两超市共计50%15%无所谓不赞同赞同A 、B 、C 三家超市共计OxyAB C O DEx yx =22014年中考数学模拟试卷答案 (一)一、1.A 2. D 3.C 4.B 5.B 6.A 7..A 8. B 9. B 10. B 二、11.60 12.10 13.90° 14.2x =三、15.4 16.证明:四边形ABCD 是等腰梯形, AB DC A D ∴=∠=∠,. M 是AD 的中点, AM DM ∴=.在ABM △和DCM △中,AB DC A D AM DM =⎧⎪∠=∠⎨⎪=⎩,,, ABM DCM ∴△≌△(SAS ). MB MC ∴=.四、17.解:因为B (-1,m )在4y x=上, 所以4m =- 所以点B 的坐标为(-1,-4) ·········································································· 3分 又A 、B 两点在一次函数的图像上,所以42,222a b a a b b -+=-=⎧⎧⎨⎨==-⎩⎩解得:+ ······························································· 7分 所以所求的一次函数为y =2x -2 ·········································· 8分 18.(1)()()平方单位或7.52153521=⨯⨯=∆ABC S ………………4分(2)如下图…………………………………2分(3)A 1(1,5),B 1(1,0),C 1(4,3)…2分五、19.(1)设2007职业中专的在校生为x 万 人 根据题意得:1500×1.2x -1500x =600 ································································ 3分 解得:2x = ··················································· 5分 所以.()2 1.2 2.4⨯=万人, ()2.415003600⨯=万元 ·················································· 9分 答:略. ·············································· 10分 20.解:(1)连结OC ,4,2,AB OC =∴=PC 为O 的切线,30,CPO ∠=︒22 3.t a n 3033OC PC ∴===︒ ················ 5分(2)CMP ∠ 的大小没有变化 ················································································· 6分 CMP A MPA ∠=∠+∠ ···················································································· 7分1122COP CPO =∠+∠ ······················································································ 8分 1()2COP CPO =∠+∠190452=⨯︒=︒ ·································································································· 10分六、21.(1)300(人) ······························································· 2分 (2)5, 45, 35%, 图略 ·········································· 8分 (3)C 超市 可以从平均数或中位数等方面说明,说理合理就行……………12分 七、22.(1)在平行四边形ABCD 中,∠A =∠C ,AD =CD ,∵E 、F 分别为AB 、CD 的中点∴AE=CF ……………………………………………………2分()分中,和在 ...5......................................................................SAS CFB AED CF AE C A CB AD CFB AED ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆(2)若AD ⊥BD ,则四边形BFDE 是菱形. …………………………1分.5............................................................ .BFDE BFDE DF,EB EB//DF 3...................................................................... BE AB 21DE ,AB E ..2..........).........90ADB AB Rt ABD BD AD 分是菱形四边形是平行四边形四边形且由题意可知分的中点是分是斜边(或,且是,证明:∴∴===∴=∠∆∆∴⊥ o 八、23.解:(1)由题意得:255036600a b c a b c c ++=⎧⎪++=⎨⎪=⎩ ··· 1分解得150a b c =-⎧⎪=⎨⎪=⎩······················································ 3分故抛物线的函数关系式为25y x x =-+ ··············· 4分 (2)C 在抛物线上,2252,6m m ∴-+⨯=∴= ·· 5分C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上MPO CBAxy-4 -6C EPDB5 1 24 6 F AG 2 -2∴6266k b k b '=+⎧⎨'-=+⎩ 解得3,12k b '=-= ∴直线BC 的解析式为312y x =-+ ············································································· 7分 设BC 与x 轴交于点G ,则G 的坐标为(4,0)1146462422OBCS∴=⨯⨯+⨯⨯-= ········································································ 9分 (3)存在P ,使得⊿OCD ∽⊿CPE ····················································································· 10分设P (,)m n ,90ODC E ∠=∠=︒故2,6CE m EP n =-=-若要⊿OCD ∽⊿CPE ,则要OD DC CE EP =或OD DCEP CE= 即6226m n =--或6262n m =-- 解得203m n =-或123n m =-又(,)m n 在抛物线上,22035m n n m m =-⎧⎨=-+⎩或21235n mn m m=-⎧⎨=-+⎩ 解得12211023,,6509m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或121226,66m m n n ==⎧⎧⎨⎨==-⎩⎩ 故P 点坐标为1050()39,和(6,6)- ················································································ 14分。
2014年中考数学模拟试题(1)(24题120分课标版)

12014年中考模拟试题(1)(24题120分课标版)一、选择题1. 下列各式:①235x x x +=;②325a a a ∙=2-;④11()33-=;⑤0(π1)1-=,其中正确的是( )(A )④⑤ (B )③④ (C )②③ (D )①④ 2. 一天晚饭后,小明陪妈妈从家里出去散步,下面描述了他们散步过程中离家的距离s (米)与散步时间t (分)之间的函数关系,下面的描述符合他们散步情景的是( ) (A )从家出发,到了一家书店,看了一会儿书就回家了(B )从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了 (C )从家出发,一直散步(没有停留),然后回家了(D)从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回3.下列数字中既是轴对称图形又是中心对称图形的有几个( ).(A )1个 (B )2个 (C )3个 (D )4个 4. 下列各式计算正确的是( ). (A )2242a a a += (B3=± (C )1(1)1--= (D)3(7=5. CD 是O ⊙的一条弦,作直径AB 使AB CD ⊥,垂足为E ,若10,8AB CD ==,则BE 的长是( ).(A )8 (B )2 (C )2或8 (D )3或76. 团游客年龄的方差分别是2 1.4S =甲,218.8S =乙,22.5S =丙,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选( ).(A )甲队 (B )乙(C )丙队 (D )哪一个都可以7. 已知二次函数2(0)y ax bx c a =++≠的图象经过点经1(,0)x 、(2,0),且121x -<<-,与y 轴正半轴的半点在(0,2)的下方,则下列结论:①0abc <;②24b ac >;③210a b ++<;④20a c+>.则其中正确结论的序号是().(A)①②(B)②③(C)①②④(D)①②③④8. 下列说法正确的是().(A)相等的圆心角所对的弧相等(B)无限小数是无理数(C)阴天会下雨是必然事件(D)在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k-二、填空题9. 某种病毒近似于球体,它的半径约为0.000 000 004 95米,用科学记数法表示为米.10. 小明“六·一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有将品(飞镖盘被平均分成8份),小明能获得将品的概率是.11.函数0(2)3y xx=---中,自变量x的取值范围是.12. 圆锥的母线长为6cm,底面周长为5πcm,则圆锥的侧面积为.13. 如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是.(填一个即可)14. 如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由个小正方体塔成的.三、解答题15. 先化简,再求值:22()a b ab baa a--÷-,其中a、b满足式子2|2|(0.a b-+=2316. 如图所示,在OAB △中,点B 的坐标是(0,4),点A 的坐标是(3,1). (1)画出OAB △向下平移4个单位长度、再向左平移2个单位长度后的111O A B △.(2)画出OAB △绕点O 逆时针旋转90°后的22OA B △,并求出点A 旋转到2A 所经过的路径长(结果保留π).17. 甲乙两车分别从A 、B 两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S (千米)与甲车出发时间t (小时)之间的函数图象,其中D 点表示甲车到达B 地,停止行驶. (1)A 、B 两地的距离__________千米;乙车速度是_________;a ____________. (2)乙出发多长时间后两车相距330千米?418. 在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成.已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同).甲工程队1天、乙工程队2天共修路200米;甲工程队2天、乙工程队3天共修路350米. (1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m 人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?19. 如图,抛物线212y x bx c =-++与x 轴交于A B 、两点,与y 轴交于点C ,且2OA =,3OC =.(1)求抛物线的解析式.(2)若点(22)D ,是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得BDP △的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.注:二次函数2(0)y ax bx c a =++≠的对称轴是直线2bx a=-.520. 如图,已知二次函数2y ax bx c =++的图象经过点(4,0),(1,3),(3,3).A B C --- (1)求此二次函数的解析式.(2)设此二次函数的对称轴为直线l ,该图象上的点(,)P m n 在第三象限,其关于直线l 的对称点为M ,点M 关于y 轴的对称点为N ,若四边形OAPN 的面积为20,求,m n 的值.21. 市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分100分),根据测试成绩(最低分为53分)分别绘制了如下(1)被抽查的学生为_________________人. (2)请补全频数分布直方图.(3)若全市参加考试的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀)(4)若此次测试成绩的中位数为78分,请直接写出78.5~89.5之间的人数最多有多少人?622. 已知等腰直角三角形ABC 中,90ACB ∠=°,点E 在AC 边的延长线上,且45DEC ∠=°,点M 、N 分别是DE 、AE 的中点,连接MN 交直线BE 于点F .当点D 在CB 的延长线上时,如图1所示,易证1.2MF FN BE +=(1)当点D 在CB 边上时,如图2所示,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)23. 如图,平面直角坐标系中,直线l 分别交x 轴、y 轴于A 、B 两点(OA OB <),且OA 、OB的长分别是一元二次方程21)0x x -+=的两个根,点C 在x 轴负半轴上,且:1:2.AB AC =(1)求A 、C 两点的坐标.(2)若点M 从C 点出发,以每秒1个单位的速度沿射线CB 运动,连接AM ,设ABM △的面积为S ,点M 的运动时间为t ,写出S 关于t 的函数关系式,并写出自变量的取值范围. (3)点P 是y 轴上的点,在坐标平面内是否存在Q ,使以A 、B 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出Q 点的坐标;若不存在,请说明理由.24. 如图,在平面直角坐标系中,已知Rt AOB△的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程27120-+=的两根(OA OBx x<),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P Q、运动的时间为t秒.(1)求A B、两点的坐标.(2)求当t为何值时,APQ△与AOB△相似,并直接写出此时点Q的坐标.(3)当2、、、为顶点的四边形是平行t=时,在坐标平面内,是否存在点M,使以A P Q M四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.7。
2014年中考数学模拟试卷1

2014年中考数学模拟试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.15-的值为【】A.15-B.-5C.5D.152.下列图形中,既是轴对称图形又是中心对称图形的是【】A.B.C.D.3.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,则∠ACD的度数为【】DCBAA.40°B.35°C.50°D.45°4.如图是由3个相同的正方体组成的一个立体图形,它的三视图是【】A.B.C.D.5.若3是关于x的方程250x x c-+=的一个根,则这个方程的另一个根是【】A.-2B.2C.-5D.66.下列调查,适合用普查方式的是【】A.了解一批炮弹的杀伤半径B.了解中央电视台《新闻联播》的收视率C.了解长江中鱼的种类D.了解某班学生某次数学测验成绩7. 如图,在等腰直角三角形ABC 中,AB =AC =4,点O 为BC 的中点,以O 为圆心作半圆O交BC 于点M ,N ,⊙O 与AB ,AC 相切,切点分别为D ,E ,则⊙O 的半径和∠MND 的度数分别为【 】 A .2,22.5°B .3,30°C .3,22.5°D .2,30°OME D B AC第7题图 第8题图8. 如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于A ,B 两点,点A 在x 轴的负半轴,点B 在x 轴的正半轴,与y 轴交于点C ,且1tan 2ACO ∠=,CO =BO ,AB =3.则下列判断中正确的是【 】 A .此抛物线的解析式为22y x x =+-B .在此抛物线上存在点M ,使△MAB 的面积等于4,且这样的点共有三个C .此抛物线与直线94y =-只有一个交点D .当x >0时,y 随x 的增大而增大 二、填空题(每小题3分,共21分) 9.化简:=_________.10. 一副三角板,按如图所示的方式叠放在一起,则∠α的度数是__________.α11. 已知圆锥的底面半径为4,母线长是5,则圆锥的侧面积等于_________.12. 某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1 000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________. 13.14. 如图,抛物线212y x =-平移后经过坐标原点O 和点A (6,0),平移后的抛物线的顶点为B ,对称轴与抛物线212y x =-相交于点C ,则图中直线BC 与两条抛物线所围成的阴影部分的面积为__________.E 2E 3E 1D 4D 2D 3D 1CAB第14题图 第15题图15. 如图,在Rt ABC △中,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连接1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连接2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,连接3BE 交1CD 于4D ;…;如此继续.若分别记11BD E △,22BD E △,33BD E △,…,n n BD E △的面积为123n S S S S ,,,…,,则 n ABC S S =△:__________.三、解答题(本大题共8小题,满分75分)16. (8的值代入求值.17. (9分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AE 平分∠BAC ,分别交BC ,CD 于点E ,F ,EH ⊥AB 于H ,连接FH .求证:四边形CFHE 是菱形.BCH AD F E18. (9分)国家环保部发布的《环境空气质量标准》规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.某市环保部门随机抽取了一居民区去年若干天PM2.5的24小时平均浓度的监测数据,并统计如下:(1)求出表中a ,b ,c 的值,并补全频数分布直方图.(2)从样本里PM2.5的24小时平均浓度不低于50微克/立方米的天数中,随机抽取两天,求出“恰好有一天PM2.5的24小时平均浓度不低于75微克/立方米”的概率. (3)求出样本平均数,从PM2.5的年平均浓度考虑,估计该区居民去年的环境是否需要改进?说明理由.频数(天)浓度(微克/立方米)19. (9C的仰角为45°,再往高塔方向前进至点B 处测得最高点C 的仰角为54°,AB =112m ,根据这个兴趣小组测得的数据,计算高塔的高度CD . (tan36°≈0.73,结果保留整数)54°45°DA CB20. (9分)如图,已知反比例函数0ky k x=<()的图象经过点()A m ,过点A 作AB x ⊥轴于点B ,且AOB △(1)求k 和m 的值;(2)若一次函数1y ax =+的图象经过点A ,并且与x 轴相交于点C ,求ACO ∠的度数和||:||AO AC 的值.21. (10分)某商场决定购进甲、乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元. (1)购进甲、乙两种纪念品每件各需要多少元?(2)该商场决定购进甲、乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6 000元,同时又不能超过6 150元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?22. (10分)在正方形ABCD 的边AB 上任取一点E ,作EF ⊥AB 交BD 于点F ,取FD 的中点G ,连接EG ,CG ,如图1,易证EG =CG 且EG ⊥CG .(1)将△BEF 绕点B 逆时针旋转90°,如图2,则线段EG 和CG 有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF 绕点B 逆时针旋转180°,如图3,则线段EG 和CG 有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.ADCBEF GADCBEFGDGFE BCA图1 图2 图323.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.(1)求抛物线的函数解析式;(2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)在直线l上取一点M,在抛物线上取一点N,使以A,C,M,N为顶点的四边形是平行四边形,直接写出此时点N的坐标.。
2014中考数学模拟试卷及答案

2014中考数学模拟试卷及答案一、精心选一选,相信自己的判断!1.200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的漳州市每天浪费大米约()克(用科学记数法表示)A.B.C.D.2.下列运算正确的是()A.B.C.D.3.经过折叠不能围成一个正方体的图形是()4.已知内接于,于,如果,那么的度数为()A.B.C.或D.或5.近一个月来漳州市遭受暴雨袭击,九龙江水位上涨.小明以警戒水位为点,用折线统计图表示某一天江水水位情况.请你结合折线统计图判断下列叙述不正确的是()A.8时水位最高B.这一天水位均高于警戒水位C.8时到16时水位都在下降D.点表示12时水位高于警戒水位0.6米6.哥哥身高1.68米,在地面上的影子长是2.1米,同一时间测得弟弟的影子长1.8米,则弟弟身高是()A.1.44米B.1.52米C.1.96米D.2.25米7.某超市购进了一批不同价格的运动鞋,根据近几年统计的平均数据,运动鞋单价为40元,35元,30元,25元的销售百分率分别为,,,.要使该超市销售运动鞋收入最大,该超市应多购单价为()的运动鞋.A.40元B.35元C.30元D.25元8.如图,是菱形的对角线的交点,分别是的中点.下列结论:①;②四边形是中心对称图形;③是轴对称图形;④.其中错误的结论有.A.1个B.2个C.3个D.4个二、认真填一填,试试自己的身手!9.平方根等于它本身的数是.10.若,则.11.不等式组的解集是.12.若方程无解,则.13.为了解家庭丢弃塑料袋对环境造成的影响,某班研究性学习小组的六位同学记录了自己家中一周内丢弃塑料袋的数量.结果如下(单位:个)30,28,23,18,20,31.若该班有50名学生,请你估算本周全班同学的家共丢弃塑料袋个.14.投一枚均匀的正方体骰子,面朝上的点数是5的概率是.15.如图,中,,,,则.16.某礼堂的座位排列呈圆弧形,横排座位按下列方式设置:根据提供的数据得出第排有个座位.三、用心做一做,显显你的能力!17.(本题满分8分,每小题4分,共8分)(1)计算:.(2)化简:.18.(本题满分7分)小敏有红色、白色、黄色三件上衣,又有米色、白色的两条裤子.如果她最喜欢的搭配是白色上衣配米色裤子,那么黑暗中,她随机拿出一件上衣和一条裤子,正是她最喜欢搭配的颜色.请你用列表或画树状图,求出这样的巧合发生的概率是多少?19.(本题满分7分)福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?20.(本题满分8分)表是某班学生年龄统计表.(1)请你把表中未填的项目补充完整;(2)从表中可以看出,众数是,中位数是,平均数是;(3)请你根据统计表,在图10中画出该班学生年龄统计直方图(要求标出数字).21.(本题满分9分)如图,已知是的直径,是弦,过点作于,连结.(1)求证:;(2)若,求的度数.22.(本题满分10分)已知:如图12,在直角梯形ABCD中,AD∥BC,BC=5cm,CD=6cm,∠DCB=60°,∠ABC=90°。
2014年中考数学模拟试卷含答案(精选3套)

济南市2014年初三年级学业水平考试数学全真模拟试卷(时间:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( )11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A.20°B.25°C.30°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10B.a b a b +=+C.(-a 3)6=a 18D.2a a =6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )1125A. B. C. D.23367.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C.3 D.无解8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )111A. B. C. D.248π π π π9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )x 10x 10A. B.2x 02x 0x 10x 10C. D.x 20x 20+≥+≤⎧⎧ ⎨⎨-≥-≥⎩⎩+≤+≥⎧⎧ ⎨⎨-≥-≥⎩⎩10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )11.化简2(21)÷-的结果是( )A.221B.22C.12D. 22- - - +12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1613.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.1014.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=( )A.28°B.42°C.56°D.84°15.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B→C→D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:(a+2)(a-2)+3a=________.17.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_________.18.如图,两建筑物的水平距离BC为18 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为________ m(结果不作近似计算).19.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_______.21.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)化简222x1x2x1. x1x x--+÷+-(2)解方程:15x2(x1)8x. 24++=+23.(本小题满分7分)(1)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(本小题满分8分)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1 575元,若合在一起购买折扣票,总计应付门票费1 080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(本小题满分8分)某市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽取了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14∶9∶6∶1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽取了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(本小题满分9分)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O 的距离为5,则r的取值范围为_________.27.(本小题满分9分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.28.(本小题满分9分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于点F,∠1=∠2,连接CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.参考答案1.D2.C3.B4.A5.C6.A7.C8.A9.A 10.A 11.D 12.D 13.C 14.A 15.C 16.(a-1)(a+4) 17.-10 18.123 19.6 20.n 13-()21.25522.(1)解:原式=()()()2x 1x 1x x 1x.x 1x 1+--=+- () (2)解:原方程可化为3x+2=8+x,合并同类项得:2x=6, 解得:x=3.23.(1)证明:∵∠1=∠2, ∴∠1+∠EAC=∠2+∠EAC, 即∠BAC=∠EAD.∵在△ABC 中和△AED 中,D C,BAC EAD,AB AE,∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED(AAS) (2)证明:∵BE=DF,∴BE-EF=DE-EF,∴DE=BF.∵四边形ABCD 是平行四边形, ∴AD=BC,AD ∥BC, ∴∠ADE=∠CBF,在△ADE 和△CBF 中,DE BF,ADE CBF,AD BC,=⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF(SAS), ∴AE=CF. 24.解:(1)全票为15元,则八折票价为12元,六折票价为9元. ∵100×15=1 500<1 575,∴参加郊游的七、八年级同学的总人数必定超过100人,∴由此可判断参加郊游的八年同学不少于50人.(2)设七、八年级参加郊游的同学分别有x 人、y 人. 由(1)及已知可得,x<50,50<y<100,x+y>100. 依题意可得:()15x 12y 1 575,9x y 1 080,+=⎧⎨+=⎩ 解得:x 45,y 75.=⎧⎨=⎩答:参加郊游的七、八年级同学分别为45人和75人. 25.解:(1)D 等级所占比例为:111496130=+++,则共抽取的人数为:1260().30÷=人 (2)样本中B 等级的频率为:9100%30%;14961⨯=+++C 等级的频率为:6100%20%.14961⨯=+++ (3)样本中A 等级在扇形统计图中所占圆心角度数为:1430×360=168(度); D 等级在扇形统计图中所占圆心角度数为:130×360=12(度). (4)可报考示范性高中的总人数: 300×149()3030+=230(名). 26.(1)证明:∵∠CBF=∠CFB , ∴BC=CF. ∵AC=CF , ∴AC=BC ,∴∠ABC=∠BAC.在△ABF 中,∠ABC+∠CBF+∠BAF+∠F=180°, 即2(∠ABC+∠CBF)=180°, ∴∠ABC+∠CBF=90°, ∴BF 是⊙O 的切线;(2)解:连接BD.∵点D ,点E 是弧AB 的三等分点,AB 为直径, ∴∠ABD=30°,∠ADB=90°,∠A=60°. ∵AD=5,∴AB=10,()BFtan603ABBF 103;3535r 53 5.∴︒==∴=-<<+,27.解:(1)设二次函数的解析式为:y=ax 2+bx+c.221a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.21D(2m)m 224 4.2⎧⎧=-⎪⎪=⎪⎪++==⎨⎨⎪⎪=⎪⎪-=⎩⎩=-++=-⨯++= ,,由题意有:,解得:,,所以,二次函数的解析式为:点,在抛物线上,即∴点D 的坐标为(2,4);(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得:BD=25,∵E 是BD 的中点, ∴BE=5.BE BQ 1QBE ABD BD BA 2AB 2BQ Q 10BQ BE 5QBE DBA BD BA 6557BQ 25OQ 6337Q 0.3==∴=∴==∴=⨯==∴ 当≌时,,,点的坐标为(,);当≌时,,,则,点的坐标(,) (3)如图,由A(-2,0),D(2,4),可求得直线AD 的解析式为:y=x+2,则点F 的坐标为:F(0,2).过点F作关于x轴的对称点F′,即F′(0,-2),连接CD,再连接DF′交对称轴于M′,交x轴于N′.由条件可知,点C,D关于对称轴x=1对称,∴DF′=210,F′N′=FN′,DM′=CM′,∴CF+FN′+M′N′+M′C=CF+DF′=2210+,∴四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=2210+,即四边形CFNM的最短周长为:2210+,此时直线DF′的解析式为:y=3x-2,所以存在点N的坐标为2(,0)3,点M的坐标为(1,1)使四边形CMNF周长取最小值.28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠ACO=∠1,∴∠ACO=∠2,∵∠CAM=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO ·cos ∠BOC=4×14=1, 由此可得:BE=3,AE=5,由勾股定理可得:222222222222CE CO OE 4115AC CE AE (15)5210,BC CE BE (15)326,=-=-==+=+==+=+= ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=215,∵△ACM ∽△DCN ,∴CM AC,CN CD= ∵点M 是CO 的中点,11CMOA 42,22==⨯= CM CD 2215CN 6,AC 210BN BC CN 266 6.⨯∴===∴=-=-=济南市2014年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )1111A. B. C. D.34567.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B. 22C.1D.211.如图,数轴上a,b两点表示的数分别为3和-1,点a关于点b的对称点为c,则点c所表示的数为( )A.23B.13C.23D.13-- -- -+ +12.如图,A、B、C是反比例函数kyx=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3∶1∶1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条13.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元14.已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a 的取值范围是( )A.-2≤a-1B.-2≤a <-1C.-2<a ≤-1D.-2<a <-1 15.如图,直线l :y=-x-2与坐标轴交于A 、C 两点,过A 、O 、C 三点作⊙O 1,点E 为劣弧 AO上一点,连接EC 、EA 、EO ,当点E 在劣弧上运动时(不与A 、O 两点重合),EC EA EO-的值是( )A.2 B.3 C.2 D.变化的第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a 3-ab 2=________. 17.计算124183-⨯=_________. 18.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a ().22a 2a 1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD ,垂足为E. 求证:BE=DE.(2)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC=FE. 求证:FC 是⊙O 的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1yx 4=与双曲线ky x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D ,与y 轴的正半轴交于点E ,且△AOE 的面积为10,求CD 的长.28.(本小题满分9分) 如图,抛物线21y x 1=-交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标; (3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.A3.D4.C5.B6.B7.C8.B9.A10.D 11.A 12.A 13.C 14.C 15.A19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100, ∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人. 答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC , ∴四边形OBEC 为平行四边形, 又∵AC ⊥BD ,即∠COB=90°, ∴平行四边形OBEC 为矩形; (3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2). 27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1,∴B 的坐标是(-4,-1). ∵把B 的坐标代入ky k 4x==得:, ∴反比例函数的解析式是4y .x=∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,,∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,②由①,②可解得:a=5,b=5,即OD=5. ∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15, ∴x=2,y=3, ∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1), ∴OA =OB= 1 ,∴∠OBA= 45°. 过点 C 作CD ⊥x 轴于点D, ∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.2014届中考数学模拟测试卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有8小题,每小题3分,共24分) 1.12-的倒数为【 】 A .12B .2C .2-D .1-2.下列图形中,既是轴对称图形,又是中心对称图形的是【 】 A .平行四边形 B .等边三角形 C .等腰梯形 D .正方形3.已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)【 】A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 4.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距0102=7cm ,则两圆的位置关系为【 】 A .外离 B .外切 C .相交 D .内切5.如图是由七个相同的小正方体堆成的几何体,这个几何体的俯视图是【 】6.某校在开展“爱心捐助”的活动中,初三(一)班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】A .10B .9C .8D .4 7.如图7,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于【 】 A .20°B .30°C .40° D.50°8.已知二次函数2(0)y ax bx c a =++≠的图象如右图8所示,下列结论①abc >0 ②b<a+c③2a-b=0 ④4a+2b+c >0 ⑤2c<3b⑥a+b >m(am+b)(m 为任意实数), 其中正确的结论有【 】 A . 1个 B .2个 C . 3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-3℃,那么当天的日温差是 ▲ .10.函数12-+=x x y 中自变量x 的取值范围是 ▲ . 11.如图11,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 ▲ .(填一个即可).12.因式分解:m 3n -9mn= ▲ .13.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是▲ .14.在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是 ▲ . 15.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ▲ .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .17.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 ▲ . 18.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: ▲ .(用n 的代数式 )三、解答题(本大题共有10小题,共96分) 19.(本题8分)(1) (4分)解方程组 ⎩⎨⎧=-=-;1383,32y x y x(2) (4分)821)14.3(45sin 2)31(02+-+︒--π 20.(本题8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的 a 值代入计算.21.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。
2014年中考数学模拟考试题 参考答案及解析

2014年中考数学模拟考试题 参考答案及解析一、选择题:1、C2、D3、B4、A5、C6、B7、C8、C9、C 10、C 二、填空题:11、x=3; 12、k>-2; 13、25; 14、25 三、解答题15、(1)233+ (2) 原式211x x +== 16、解:由题意得:232a a +≥- ∴2a ≤17、解:由题意得:∠PBH=60°,∠APB=45°. ∵山坡的坡度i (即tan ∠ABC )为1:3 ∴tan ∠ABC=13,∠ABC=30° , ∴∠APB=90°. 在Rt △PHB 中,PB=PBHPH∠sin =203,在Rt △PBA 中,AB=PB=203≈34.6. 答:A 、B 两点间的距离约34.6米.18、(1)把C (1,3)代入y = kx得k =3 设斜边AB 上的高为CD ,则sin ∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,①当点B 在点A 右侧时,如图1有: AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134O xyB A CD 图1此时B 点坐标为(134,0)②当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(- 54,0)所以点B 的坐标为(134,0)或(- 54,0).19、解:(1) 坐标1232131 1 (1, 2)( 1, 3) (1,21) ( 1 ,31) 2 (2, 1) ( 2, 3)( 2 ,21)( 2 ,31)3(3, 1) ( 3, 2 ) ( 3 ,21)( 3 ,31)21(21,1) (21,2) (21,3) (21 ,31) 31 (31,1) (31,2) (31,3) (31 ,21)(2)当1=x 时2=y ,∴点(1,21),(1,31)在△AOB 内部, 当2=x 时1=y ,∴点(2,21),(2,31)在△AOB 内部,当3=x 时0=y ,∴则上述点都不在△AOB 内部,当21=x 时25=y ,则点(21,1)(21,2),(21,31)在△AOB 内部, 当31=x 时,38=y 则点(31,1)(31,2), (31,21)在△AOB 内点, ∴点P 在△AOB 的内部概率()101=202P =内部xyB ACDO图220、解:(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2. 又tan ∠ADC =2,所以212DM ==.因为MC =AB =1,所以DC =DM+MC =2,即DC =BC . (2)等腰直角三角形.证明:∵DE =DF ,∠EDC =∠FBC ,DC =BC . ∴△DEC ≌△BFC (5分)∴CE =CF ,∠ECD =∠BCF . ∴∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(3)设BE =k ,则CE =CF =2k , ∴22EF k =. ∵∠BEC =135°,又∠CEF =45°,∴∠BEF =90°. ∴22(22)3BF k k k =+= ∴1sin 33BFE k k ∠==. B 卷21、8 ; 22、a+b ; 23、 124,1x x =-=-; 24、31nn + ; 25、1或4 26、解:(1)由P =-1100(x -60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P 1=41×5=205(万元) (2)若实施规划,在前2年中,当x=50时,每年最大利润为: P= 1100-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x 万元投资本地销售,而用剩下的(100-x )万元投资外地销售,则其总利润W=[-1100(x -60)2+41+(- x 2+x +160]×3=-3(x-30)2+3195当x=30时,W 的最大值为3195万元, ∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.27、解:(1)60,60;(2)∵CM ∥BP ,∴∠BPM+∠M=180°,∠PCM=∠BPC=60. ∴∠M=180°-∠BPM=180-(∠APC+∠BPC )=180°-120°=60°. ∴∠M=∠BPC=60°.(3)∵△ACM ≌△BCP ,∴CM=CP ,AM=BP . 又∠M=60°,∴△PCM 为等边三角形. ∴CM=CP=PM=1+2=3. 作PH ⊥CM 于H.在Rt △PMH 中,∠MPH=30°.∴PH=332. ∴S 梯形PBCM =11315()(23)332224PB CM PH +⨯=+⨯=. 28、解:(1)∵抛物线y=ax 2+bx+3(a≠0)经过A (3,0),B (4,1)两点,∴933016431a b a b ++=⎧⎨++=⎩解得:1252a b ==-∴y=21x 2﹣25x+3; ∴点C 的坐标为:(0,3);(2)①当△PAB 是以AB 为直角边的直角三角形,且∠PAB=90°,直线PA 与y 轴交于点D 过B 作BM ⊥x 轴交x 轴于点M ,如图(1-1)∵A (3,0),B (4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°,∴AO=DO , ∵A 点坐标为(3,0), ∴D 点的坐标为:(0,3), ∴直线AD 解析式为:y=kx+b ,将A ,D 分别代入得: ∴0=3k+b ,b=3, ∴k=﹣1, ∴y=﹣x+3, ∴y=21x 2﹣25x+3=﹣x+3, ∴x 2﹣3x=0, 解得:x=0或3, ∴y=3或0(0不合题意舍去), ∴P 点坐标为(0,3),②当△PAB 是以AB 为直角边的直角三角形,且∠PBA=90°,直线PB 与y 轴交于点D , 过B 分别作BE ⊥x 轴,BF ⊥y 轴,分别交x 轴、y 轴于点E 、F ,如图(1-2) 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D 点坐标为:(0,5),B 点坐标为:(4,1),∴直线BD 解析式为:y=kx+b ,将B ,D 分别代入得: ∴1=4k+b ,b=5, ∴k=﹣1, ∴y=﹣x+5, ∴y=21x 2﹣25x+3=﹣x+5, ∴x 2﹣3x ﹣4=0, 解得:x 1=﹣1,x 2=4, ∴y 1=6,y 2=1, ∴P 点坐标为(﹣1,6),其中(4,1)不合题意,舍去。
2014年中考数学全真模拟试题含答案(精选2套)

2014年中考数学模拟试题(一)(本试卷分A卷(100分)、B卷(60分),满分160分,考试时间120分钟)A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个实数中,绝对值最小的数是【】A.-5 B.2-C.1 D.42.一个几何体的三视图如图所示,那么这个几何体是【】A.B.C.D.3.某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为【】A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.把不等式组x>1x23-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是【】A.B.C.D.5.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】A .125°B .120°C .140°D .130°7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是【 】A .x y 2077x y 17066+=⎧⎪⎨+=⎪⎩B .x y 2077x y 17066-=⎧⎪⎨+=⎪⎩C .x y 2077x y 17066+=⎧⎪⎨-=⎪⎩ D .77x y 1706677x y 2066⎧+=⎪⎪⎨⎪-=⎪⎩ 8.如图,在 ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=【 】A .2:5B .2:3C .3:5D .3:29.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】 A .抛物线开口向上 B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)10.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线2y x 3x =-+上的概率为【 】A .118 B .112 C .19 D .1611.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为【 】A.1 B.2 C.3 D.412.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.45cm B.35cm C.55cm D.4cm二、填空题(每小题5分,共20分)13、分解因式:ab3﹣4ab=_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学模拟试题一、选择题(下列各题A、B、C、D四个选项中,有且仅有一个十正确的,每小题3分,共24分)1.|-(-2)2|=( ).A.-2B.2C.-4D.42.下列电视台的台标,是中心对称图形的是( ).3. 如图,直线l1∥l2∥l3,点A、B、C分别在直线l1、l2、l3上.若∠1=70°,∠2=50°,则∠ABC=( ).A.70°B.50°C.120°D.100°4. 下列运算正确的是( ).A.a2﹣a4=a8B.(x﹣2)(x﹣3)=x2﹣6C.2a+3a=5aD.(x﹣2)2=x2﹣45.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( ).A.B.C.D.6. 已知x=-1是关于x的方程的一个根,则a值为( ).A.-2B.1C.-2或1D.2或-17.如图是一个几何体的三视图,则这个几何体的侧面积是( ).A.12π㎝²B.8π㎝²C.6π㎝²D.3π㎝²8. “龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是( ).A.①③④B.①②③④C.①②D.③④二、填空题(每小题3分,满分21分)9.化简分式的结果是 .10.分解因式:2m3﹣8m= .11.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是 (把你认为正确的都填上).12. 如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2, 且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S n= .(用含n的代数式表示)13. 如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为 .14. 天河二号超级计算机每秒运算33.86千万亿次,这个数据用科学记数法表示为(以次为单位).15. 如图,将边长为1cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为 .三、解答题(本大题共10个小题,共86分.每小题给出必要的演算过程或推理步骤.)16.(6分)解方程组:17.(6分)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?18.(7分)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同学1分钟跳绳的次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次共抽查了多少名学生?(2)请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x≤155所在扇形的圆心角度数.(3)若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?(4)请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.19. (6分)小明和小亮玩一种游戏:三张大小,质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况.(2)请判断该游戏对双方是否公平?并说明理由.20. (7分)如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明.21.(8分)某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部) 4 000 2 500售价(元/部) 4 300 3 000该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元.(毛利润=(售价﹣进价)×销售量)(1)该商场计划购进甲、乙两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.22.(8分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B 的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)23.(12分)某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.24.(15分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)求点A的坐标和∠AOB的度数;(2)若将抛物线y=x2+2x向右平移4个单位,再向下平移2个单位,得到抛物线m,其顶点为点C.连接OC和AC,把△AOC沿OA翻折得到四边形ACOC′.试判断其形状,并说明理由;(3)在(2)的情况下,判断点C′是否在抛物线y=x2+2x上,请说明理由;(4)若点P为x轴上的一个动点,试探究在抛物线m上是否存在点Q,使以点O、P、C、Q为顶点的四边形是平行四边形,且OC为该四边形的一条边?若存在,请直接写出点Q的坐标;若不存在,请说明理由.答案参阅:1.D 2.D 3.C 4.C 5.B 6.C 7.C 8.A 9.210.2m(m+2)(m﹣2) 11.①②④ 12. 13. 14.3.386×1016 15.㎝ 16.. 17.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2) GE=BE+GD成立.理由是:∵由(1)得:△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG(SAS).∴GE=GF.∴GE=DF+GD=BE+GD.18.(1)利用95≤x<115的人数是8+16=24人,所占的比例是12%即可求解.所以抽查的总人数:(8+16)÷12%=200(人).(2)求出范围是115≤x<145的人数,扇形的圆心角度数是360度乘以对应的比例即可得解. 范围是115≤x<145的人数是:200﹣8﹣16﹣71﹣60﹣16=29(人),则跳绳次数范围135≤x≤155所在扇形的圆心角度数是:360×=81°.补图如下:(3)首先求得所占的比例,然后乘以总人数8 000即可求解.因为优秀的比例是:×100%=52.5%,所以估计全市8000名八年级学生中有多少名学生的成绩为优秀人数是:8 000×52.5%=4200(人).(4)根据实际情况,提出自己的见解即可,答案不唯一.如全市达到优秀的人数有一半以上,反映了我市学生锻炼情况很好.19.解:法一,列表法二,画树形图(1)从上面表中(树形图)可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)因为和为偶数有5次,和为奇数有4次,所以P(小明胜)=,P(小亮胜)=,所以:此游戏对双方不公平.20.(1)证明:连接OA,∵PA与圆O相切,∴PA⊥OA,即∠OAP=90°. ∵OP⊥AB,∴D为AB中点,即OP垂直平分AB,∴PA=PB.∵在△OAP和△OBP中,,∴△OAP≌△OBP(SSS),∴∠OAP=∠OBP=90°,∴BP⊥OB,则直线PB为圆O的切线;(2)答:EF2=4DO•PO.证明:∵∠OAP=∠ADO=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,即OA2=OD•OP.∵EF为圆的直径,即EF=2OA,∴EF2=OD•OP,即EF2=4OD•OP.21.(1)设商场计划购进甲种手机x部,乙种手机y部,根据意,得解得答:商场计划购进甲种手机20部,乙种手机30部.(1) (2)设甲种手机减少a部,则乙种手机增加2a部,根据意,得0.4(20-x)+0.25(30+2a)≤16,解得a≤5.设全部销售后获得的毛利润为W万元,由题意,得W=0.03(20-a)+0.05(30+2a)=0.07a+2.1.∵k=0.07>0,∴W随a的增大而增大,∴当a=5时,W最大=2.45.答:当该商场购进甲种手机15部,乙种手机40部时,全部销售后获利润最大,最大毛利润是2.45万元.22.解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD•tan∠BPD=PD•tan26.6°;在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD•tan∠CPD=PD•tan37°;∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=80,∴0.75PD﹣0.50PD=80,解得PD=320,∴BD=PD•tan26.6°≈320×0.50=160,∵OB=220,∴PE=OD=OB﹣BD=60,∵OE=PD=320,∴AE=OE﹣OA=320﹣200=120,∴tanα===0.5,∴α≈26.6°.23.解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,10),(70,8),∴,解得,所以,y=﹣0.1x+15;(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),=﹣0.2x2+16x+100,=﹣0.2(x2﹣80x+1600)+320+100,=﹣0.2(x﹣40)2+420,∵﹣0.2<0,∴x>40时,W随x的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),=﹣0.1x2+8x+250,=﹣0.1(x2﹣80x+1600)+160+250,=﹣0.1(x﹣40)2+410,∵﹣0.1<0,∴x>40时,W随x的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数性质分析,50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.24.解:(1)∵由y=x2+2x得,y=(x﹣2)2﹣2,∴抛物线的顶点A的坐标为(﹣2,﹣2),x2+2x=0,解得x1=0,x2=﹣4,∴点B的坐标为(﹣4,0),过点A作AD⊥x轴,垂足为D,∴∠ADO=90°,∴点A的坐标为(﹣2,﹣2),点D的坐标为(﹣2,0),∴OD=AD=2,∴∠AOB=45°;(2)四边形ACOC′为菱形.由题意可知抛物线m的二次项系数为,且过顶点C的坐标是(2,﹣4),∴抛物线的解析式为:y=(x﹣2)2﹣4,即y=x2﹣2x﹣2,过点C作CE⊥x轴,垂足为E;过点A作AF⊥CE,垂足为F,与y轴交与点H,∴OE=2,CE=4,AF=4,CF=CE﹣EF=2,∴OC===2,同理,AC=2,OC=AC,由反折不变性的性质可知,OC=AC=OC′=AC′,故四边形ACOC′为菱形.(3)如图1,点C′不在抛物线y=x2+2x上.理由如下:过点C′作C′G⊥x轴,垂足为G,∵OC和OC′关于OA对称,∠AOB=∠AOH=45°,∴∠COH=∠C′OG,∵CE∥OH,∴∠OCE=∠C′OG,又∵∠CEO=∠C′GO=90°,OC=OC′,∴△CEO≌△C′GO,∴OG=4,C′G=2,∴点C′的坐标为(﹣4,2),把x=﹣4代入抛物线y=x2+2x得y=0,∴点C′不在抛物线y=x2+2x上;(4)存在符合条件的点Q.∵点P为x轴上的一个动点,点Q在抛物线m上,∴设Q(a,(a﹣2)2﹣4),∵OC为该四边形的一条边,∴OP为对角线,∴=0,解得x1=6,x2=4,∴P(6,4)或(﹣2,4)(舍去),∴点Q的坐标为(6,4).。