【新人教版 八年级数学上册】13.3.2第1课时等边三角形的性质与判定知识小册子课件
八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形 第1课时 等边三角形的性质与判定说课

八年级数学上册 13.3 等腰三角形 13.3.2 等边三角形第1课时等边三角形的性质与判定说课稿(新版)新人教版一. 教材分析等腰三角形和等边三角形是八年级数学上册第13.3节的内容。
这部分内容是学生学习了三角形的基本性质之后,进一步研究三角形的特殊形态。
等腰三角形和等边三角形具有很多独特的性质,例如等腰三角形的两底角相等,等边三角形的三个角都相等,三条边都相等。
这些性质在解决实际问题中有着广泛的应用。
二. 学情分析学生在学习这部分内容时,已经掌握了三角形的基本性质,具备了一定的观察、分析和推理能力。
但等边三角形的性质和判定较为复杂,学生可能难以理解和掌握。
因此,在教学过程中,需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的教学。
三. 说教学目标1.知识与技能目标:让学生了解等腰三角形的性质和判定方法,掌握等边三角形的性质和判定方法。
2.过程与方法目标:通过观察、分析和推理,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:等腰三角形的性质和判定方法,等边三角形的性质和判定方法。
2.教学难点:等边三角形的性质和判定方法的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等。
2.教学手段:利用多媒体课件、实物模型、黑板等。
六. 说教学过程1.导入新课:通过回顾三角形的基本性质,引导学生发现等腰三角形和等边三角形的特殊性质。
2.讲解等腰三角形的性质和判定方法:利用多媒体课件和实物模型,展示等腰三角形的性质,引导学生通过观察、分析和推理得出判定方法。
3.讲解等边三角形的性质和判定方法:同样利用多媒体课件和实物模型,展示等边三角形的性质,引导学生通过观察、分析和推理得出判定方法。
4.练习巩固:设计一些具有代表性的练习题,让学生运用所学的性质和判定方法进行解答。
5.课堂小结:让学生总结等腰三角形和等边三角形的性质和判定方法。
新人教版初中数学八年级上册精品教案13.3.2 第1课时 等边三角形的性质与判定1

13.3.2等边三角形第1课时等边三角形的性质与判定1.掌握等边三角形的定义、性质和判定,明确其与等腰三角形的区别和联系.(重点) 2.能应用等边三角形的知识进行简单的计算和证明.(难点)一、情境导入观察下面图形:师:等腰三角形中有一种特殊的三角形,你知道是什么三角形吗?生:等边三角形.师:对,等边三角形具有和谐的对称美.今天我们来学习等边三角形,引出课题.二、合作探究探究点一:等边三角形的性质【类型一】利用等边三角形的性质求角度如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.解析:因为△ABC三个内角为60°,∠ABE=40°,求出∠EBC的度数,因为BE=DE,所以得到∠EBC=∠D,求出∠D的度数,利用外角性质即可求出∠CED的度数.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC -∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.【类型二】利用等边三角形的性质证明线段相等如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.解析:要证BM =EM ,根据等腰三角形的性质可知,证明△BDE 为等腰三角形即可.证明:连接BD ,∵在等边△ABC 中,D 是AC 的中点,∴∠DBC =12∠ABC =12×60°=30°,∠ACB =60°.∵CE =CD ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠E =30°,∴∠DBC =∠E =30°,∴BD =ED ,△BDE 为等腰三角形.又∵DM ⊥BC ,∴BM =EM .方法总结:本题综合考查了等腰和等边三角形的性质,其中“三线合一”的性质是证明线段相等、角相等和线段垂直关系的重要方法.【类型三】 等边三角形的性质与全等三角形的综合运用△ABC 为正三角形,点M 是BC 边上任意一点,点N 是CA 边上任意一点,且BM =CN ,BN 与AM 相交于Q 点,∠BQM 等于多少度?解析:先根据已知条件利用SAS 判定△ABM ≌△BCN ,再根据全等三角形的性质求得∠BQM =∠ABC =60°.解:∵△ABC 为正三角形,∴∠ABC =∠C =∠BAC =60°,AB =BC .在△AMB 和△BNC 中,∵⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠C ,BM =CN ,∴△AMB ≌△BNC (SAS),∴∠BAM =∠CBN ,∴∠BQM =∠ABQ +∠BAM =∠ABQ +∠CBN =∠ABC =60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.探究点二:等边三角形的判定【类型一】 等边三角形的判定等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试说明你的结论.解析:先证△ABP ≌△ACQ 得AP =AQ ,再证∠PAQ =60°,从而得出△APQ 是等边三角形. 解:△APQ 为等边三角形.证明:∵△ABC 为等边三角形,∴AB =AC .在△ABP 与△ACQ中,∵⎩⎪⎨⎪⎧AB =AC ,∠ABP =∠ACQ ,BP =CQ ,∴△ABP ≌△ACQ (SAS),∴AP =AQ ,∠BAP =∠CAQ .∵∠BAC =∠BAP+∠PAC =60°,∴∠PAQ =∠CAQ +∠PAC =60°,∴△APQ 是等边三角形.方法总结:判定一个三角形是等边三角形有两种方法:一是证明三角形三个内角相等;二是先证明三角形是等腰三角形,再证明有一个内角等于60°.【类型二】 等边三角形的性质和判定的综合运用图①、图②中,点C 为线段AB 上一点,△ACM 与△CBN 都是等边三角形.(1)如图①,线段AN 与线段BM 是否相等?请说明理由;(2)如图②,AN 与MC 交于点E ,BM 与CN 交于点F ,探究△CEF 的形状,并证明你的结论.解析:(1)由等边三角形的性质可以得出△ACN ,△MCB 两边及其夹角分别对应相等,两个三角形全等,得出线段AN 与线段BM 相等.(2)先求∠MCN =60°,通过证明△ACE ≌△MCF 得出CE =CF ,根据等边三角形的判定得出△CEF 的形状.解:(1)AN =BM .理由:∵△ACM 与△CBN 都是等边三角形,∴AC =MC ,CN =CB ,∠ACM=∠BCN =60°.∴∠MCN =60°,∠ACN =∠MCB .在△ACN 和△MCB 中,∵⎩⎪⎨⎪⎧AC =MC ,∠ACN =∠MCB ,NC =BC ,∴△ACN ≌△MCB (SAS).∴AN =BM .(2)△CEF 是等边三角形.证明:∵△ACN ≌△MCB ,∴∠CAE =∠CMB .在△ACE 和△MCF中,∵⎩⎪⎨⎪⎧∠CAE =∠CMF ,AC =MC ,∠ACE =∠FCM ,∴△ACE ≌△MCF (ASA),∴CE =CF .∴△CEF 是等边三角形.方法总结:等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件.三、板书设计等边三角形的性质和判定1.等边三角形的定义;2.等边三角形的性质;3.等边三角形的判定方法.本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质和判定.让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.在这节课中,要学生充分的自主探究,尝试提出问题和解决问题,发展学生的自主探究能力.。
第十三章 13.3 13.3.2 第1课时 等边三角形的性质与判定

高的等腰三角形.其中是等边三角形的有( D )
A.①②③
B.①②④
C.①③
D.①②③④
5. 如由于木质衣架没有柔性,在挂置衣服的时候不 太方便操作.小敏设计了一种衣架,在使用时能轻易收 拢,然后套进衣服后松开即可.如图①,衣架杆 OA= OB =18 cm,若衣架收拢时,∠AOB=60°,如图②,则 此时 A,B 两点之间的距离是 18 cm.
(1)如图①,在等边△ ABC 中,点 M 是 BC 上的任意 一点(不含端点 B,C),连接 AM,以 AM 为边作等边 △ AMN,连接 CN. 求证:∠ABC=∠ACN.
类比探究 (2)如图②,在等边△ ABC 中,点 M 是 BC 延长线上 的任意一点(不含端点 C),其他条件不变,(1)中结论 ∠ABC=∠ACN 还成立吗?请说明理由.
解:(1)证明:∵等边△ ABC,等边△ AMN, ∴AB=AC,AM=AN, ∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, ∴△BAM≌△CAN(SAS). ∴∠ABC=∠ACN.
(2)结论∠ABC=∠ACN 仍成立. 理由如下:∵等边△ ABC,等边△ AMN, ∴AB=AC, AM=AN, ∠BAC=∠MAN=60°, ∴∠BAM=∠CAN, ∴ △ BAM≌△CAN(SAS). ∴∠ABC=∠ACN.
DE⊥BC 于点 E,EF⊥AC 于点 F,则△ DEF 是( C )
A.不等边三角形 B.等腰三角形
C.等边三角形
D.以上都有可能
2. 如图,在等边△ ABC 中,AC=9,点 O 在 AC 上, 且 AO=3,点 P 是 AB 上的一动点,连接 OP,将线段 OP 绕点 O 逆时针旋转 60°得到线段 OD,要使点 D 恰好 落在 BC 上,则 AP 的长是( C )
新人教版八年级上册数学13.3.2 第1课时 等边三角形的性质与判定教案

第十三章三角形三 角 形腰三角形三线合一:_______、_______、_______轴对称图形二、新知预习类比学习一:等边三角形的性质性质 等腰三角形 等边三角形 边 两条边相等 ______条边都相等 角两个底角相等______角相等,且都是______ 三线合一 底边上的中线、高和顶角的平分线互相重合______上的中线、高和这一边所对的角的平分线互相重合对称轴1条______条要点归纳:等边三角形的三个内角都__________,并且每一个角都等于________.类比学习二:等边三角形的判定判定 等腰三角形等边三角形边 ______条边相等的三角形是等腰三角形______条边都相等的三角形是等边三角形角______个角相等的三角形是等腰三角形______个角都相等的三角形是等边三角形要点归纳:_______个角都相等的三角形是等边三角形. 三、自学自测1.已知△ABC 为等边三角形,则∠A 的度数是( ) A .30° B .45° C .60° D .90°2.已知△ABC 中,∠A=∠B=60°,AB=3cm ,则△ABC 的周长为______cm.3.△ABC 中,AB=AC ,∠A=∠C ,则∠B=______度. 四、我的疑惑____________________________________________________________________________________________________________________________________________________一、要点探究探究点1:等腰三角形的性质 典例精析例1:如图,△ABC 是等边三角形,E 是AC 上一点,D 是BC 延长线上一点,连接BE ,DE ,若∠ABE =40°,BE =DE ,求∠CED 的度数.课堂探究教学备注 配套PPT 讲授1.问题引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片6-14)方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常应用在求三角形角度的问题上,一般需结合“等边对等角”、三角形的内角和与外角的性质.变式训练:如图,△ABC是等边三角形,BD平分∠ABC,延长BC到E,使得CE=CD.求证:BD=DE.例2:△ABC为正三角形,点M是BC边上任意一点,点N是CA边上任意一点,且BM=CN,BN与AM相交于Q点,∠BQM等于多少度?方法总结:此题属于等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质判定三角形全等,而后利用全等及等边三角形的性质,求角度或证明边相等.探究点2:等边三角形的判定想一想:小明认为还有第三种方法“两条边相等且有一个角是60°的三角形也是等边三角形”,你同意吗?为什么?1.顶角为60°的等腰三角形:如图,在△ABC中,AB=AC,∠A=60°,求证:△ABC是等边三角形.证明:2.底角为60°的等腰三角形:证明:要点归纳:有一个角是_____的等腰三角形是等边三角形.典例精析教学备注3.探究点2新知讲授(见幻灯片15-23)AB C例3: 如图,在等边三角形ABC 中,点D 、E 在边AB 、AC 的延长线上,且 DE ∥BC ,求证:△ADE 是等边三角形.想一想: 若点D 、E 在边AB 、AC 的反向延长线上,且DE ∥BC ,结论依然成立吗?例4:等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论.方法总结:判定一个三角形是等边三角形有以下方法:一是证明三角形三条边相等;二是证明三角形三个内角相等;三是先证明三角形是等腰三角形,再证明有一个内角等于60°. 针对训练1.△ABC 中,∠B=60°,AB=AC ,BC=3,则△ABC 的周长为( ) A.9 B.8 C.6 D.132.如图,等边三角形ABC 中,AD 是BC 上的高,∠BDE=∠CDF=60°,图中与BD 相等的线段有( )A.5条B.6条C.7条D.8条第2题图 第3题图3.如图,△ABC 是等边三角形, DE ∥BC,则∠ADE=__________.4.如图,等边△ABC 中,D 、E 、F 分别是各边上的一点,且AD=BE=CF . 求证:△DEF 是等边三角形.教学备注 配套PPT 讲授5.课堂小结A D EB CAD E BC ABCDE【变式题】△ABC为等边三角形,且DE⊥BC,垂足为D,EF⊥AC,垂足为E,FD⊥AB,垂足为F,则△DEF是等边三角形吗?为什么?二、课堂小结等边三角形性质判定三边相等,三个角都等于_______. 三边相等每一条边上的中线、高和这一边所对的角的平分线互相重合三角相等3条对称轴有一个角等于____的等腰三角形1.等边三角形的两条高线相交成钝角的度数是( )A .105°B .120°C .135°D .150°2.如图,等边三角形ABC 的三条角平分线交于点O ,DE ∥BC ,则这个图形中的等腰三角形共有( )A. 4个B. 5个C. 6个D. 7个第2题图 第3题图 第4题图 3.在等边△ABC 中,BD 平分∠ABC ,BD=BF ,则∠CDF 的度数是( ) A .10° B .15° C .20° D .25°4.如图,△ABC 和△ADE 都是等边三角形,已知△ABC 的周长为18cm,EC =2cm,则△ADE 的周长是__________cm.5.如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以AB 为边在△ABC 外作等边△ABD ,E 是AB 的中点,连接CE 并延长交AD 于F .求证:△AEF ≌△BEC .6.如图,A 、O 、D 三点共线,△OAB 和△OCD 是两个全等的等边三角形,求∠AEB 的大小.拓展提升 7.图①、图②中,点C 为线段AB 上一点,△ACM 与△CBN 都是等边三角形.(1)如图①,线段AN 与线段BM 是否相等?请说明理由;(2)如图②,AN 与MC 交于点E ,BM 与CN 交于点F ,探究△CEF 的形状,并证明你的结论.当堂检测温馨提示:配套课件及全册导学案WORD 版见光盘或网站下载:(无须登录,直接下载)AC BDEACB DEO 教学备注 配套PPT 讲授6.当堂检测 (见幻灯片24-30)。
人教版初中数学八年级上册13.3.2 第1课时 等边三角形的性质与判定

人教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!13.3.2 等边三角形第1课时等边三角形的性质和判定备课时间201()年()月()日星期()学习时间201()年()月()日星期()学习目标1、等腰三角形成为等边三角形的条件及其推理证明。
2、理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法。
3、能够用等边三角形的知识解决相应的数学问题。
4、在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.学习重点等边三角形判定定理的发现与证明学习难点引导学生全面、周到地思考问题学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本,思考下列问题:(1)、等腰三角形成为等边三角形的条件及其推理证明(2)等边三角形的定义及等边三角形的性质和判定方法。
2、独立思考后我还有以下疑惑:二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑2、运用新知解决问题:(重点例习题的强化训练)例1:如图,△ABC是等边三角形,DE∥BC,交AB,AC于D,E。
求证△ADE是等边三角形。
五、课后反思:1、学习目标完成情况反思:2、掌握重点突破难点情况反思:3、错题记录及原因分析:学习活动设计意图自我评价课上1、本节课我对自己最满意的一件事是:2、本节课我对自己最不满意的一件事是:作业独立完成()求助后独立完成()未及时完成()未完成()EDCAB相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
数学思维可以让他们更理性地看待人生。
13.3.2 第1课时 等边三角形的性质和判定

求证:△ABC 是等边三角形.
A
证明:∵∠A =∠B ,
∴ BC = AC.
∵∠B =∠C ,
B
C
∴ AB = AC. ∴ AB = AC = BC.
∴ △ABC 是等边三角形.
知识总结
等边三角形的判定方法: 1. 三边都__相__等__的三角形是等边三角形; 2. 三个角都__相__等__的三角形是等边三角形; 3. 有一个角是___6_0_°_的等腰三角形是等边三角形.
等腰三角形 (2)有两个内角都等于 60° 的三角形是等边三角形;( √ )
(3)一腰上的高也是这条腰上的中线的等腰三角形是等边 三角形 ( × ). 两腰
2.如图,沿着 EF 折叠长方形纸片 ABCD(AD > 3 AB),
点 A、B 分别与点 A'、B' 对应.在不添加字母和线的情
况下,请添加一个条件使重叠部分的形是等边三角形
,这个条件可以是∠_E_F_G__=__6_0_°__.
A'
A
E
B' D
G
B
F
C
3.如(1)是一把折叠椅实物图,支架 AB 与 CD 交干点 O,
OD = OB,如图(2)是椅子打开时的侧面示意图(忽略材
料的厚度),椅面 MN 与地面水平线 l 平行,BD = 2AC.
∠BOD = 60°,BD ≈ 24.70 cm 那么折叠后椅子的高度
链接中考
1.(宜昌)如图,在一个池塘两旁有一条笔直小路(BC 为
小路端点)和一棵小树(A 为小树位置).测得的相关数据
为:∠ABC = 60°,∠ACB = 60°,BC = 48 米,则 AC =
__4_8__米.
13.3.2.1等边三角形的性质与判定(教案)

(1)等边三角形性质的推导:引导学生从具体实例中抽象出等边三角形的性质,理解性质背后的几何原理。
-难点解析:学生需要通过观察、分析等边三角形的图形,推导出性质,如利用全等三角形的性质证明三角相等。
(2)等边三角形判定方法的应用:学会灵活运用判定方法判断一个三角形是否为等边三角形。
-难点解析:学生在应用判定方法时,容易忽视一些细节,如夹角为60度的条件,需要教师在教学中进行强调。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等边三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调等边三角形的性质和判定方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等边三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示等边三角形性质的基本原理。
2.等边三角形的判定:教授学生如何根据给定条件判断一个三角形是否为等边三角形,包括通过三边相等、三角相等和一边及其对角的判定方法。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.空间观念:通过等边三角形的性质与判定学习,提高学生对几何图形ห้องสมุดไป่ตู้认识,发展空间想象力和直观感知能力。
2.逻辑推理:培养学生运用逻辑思维进行等边三角形判定,提升分析问题和解决问题的能力。
人教版八年级数学上册13.3.2 第1课时 等边三角形的性质与判定(002)

八年级数学上(RJ) 教学课件
轴对称
13.3.2 等边三角形
第1课时 等边三角形的性质与判定
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.探索等边三角形的性质和判定.(重点) 2.能运用等边三角形的性质和判定进行计算和证
明.(难点)
导入新课
问题引入
小明想制作一个三角形的相框,他有四根木条长 度分别为10cm,10cm,10cm,6cm,你能帮他设 计出几种形状的三角形?
典例精析
例1 如图,△ABC是等边三角形,E是AC上一点, D是BC延长线上一点,连接BE,DE,若∠ABE= 40°,BE=DE,求∠CED的度数.
解:∵△ABC是等边三角形, ∴∠ABC=∠ACB=60°. ∵∠ABE=40°, ∴∠EBC=∠ABC-∠ABE=60°-40°=20°. ∵BE=DE, ∴∠D=∠EBC=20°, ∴∠CED=∠ACB-∠D=40°.
不 是
是
是
(1)
(2)
(3)
不
一 定
是
是
是
(4)
(5)
(6)
典例精析
例3 如图,在等边三角形ABC中,DE∥BC,
求证:△ADE是等边三角形.
证明:∵ △ABC是等边三角形,
A
∴ ∠A= ∠B= ∠C.
∵ DE//BC,
D
E
∴ ∠ADE= ∠B, ∠ AED= ∠C.B
C
∴ ∠A= ∠ADE= ∠ AED.
图①
(2)△CEF是等边三角形. 证明:∵∠ACE=∠FCM=60°, ∴∠ECF=60°. ∵△ACN≌△MCB, ∴∠CAE=∠CMB. ∵AC=MC, ∴△ACE≌△MCF(ASA), ∴CE=CF. ∴△CEF是等边三角形.