18.2.2菱形(2)
18.2.2 菱形 教案

18.2.2 菱形(一)教学目的:掌握菱形概念,知道菱形与平行四边形的关系.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积.通过运用菱形知识解决具体问题,提高分析能力和观察能力.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想.重点、难点教学重点:菱形的性质1、2.教学难点:菱形的性质及菱形知识的综合应用.教学过程一、研读教材,解读目标:1、叫做菱形。
菱形是的平行四边形。
2、探究菱形的性质,并用模式表述菱形的特殊性质:3、解析教材97页探究与98页例题2与练习题1、2,102页习题5、11、12二、知识梳理有一组邻边相等的平行四边形叫菱形.与一般平行四边形相比,菱形具有哪些性质?定理:(菱形的边)(菱形的角)定理: ______________ (菱形的对角线)三、定理证明:(小组合作,先交流命题证明方法和步骤,然后自己完成证明再与组长交流)ODC BA四、典型例题例3. 如图3个全等的菱形构成的活动衣帽架,顶点A 、E 、F 、C 、G 、H 是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC 两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B 、M 处固定,则B 、M 之间的距离是多少?五、合作交流1.2.已知:如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是菱形ABCD 各边的中点,求证:OE =OF =OG =OH .A BC DE FGHO六、小结菱形的边和对角线有不同于一般的平行四边形的性质,有关菱形的几何计算问题可以化为_______三角形(_____三角形、等腰三角形),利用特殊三角形的性质来计算。
七、课堂练习1.己知:如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为 .ABCD EF2.已知四边形ABCD 是菱形,O 是两条对角线的交点,AC =8cm ,DB =6cm ,这个菱形的边长是________cm .3.已知菱形的边长是5cm ,一条对角线长为8cm ,则另一条对角线长为______cm .4.四边形ABCD 是菱形,∠ABC =120°,AB =12cm ,则∠ABD 的度数为____ , ∠DAB 的度数为______;对角线BD =_______,AC =_______;菱形ABCD 的面积为_______. 八、目标达成训练1.下列图形中,即是中心对称图形又是轴对称图形的是 ( ) A .等边三角形 B .菱形C .等腰梯形D .平行四边形2.如图,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( ) A .20 B .15 C .10D .53.如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .10cm 2B .20cm 2C .40cm 2D .80cm 2ADE P CBFCABCD第3题第5题第6题第7题4.菱形的两条对角线长分别为6和8,则它的面积为________,周长为_________。
新人教版八年级数学下册《18.2.2菱形(二)》教案-最新学习文档

新人教版八年级数学下册《18.2.2菱形(二)》教案1.复习(1)菱形的定义:一组邻边相等的平行四边形;(2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过演示,容易得到:菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、例习题分析例1(教材P109的例3)略例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.证明:∵ 四边形ABCD是平行四边形,∴ AE∥FC.∴ ∠1=∠2.又∠AOE=∠COF,AO=CO,∴ △AOE≌△COF.∴ EO=FO.∴ 四边形AFCE是平行四边形.又EF⊥AC,∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.六、随堂练习1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点。
人教初中数学八下 18.2.2《菱形》菱形的性质课件2 【经典初中数学课件汇编】

F D
C
E
A
B
27
28
• 教学反思: • 菱形的对角线很特别,要让学生利用它构
造 • 直角三角形 • 菱形的两条对角线互相垂直, • 并且每一条对角线平分一组对角;
29
19.2 一次函数
19.2.1 正比例函数
1.掌握正比例函数的概念和一般解析式; 2.掌握正比例函数的图象和简单性质; 3.会正比例函数的简单应用.
1996年,鸟类研究者在芬兰给一只燕鸥 (候鸟)套上标志环;大约128天后,人们 在2.56万千米外的澳大利亚发现了它. (1)这只百余克重的小鸟大约平均每天飞行多少千米?
【解析】 25 600÷128 = 200(千米).
(2) 这只燕鸥的行程y(单位:千米)与飞行时间x(单位:
天)之间有什么关系?
③菱形的对角线相等.④菱形的对角线互相垂直.
⑤菱形的一条对角线平分一组对角.⑥菱形的对角相
等.
4.菱形的面积公式:①
②
.
5.菱形既是
图形,又是
图形. 21
6.已知菱形的周长是12cm,那么它的
边长是__3_c_m__.
7.如下图:菱形ABCD中∠BAD=60
度,则∠ABD60=0 _______.
证明(∠1A)∵B四C 边形ABCD是菱
B
形∴DA=DC(菱形的定 义∵D) A=BC,AB=DC
∴DB⊥AC, DB平分∠ADC(三线合一)
∴AB=BC=DC=DA
同理: DB平分∠ABC;
(2)在△DAC中,又∵AO=CO AC平分∠DAB和∠DC15B
D
O
A
C
B
(1)菱形具有平行四边形的一切性质;
人教版八下数学18.2.2菱形 课时2 菱形的判定教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 菱形课时2菱形的判定教案【教学目标】知识与技能目标1.理解并运用菱形的定义和两个判定定理进行有关的推理论证和计算.2.了解菱形的现实应用和常用判别条件.过程与方法目标1.从菱形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会菱形的性质与判定的区别与联系.2.让学生经历探索菱形判定定理的过程,理解并掌握菱形的判定方法,积累几何学习的经验,培养学生的观察能力、动手能力,发展合情推理和演绎推理能力.情感、态度与价值观目标1.让学生在探究过程中加深对菱形的理解,养成主动探索的学习习惯.2.通过菱形与矩形判定方法的类比,进一步体会类比的思想方法的作用. 【教学重点】菱形的定义和判定定理的运用.【教学难点】探究菱形的判定条件并合理利用它进行论证和计算.【教学过程设计】一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角.这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究知识点一:菱形的判定【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形例 1如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.证明:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形例 2如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:(1)AC⊥BD;(2)四边形ABCD是菱形.解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD 即可;(2)首先证得四边形ABCD是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA =CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD 是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】 利用“四条边相等的四边形是菱形”判定四边形是菱形例 3 如图,已知△ABC ,按如下步骤作图:①分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于P ,Q 两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过C 作CF ∥AB 交PQ 于点F ,连接AF .(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解析:(1)由作图知PQ 为线段AC 的垂直平分线,从而得到AE =CE ,AD =CD .然后根据CF ∥AB 得到∠EAC =∠FCA ,∠CFD =∠AED ,利用“AAS ”证得两三角形全等即可;(2)根据(1)中全等得到AE =CF .然后根据EF 为线段AC 的垂直平分线,得到EC =EA ,FC =F A .从而得到EC =EA =FC =F A ,利用“四边相等的四边形是菱形”判定四边形AECF 为菱形.证明:(1)由作图知PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD .∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD (AAS);(2)∵△AED ≌△CFD ,∴AE =CF .∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =F A ,∴EC =EA =FC =F A ,∴四边形AECF 为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.知识点二:菱形的判定的应用【类型一】 菱形判定中的开放性问题例 4如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD ∥BC ,∴∠F AD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠F AD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】 菱形的性质和判定的综合应用例 5 如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由. 解析:(1)首先利用“SSS ”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,⎩⎨⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎨⎧BC =CD ,∠BCF =∠DCF ,CF =CF , ∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°, ∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、教学小结本节课你有哪些收获?学生归纳小结菱形的判定方法:(1)菱形的定义:有一组邻边相等的平行四边形是菱形.(2)菱形的判定定理:对角线互相垂直的平行四边形是菱形.(3)菱形的判定定理:四条边相等的四边形是菱形四、学习检测1.下列说法正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形解析:根据菱形的定义与判定定理直接辨别各选项正确与否.由菱形的定义,可知一组邻边相等的平行四边形叫做菱形,因此,选项B正确.故选B.2.已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.其中能使平行四边形ABCD是菱形的有( )A.①③B.②③C.③④D.①②③解析:对角线互相垂直的平行四边形是菱形,一组邻边相等的平行四边形是菱形,因此①③都可以判定平行四边形ABCD是菱形.故选A.3.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形解析:根据菱形的判定定理(四条边相等的四边形是菱形)即可判定,由题中图的作法可知AD=AB=DC=BC,∴四边形ABCD是菱形.故选B.4.一个平行四边形的一条边长是3,两条对角线的长分别是4和2,这是一个特殊的平行四边形吗?为什么?求出它的面积解析:先根据题意画出相应的图形,如图.根据平行四边形的对角线互相平分,可求出OB及OA的长,由勾股定理的逆定理可得∠BOA为直角,进而得AC⊥BD.根据“对角线互相垂直的平行四边形是菱形”可得平行四边形ABCD为菱形.根据菱形的面积等于对角线乘积的一半可求得菱形ABCD的面积.解:这是一个菱形.理由如下:如图,▱ABCD中,AC=4,BD=2,AB=3,∴OA=AC=2,OB=BD=.∵OA2+OB2=22+()2=9,而AB2=32=9,∴OA2+OB2=AB2.∴△AOB是直角三角形,∠AOB=90°.∴AC⊥BD.∴▱ABCD是菱形(对角线互相垂直的平行四边形是菱形).S菱形ABCD=AC·BD=×4×2=4.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时1 矩形的性质1.菱形的判定有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形.2.菱形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时1矩形的性质学案【学习目标】1.理解矩形的概念,知道矩形与平行四边形的区别与联系;2.会证明矩形的性质,会用矩形的性质解决简单的问题;3.掌握直角三角形斜边中线的性质,并会简单的运用.【学习重点】理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.【学习难点】会会用这些菱形的判定方法进行有关的证明和计算.【自主学习】一、知识回顾1.菱形的定义是什么?性质有哪些?2.根据菱形的定义,可得菱形的第一个判定方法是什么?用数学语言如何表示?有一组邻边_____的______________是菱形.数学语言:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形二、自主探究知识点1:对角线互相垂直的平行四边形是菱形想一想前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相_________的平行四边形是菱形.证一证已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC ⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形.∴OA____OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA______BC.∴四边形ABCD是________.要点归纳:菱形的判定定理:对角线互相_______的____________是菱形.几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.【典例探究】例1如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.【跟踪练习】在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CD知识点2:四条边相等的四边形是菱形活动1已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?AC的长为半径作弧,小刚:分别以A、C为圆心,以大于12两条弧分别相交于点B , D,依次连接A、B、C、D四点.想一想根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?猜想:四条边__________的四边形是菱形.证一证已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证明:∵AB=BC=CD=AD;∴AB=CD , BC=AD.∴四边形ABCD是___________.又∵AB=BC,∴四边形ABCD是__________.要点归纳:菱形的判定定理:四条边都______的四边形是菱形.几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形 ABCD是________.【典例探究】例2如图,在△ABC中, AD是角平分线,点E,F分别在AB,AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.例3 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.方法总结:四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.例4如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH 是菱形.【跟踪练习】1.如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?2.如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?3.如上图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?4.在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?探究点3:菱形的性质与判定的综合运用【典例探究】例4如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.【跟踪练习】如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.三、知识梳理内容菱形的判定定义法:有一组邻边相等的平行四边形是菱形.判定定理:对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.运用定理进行计算和证明四、学习过程中我产生的疑惑【学习检测】1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.2.一边长为5cm平行四边形的两条对角线的长分别为24cm和26cm,那么平行四边形的面积是_____________.3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°4.下列图形中,不一定为菱形的是()A.四条边相等的四边形B.用两个能完全重合的等边三角形拼成的四边形C.一组邻边相等的平行四边形D.有一个角为60度的平行四边形D(解析:根据菱形的判定定理作答即可.)3.如图所示,△ABC中,E,F,D分别是AB,AC,BC上的点,且DE∥AC,DF∥AB.要使AEDF是一个菱形,在不改变图形的前提下,你需添加的一个条件是.AE=AF(解析:(答案不唯一)添加AE=AF或DE=DF或AD是∠BAC的平分线或AE=ED,AF=FD等都可以.)4.木工师傅在做菱形的窗格时,总是保证四条边框一样长,你能说出其中的道理吗?解:四条边相等的四边形是菱形.5.已知菱形的周长为24,一条对角线长为8,求菱形的面积.解:由题意知菱形的边长为6,故另一条对角线长为4,故菱形的面积为×8×4=16.4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE ∥BD.求证:四边形O CED是菱形.6.如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD 于点G.求证四边形ACGF是菱形.证明:∵AF∥CD,FG∥AC,∴四边形ACGF为平行四边形,∵CE是△ABC外角∠ACD的平分线,∴∠ACF=∠FCG,∵AF∥CG,∴∠AFC=∠FCG,∴∠ACF=∠AFC,∴AF=AC,∴▱ACGF为菱形.5. 如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE ∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.8.如图所示,在△ABC中,∠BAC=90°,AD⊥BC,BE,AF分别是∠ABC,∠DAC的平分线,BE和AD交于G,试说明四边形AGFE的形状.解:四边形AGFE是菱形.理由如下:由∠BAC=90°,AD⊥BC,易得∠BAD=∠C,∵∠AGE=∠ABG+∠BAG,∠AEB=∠EBD+∠C,又∵∠ABG=∠EBC,∴∠AGE=∠AEG.∴AE=AG.由AF是∠DAC的平分线,易知AF⊥GE且AF平分GE.同理可得BE⊥AF且BE平分AF.∴AF与GE垂直且互相平分,从而可知四边形AGFE是菱形.6.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.9.如图(1),在△ABC和△EDC中,AC=CE=CB=DC,∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC分别交于M,H.(1)求证CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形,并证明你的结论.(1)证明:∵△ABC和△EDC都是等腰直角三角形,且AC=CE=CB=CD,∴∠A=∠D=45°.∵∠ACB=∠DCE=90°,∴∠ACB-∠ECB=∠DCE-∠ECH,即∠ACF=∠DCH,在△AFC 和△DHC 中, ⎪⎩⎪⎨⎧∠=∠=∠=∠,,,DCH ACF DC AC D A ∴△AFC ≌△DHC (ASA),∴CF =CH. (2)解:菱形,证明如下:∵∠BCE =45°,∴∠ACF =∠BCE =∠DCH =45°,即∠ACD =135°, 又∠A =∠D =45°,∴在四边形ACDM 中,∠AMD =360°-∠ACD ∠A -∠D =135°, ∴∠ACD =∠AMD ,∴四边形ACDM 是平行四边形.又AC =CD ,∴四边形ACDM 是菱形.。
2020届人教版八年级数学下册 18.2.2菱形(2)同步练习(含解析)

18.2.2菱形(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1. 一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形基础知识和能力拓展训练一、选择题1.下列说法中,不正确的是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分且垂直的四边形是菱形C. 一组对边平行另外一组对边相等的四边形是平行四边形D. 有一组邻边相等的矩形是正方形2.如图,在□ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD 于点F,连接AE,CF,则四边形AECF是()A. 矩形B. 菱形C. 正方形D. 无法确定3.如图所示,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AB=4,BC=3,则四边形CODE的周长是()A. 10B. 12C. 18D. 244.如图,要使平行四边形ABCD成为菱形,需添加的条件是()A. AC=BDB. ∠1=∠2C. ∠ABC=90°D. ∠1=90°5.如图,已知四边形ABCD是平行四边形,下列结论中错误的是( )A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形6.如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是()A. ②④B. ①③C. ②③④D. ①③④7.如图,正方形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,CE,AF,正方形ABCD 的面积为1,则阴影部分的面积为()A. 12B.13C.14D.158.如图,已知∠AOB,王华同学按下列步骤作图:(1)以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D,分别以点C、点D为圆心,大于12CD的长为半径作弧,两弧交于点E,作射线OE;(2)在射线OE上取一点F,分别以点O、点F为圆心,大于12OF的长为半径作弧,两弧交于两点G、H,作直线GH,交OA于点M,交OB于点N;(3)连接FM、FN.那么四边形OMFN一定是( )A. 梯形B. 矩形C. 菱形D. 正方形9.如图,在四边形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于点E,AE平分∠BAC,AO=CO,AD=DC=2,下面结论:①AC=2AB;②AB3S△ADC=2S△ABE;④BO⊥AE.其中正确的有( )A. 1个B. 2个C. 3个D. 4个10.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0)B.(1345.5,)C.(1345,)D.(1345.5,0)二、填空题11.对角线相等的四边形顺次连接各边中点所得的四边形是__________.12.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是__________13.如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF 是菱形.14.如图,在菱形ABCD中,E是对角线AC上一点,若AE=BE=2,AD=3,则CE=_____.、重合),PE 15.如图,菱形ABCD中,AC=2,BD=5,P是AC上一动点(P不与A C∥BC交AB于E,PF∥CD交AD于F,则图中阴影部分的面积为______________。
新人教部编版初中八年级数学18.2.2 第2课时 菱形的判定

证一证
已知:如图,四边形ABCD是平行四边形,对角线AC
与BD相交于点O ,AC⊥BD.
求证:□ABCD是菱形.
证明: ∵四边形ABCD是平行四边形.
B
∴OA=OC.
O
又∵AC⊥BD,
A
C
∴BD是线段AC的垂直平分线.
D
∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).
长冲中学数学组-“四学一测”活力课堂
长冲中学数学组-“四学一测”活力课堂
长冲中学活力课堂
典例精析
例3 如图,在△ABC中, AD是角平分线,点E、F分别在 AB、 AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.
证明: ∵ ∠1= ∠2,
又∵AE=AC,AD=AD, ∴ △ACD≌ △AED (SAS).
A
21 F
求证:四边形ABCD是菱形.
证明:∵ OA=4,OB=3,AB=5,
D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
长冲中学数学组-“四学一测”活力课堂
长冲中学活力课堂
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
A
FD BE C
请补充完整的 证明过程
分析:易知四边形ABCD是平行四边形,只需证一 组邻边相等或对角线互相垂直即可进一步判断. 由题意可知BC边上的高和CD边上的高相等, 然后通过证△ABE≌△ADF,即得AB=AD.
长冲中学数学组-“四学一测”活力课堂
18.2.2 菱形(二)作业答案

18.2.2 菱形(二)作业答案菱形的判定方法:菱形的定义:一组邻边相等的平行四边形是菱形;菱形判定方法1 对角线互相垂直的平行四边形是菱形.菱形判定方法2 四边都相等的四边形是菱形.例1 、已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.求证:四边形CEHF为菱形.证明:∵BE平分∠CBA,∴∠CBE=∠HBE,∵∠ACB=90°,CD⊥AB,∴∠ACB=∠BDF,∵∠EFC=∠DFB=90°-∠HBE,∠CEF=90°-∠CBE,∴∠CEF=∠CFE,∴CE=CF,∵BE平分∠CBA,∠ACB=90°,EH⊥AB,∴CE=EH,∴CF=EH,∵EH⊥AB、CD⊥AB∴CD∥EH∴四边形CEHF为平行四边形∴四边形CEHF 为菱形1.填空:(1)对角线互相平分的四边形是平行四边形;(2)对角线互相垂直平分的四边形是_菱形;(3)对角线相等且互相平分的四边形是_矩形;(4)两组对边分别平行,且对角线互相垂直的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.提示:(1)画出两条互相垂直的直线。
(2以垂足为圆心,在一条垂线上截取两段3cm的线段,在另一条垂线上截取两段4cm的线段。
(3)连接截取的四个端点。
(4)依据对角线互相垂直平分的四边形是菱形。
3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
证明:∵矩形ABCD∴OD=OC∵DE∥AC,CE∥BD∴四边形OCED是平行四边形∴四边形OCED是菱形4.下列条件中,能判定四边形是菱形的是( D).(A)两条对角线相等(B)两条对角线互相垂直(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分5.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.证明:连接AM,∵DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC,∴EF∥DM,DG∥ME,∴四边形DNEM是平行四边形,∵M是等腰三角形ABC底边BC上的中点,∴AM是∠BAC的角平分线,∴DM=ME,∴四边形MEND是菱形.6.做一做:设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.。
【最新】人教版八年级数学下册第十八章《18.2.2 菱形(2)》精品课件.ppt

五、强化训练
1、判断题,对的画“√”错的画“×”
(1)对角线互相垂直的四边形是菱形( × )
(2)一条对角线垂直另一条对角线的四边形是菱形( × )
(3)对角线互相垂直且平分的四边形是菱形(√ )
(4)对角线相等的四边形是菱形(× )
(5)对角线互相平分且邻边相等的四边形是菱形.(√ )
(6)两组对边分别平行且一组邻边相等的四边形是菱
B
O
D
∵AO= 1 ∴ AB2 2
AC= 3 5 = AO2
BO=
1 2
+ BO2
BD=6
C
∴ AOB是直角三角形
∴AC⊥ BD
∴ ABCD是菱形
1
1
2
2
6 5 36 5
四、归纳小结
1、菱形的判定定理: (1)(定义)有__一_组__邻__边_相__等__的__平_行__四__边_形__是__菱__形__; (2)_对__角__线__互__相__垂__直__的__平__行__四__边__形__是__菱__形_____; (3)_有__四__条__边__相__等__的__四__边__形__是__菱__形__._________. 2、菱形判定定理的应用. 3、学习反思:___________________________
“引导学生读懂数学书”课题 研究成果配套课件
新课引入 展示目标 研读课文 归纳小结 强化训练
第十八章 平行四边形 第九课时
18.2.2 菱形(二)
一、新课引入
想一想:菱形和矩形分别比平行 四边形多了哪些性质?怎样判 定一个四边形是矩形?
一、新课引入
矩形
菱形
定义 有一角是直角的平行 有一组邻边相等的平行四
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间5分钟
相信自己,我能行!
时间5分钟
容易得到:菱形判定方法1.
通过菱形的作图,可以得到从一般四边形直接判定菱形的方法:
菱形判定方法2.
下列命题中是真命题的是()
A.对角线互相平分的四边形是菱形
B.对角线互相平分且相等的四边形是菱形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分的四边形是菱形
3、提升能力
1、如图, ABCD的对角线AC、BD相交于点O,且AB=5,AO=4,B0=3.
求证: ABCD是菱形.
2、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.求证:四边形AFCE是菱形.
3、已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于.求证:四边形CEHF为菱形.
4、总结梳理
1、判定一个四边形是菱形的方法:
八年级数学科导学案
课型:新授课
设计:林琳
审核:
审批:
班级:
小组:
姓名:
使用时间:月日星期
课题:18.2.2菱形(2)
第课时
累计课时
学习过程:(定向导学教材P57-58)
流程及学习内容
学习要求和方法
一、解读目标
.学习目标:1、理解并掌握菱形的定义及两个判定方法;
2、会用这些判定方法进行有关的论证和计算;
有一组邻边的平行四边形
菱形
对角线互相的平行四边形
2、菱形的判定定理的符号语言:
判定定理(1)
判定定理(2)
5、过关检测(教师根据班级情况自行准备)
时间5分钟
人之所以能,是相信能!
时间10分钟
先独学,再对学。小组内展示。
判定方法1包括两个条件:(1);
(2)
数学是各式各样的证明技巧。
时间20分钟
认真思考,独立完成,再小组内讨论。小组内安排好小老师,帮助帮助学困同学理解,并安排好大展示。
二、夯实基础
1.复习
(1)菱形的定义:;
(2)菱形的性质1;
性质2;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?
2.要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?
3.用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?