解析几何压轴大题专题突破

合集下载

【高中数学名师精华荟萃总结】《解析几何大题》专题突破

【高中数学名师精华荟萃总结】《解析几何大题》专题突破

专题突破解析几何(学生版)•一、轨迹问题•二、求值•三、最值(范围)问题•四、定点、定位、定值问题•五、存在性问题恒成立与有解问题一、轨迹问题问题一: 利用直接法求轨迹方程直接法是将动点满足的几何条件或者等量关系直接坐标化, 列出等式化简即得动点轨迹方程.具体步骤为通过建立适当的坐标系, 设点、列式、化简从而得出轨迹方程.线段与互相垂直平分于点, , , 动点满足, 求动点的轨迹方程.问题二: 利用定义法求轨迹方程当动点的轨迹满足某种曲线的定义时, 就可由曲线的定义直接写出轨迹方程.2. , 为动点, 、为定点, , , 且满足条件,求动点A的轨迹方程.3.已知动圆与两定圆和都外切, 求动圆圆心的轨迹方程.问题三: 利用转移法求轨迹方程动点是随着另一动点(称之为相关点)而运动的, 这时我们可以用动点坐标来表示相关点坐标, 根据相关点所满足的方程即可求得动点的轨迹方程, 这种求轨迹的方法叫相关点法。

转移法(也称代入法,相关点法): 转移法求轨迹方程的步骤:(1)设两个动点坐标为, 其中动点在已知曲线上, 动点为所求轨迹上的点;(2)寻找两个动点之间的关系, 把用表示;将用表示的代入已知曲线方程, 整理即得所求.4.已知点为圆上的一个动点, 点的坐标为, 试求线段中点的轨迹方程.问题四: 利用待定系数法求轨迹方程待定系数法求轨迹方程的步骤: (1)设出所求的曲线方程;(2)求出字母参数;(3)代入所设. 5.在面积为 的 中, .建立适当坐标系, 求以 为焦点且过 的椭圆方程.问题五: 参数法求轨迹方程6.设椭圆方程为 ,过点 的直线 交椭圆于 两点, 是坐标原点,点 满足 .当 绕点 旋转时, 求: 动点 的轨迹方程.7、(2011安徽理)设 , 点 的坐标为 , 点 在抛物线 上运动, 点 满足 , 经过点 与 轴垂直的直线交抛物线于点 , 点 满足 , 求点 的轨迹方程.8. (2013四川) 已知椭圆 : 的两个焦点分别为 , 且椭圆 经过点 . (Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点 的直线 与椭圆 交于 、 两点, 点 是线段 上的点, 且 , 求点 的轨迹方程. 9、如图, 动点 到两定点 、 构成 , 且 , 设动点 的轨迹为 。

高考数学大题突破 专项五 解析几何

高考数学大题突破 专项五 解析几何

3c).
由 y= 3(x-c),得 c=x- 33y.
于是������������ =
83 15
������-
3 5
������,
8 5
������-
33 5
������
, ������������=(x,
3x).
高考大题
高考大题增分专项五 高考中的解析几何
增分专项
考情分析
典例突破
专题总结
-7-
题型一 题型二 题型三 题型四 题型五 题型六
解(1)设 F1(-c,0),F2(c,0)(c>0).由题意,可得|PF2|=|F1F2|,即
(������-������)2 + ������2=2c,
整理得 2
������ ������
2 + ������������-1=0,得������������=-1(舍去)或������������ = 12.所以 e=12.
因此 OA 的斜率与 OB 的斜率之积为������1 ·������2 = -4=-1,
������1 ������2 4
所以 OA⊥OB.故坐标原点 O 在圆 M 上.
高考大题
高考大题增分专项五 高考中的解析几何
增分专项
考情分析
典例突破
专题总结
-9-
题型一 题型二 题型三 题型四 题型五 题型六
(1)求椭圆的离心率 e; (2)设直线 PF2 与椭圆相交于 A,B 两点,M 是直线 PF2 上的点,满
足������������ ·������������=-2,求点 M 的轨迹解析几何
增分专项
考情分析
典例突破
专题总结

解析几何压轴大题突破策略——“破题式”三式

解析几何压轴大题突破策略——“破题式”三式

解析几何压轴大题突破策略——“破题式”三式第一式——定点、定值问题一.定点问题[例1]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明直线l 过定点,并求出该定点的坐标.[解](1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2).由(y =kx +m ,x 24+y 2=1,)消去y 可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0.∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1)=(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km 4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为(0,-35).[解题技法]圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.[过关训练]1.如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求k ·k 1的值;(2)当k 变化时,试问直线MN 是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.解:(1)设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0),直线l 与直线l 1的交点为(0,1),∴l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0,由y +y 02=x +x 02+1,得y +y 0=x +x 0+2,①由y -y 0x -x 0=-1,得y -y 0=x 0-x ,②由①②得(y =x 0+1,y 0=x +1,)∴k ·k 1=yy 0-(y +y 0)+1xx 0=(x +1)(x 0+1)-(x +x 0+2)+1xx 0=1.(2)由(y =kx +1,x 24+y 2=1)得(4k 2+1)x 2+8kx =0,设M (x M ,y M ),N (x N ,y N ),∴x M =-8k4k 2+1,y M =1-4k 24k 2+1.同理可得x N =-8k 14k 21+1=-8k4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2.k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k 4+k 2=8-8k 48k (3k 2-3)=-k 2+13k ,直线MN :y -y M =k MN (x -x M ),即y -1-4k 24k 2+1=-k 2+13k (x --8k 4k 2+1),即y =-k 2+13k x -8(k 2+1)3(4k 2+1)+1-4k 24k 2+1=-k 2+13k x -53.∴当k 变化时,直线MN 过定点(0,-53).二.定值问题[例2](2019·沈阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2的面积最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM ―→·ON ―→=m 时,点O 到直线MN 的距离为定值,求这个定值.[解](1)当点P 位于短轴的端点时,△PF 1F 2的面积最大,即12×2c ×b =3,则有(c 2=a 2-b 2,bc =3,c a =12,)解得(a =2,b =3,)所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立(3x 2+4y 2=12,y =kx +n ,)消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n 2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n 2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0.当MN ⊥x 轴时,由m =0得k OM =±1,联立(3x 2+4y 2=12,y =±x ,)消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上可知,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.[解题技法]圆锥曲线中定值问题的特点及两大解法(1)特点:待证几何量不受动点或动线的影响而有固定的值.(2)两大解法:①从特殊入手,求出定值,再证明这个值与变量无关;②引起变量法:其解题流程为[过关训练]2.(2019·昆明调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,P (2,55)是椭圆C 上的点.(1)求椭圆C 的方程;(2)O 为坐标原点,A ,B 是椭圆C 上不关于坐标轴对称的两点,设OD ―→=OA ―→+OB ―→,证明:直线AB 的斜率与OD 的斜率的乘积为定值.解:(1)由题意知2c =4,即c =2,则椭圆C 的方程为x 2a 2+y 2a 2-4=1,因为点P (2,55)在椭圆C 上,所以4a 2+15(a 2-4)=1,解得a 2=5或a 2=165(舍去),所以椭圆C 的方程为x 25+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),x 1≠x 2且x 1+x 2≠0,由OA ―→+OB ―→=OD ―→,得D (x 1+x 2,y 1+y 2),所以直线AB 的斜率k AB =y 1-y 2x 1-x 2,直线OD 的斜率k OD =y 1+y 2x 1+x 2,由(x 215+y 21=1,x 225+y 22=1,)得15(x 1+x 2)(x 1-x 2)+(y 1+y 2)(y 1-y 2)=0,即y 1+y 2x 1+x 2·y 1-y 2x 1-x 2=-15,所以k AB ·k OD =-15.故直线AB 的斜率与OD 的斜率的乘积为定值-15.第二式——最值、范围问题一.最值问题[例1](2018·南昌模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过焦点F 的直线交C 于A (x 1,y 1),B (x 2,y 2)两点,y 1y 2=-4.(1)求抛物线C 的方程;(2)如图,点B 在准线l 上的正投影为E ,D 是C 上一点,且AD ⊥EF ,求△ABD 面积的最小值及此时直线AD 的方程.[解](1)依题意知F (p 2,0),当直线AB 的斜率不存在时,y 1y 2=-p 2=-4,解得p =2.当直线AB 的斜率存在时,设l AB :y =k (x -p 2)(k ≠0),由(y =k (x -p 2),y 2=2px ,)消去x 并整理,得y 2-2p k y -p 2=0,则y 1y 2=-p 2,由y 1y 2=-4,得p 2=4,解得p =2.综上所述,抛物线C 的方程为y 2=4x .(2)设D (x 0,y 0),B (t 24,t ),则E (-1,t ),又由y 1y 2=-4,可得A (4t 2,-4t ).因为k EF =-t 2,AD ⊥EF ,所以k AD =2t,则直线l AD 的方程为y +4t =2t (x -4t 2),化简得2x -ty -4-8t2=0.由(2x -ty -4-8t 2=0,y 2=4x ,)消去x 并整理,得y 2-2ty -8-16t 2=0,Δ=(-2t )2-4(-8-16t 2)=4t 2+64t2+32>0恒成立,所以y 1+y 0=2t ,y 1y 0=-8-16t2.于是|AD |=1+t 24|y 1-y 0|=1+t 24(y 1+y 0)2-4y 1y 0=4+t 2t 2+16t2+8,设点B 到直线AD 的距离为d ,则d =(t 22-t 2-4-8t 2)4+t 2=(t 2+16t 2+8)24+t 2.所以S △ABD =12|AD |·d =14(t 2+16t 2+8)3≥16,当且仅当t 4=16,即t =±2时取等号,即△ABD 面积的最小值为16.当t =2时,直线AD 的方程为x -y -3=0;当t =-2时,直线AD 的方程为x +y -3=0.[解题技法]圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.[过关训练]1.(2018·安康质检)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1和F 2,由M (-a ,b ),N (a ,b ),F 2和F 1这4个点构成了一个高为3,面积为33的等腰梯形.(1)求椭圆的方程;(2)过点F 1的直线和椭圆交于A ,B 两点,求△F 2AB 面积的最大值.解:(1)由已知条件,得b =3,且2a +2c 2×3=33,∴a +c =3.又a 2-c 2=3,∴a =2,c =1,∴椭圆的方程为x 24+y 23=1.(2)显然,直线的斜率不能为0,设直线的方程为x =my -1,A (x 1,y 1),B (x 2,y 2).联立方程,得(x 24+y 23=1,x =my -1,)消去x 得,(3m 2+4)y 2-6my -9=0.∵直线过椭圆内的点,∴无论m 为何值,直线和椭圆总相交.∴y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.∴=12|F 1F 2||y 1-y 2|=|y 1-y 2|=(y 1+y 2)2-4y 1y 2=12m 2+1(3m 2+4)2=4m 2+1(m 2+1+13)2=41m 2+1+23+19(m 2+1),令t =m 2+1≥1,设f (t )=t +19t,易知t ∈(0,13)时,函数f (t )单调递减,t ∈(13,+∞)时,函数f (t )单调递增,∴当t=m 2+1=1,即m =0时,f (t )取得最小值,f (t )min =109,此时,取得最大值3.二.范围问题[例2](2019·合肥模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且以原点为圆心,椭圆的焦距为直径的圆与直线x sin θ+y cos θ-1=0相切(θ为常数).(1)求椭圆C 的标准方程;(2)若椭圆C 的左、右焦点分别为F 1,F 2,过F 2作直线l 与椭圆交于M ,N 两点,求F 1M ―→·F 1N―→的取值范围.[解](1)由题意,得(c a =22,1sin 2θ+cos 2θ=c ,a 2=b 2+c 2)解得(c =1,a 2=2,b 2=1,)故椭圆C 的标准方程为x 22+y 2=1.(2)由(1)得F 1(-1,0),F 2(1,0).①若直线l 的斜率不存在,则直线l ⊥x 轴,直线l 的方程为x =1,不妨记M (1,22),N (1,-22),∴F 1M ―→=(2,22),F 1N ―→=(2,-22),故F 1M ―→·F 1N ―→=72.②若直线l 的斜率存在,设直线l 的方程为y =k (x -1),由(y =k (x -1),x 22+y 2=1)消去y 得,(1+2k 2)x 2-4k 2x +2k 2-2=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2.①F 1M ―→=(x 1+1,y 1),F 1N ―→=(x 2+1,y 2),则F 1M ―→·F 1N ―→=(x 1+1)(x 2+1)+y 1y 2=(x 1+1)(x 2+1)+k (x 1-1)·k (x 2-1)=(1+k 2)x 1x 2+(1-k 2)(x 1+x 2)+1+k 2,结合①可得F 1M ―→·F 1N ―→=2(k 4-1)2k 2+1+4k 2-4k 42k 2+1+1+k 2=7k 2-12k 2+1=72-922k 2+1,由k 2≥0可得F 1M ―→·F 1N ―→∈(-1,72).综上可知,F 1M ―→·F 1N ―→的取值范围是(-1,72).[解题技法]解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[过关训练]2.(2019·惠州调研)如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),若S △PAM ∶S △PBN =λ,求实数λ的取值范围.解:(1)因为BF 1⊥x 轴,所以点B (-c ,-b 2a ),所以(a =2,b 2a (a +c )=12,a 2=b 2+c 2)解得(a =2,b =3,c =1,)所以椭圆C 的标准方程是x 24+y 23=1.(2)因为S △PAM S △PBN =12|PA |·|PM |·sin ∠APM 12|PB |·|PN |·sin ∠BPN =2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2),所以PM ―→=-λ2PN ―→.由(1)可知P (0,-1),设直线MN 的方程为y =kx -1(k >12),M (x 1,y 1),N (x 2,y 2),联立方程,得(y =kx -1,x 24+y 23=1,)化简得,(4k 2+3)x 2-8kx -8=0.得(x 1+x 2=8k 4k 2+3,x 1·x 2=-84k 2+3.)(*)又PM ―→=(x 1,y 1+1),PN ―→=(x 2,y 2+1),有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,(2-λ)2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k2+4∈(1,4),则1<(2-λ)2λ<4且λ>2,解得4<λ<4+2 3.综上所述,实数λ的取值范围为(4,4+23).第三式——证明、探索性问题一.证明问题[例1](2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠OMB .[解](1)由已知得F (1,0),直线l 的方程为x =1.则点A 的坐标为(1,22)或(1,-22).又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2,即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2),则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k ,得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k (x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0,所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k 2k 2+1=0.从而k MA +k MB =0,故MA ,MB 的倾斜角互补.所以∠OMA =∠OMB .综上,∠OMA =∠OMB 成立.[解题技法]圆锥曲线中证明问题,常见位置关系方面的,如证明相切、垂直、过定点等;数量关系方面的,如存在定值、恒成立等.在熟悉圆锥曲线的定义和性质的前提下,要多采用直接法证明,但有时也会用到反证法.[过关训练]1.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ―→+FA ―→+FB ―→=0.证明:|FA ―→|,|FP ―→|,|FB ―→|成等差数列,并求该数列的公差.证明:(1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .①由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P (1,-32),|FP ―→|=32,于是|FA ―→|=(x 1-1)2+y 21=(x 1-1)2+3(1-x 214)=2-x 12.同理|FB ―→|=2-x 22.所以|FA ―→|+|FB ―→|=4-12(x 1+x 2)=3.故2|FP ―→|=|FA ―→|+|FB ―→|,即|FA ―→|,|FP ―→|,|FB ―→|成等差数列.设该数列的公差为d ,则2|d |=||FB ―→|-|FA ―→||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.二.探索性问题[例2](2019·合肥质检)如图,在平面直角坐标系中,点F (-1,0),过直线l :x =-2右侧的动点P 作PA ⊥l 于点A ,∠APF 的平分线交x 轴于点B ,|PA |=2|BF |.(1)求动点P 的轨迹C 的方程;(2)过点F 的直线q 交曲线C 于M ,N ,试问:x 轴正半轴上是否存在点E ,直线EM ,EN 分别交直线l 于R ,S 两点,使∠RFS 为直角?若存在,求出点E 的坐标,若不存在,请说明理由.[解](1)设P (x ,y ),由平面几何知识得|PF ||PA |=22,即(x +1)2+y 2|x +2|=22,化简得x 22+y 2=1,所以动点P 的轨迹C 的方程为x 22+y 2=1(x ≠2).(2)假设满足条件的点E (n,0)(n >0)存在,设直线q 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),R (-2,y 3),S (-2,y 4).联立(x 2+2y 2=2,x =my -1,)消去x ,得(m 2+2)y 2-2my -1=0,y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2,x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1=-m 2m 2+2-2m 2m 2+2+1=2-2m 2m 2+2,x 1+x 2=m (y 1+y 2)-2=2m 2m 2+2-2=-4m 2+2,由条件知y 1x 1-n =y 3-2-n ,y 3=-(2+n )y 1x 1-n,同理y 4=-(2+n )y 2x 2-n ,k RF =y 3-2+1=-y 3,k SF =-y 4.因为∠RFS 为直角,所以y 3y 4=-1,所以(2+n )2y 1y 2=-[x 1x 2-n (x 1+x 2)+n 2],(2+n )21m 2+2=2-2m 2m 2+2+4n m 2+2+n 2,所以(n 2-2)(m 2+1)=0,n =2,故满足条件的点E 存在,其坐标为(2,0).[解题技法]存在性问题的求解方法(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解存在性问题常用的方法.[过关训练]2.(2019·福州四校联考)已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点分别为F1,F2,短轴的一个端点为P,△PF1F2内切圆的半径为b3,设过点F2的直线l被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3.(1)求椭圆C的标准方程;(2)在x轴上是否存在一点T,使得当l变化时,总有TS与TR所在直线关于x轴对称?若存在,请求出点T的坐标;若不存在,请说明理由.解:(1)由内切圆的性质,得12×2c×b=12×(2a+2c)×b3,得ca=12.将x=c代入x2a2+y2b2=1,得y=±b2a,所以2b2a=3.又a2=b2+c2,所以a=2,b=3,故椭圆C的标准方程为x24+y23=1.(2)当直线l垂直于x轴时,显然x轴上任意一点T都满足TS与TR所在直线关于x轴对称.当直线l不垂直于x轴时,假设存在T(t,0)满足条件,设l的方程为y=k(x-1),R(x1,y1),S(x2,y2).联立(y=k(x-1),3x2+4y2-12=0,)得(3+4k2)x2-8k2x+4k2-12=0,由根与系数的关系得(x1+x2=8k23+4k2,x1x2=4k2-123+4k2,)①其中Δ>0恒成立,由TS与TR所在直线关于x轴对称,得k TS+k TR=0(显然TS,TR的斜率存在),即y1x1-t+y2x2-t=0.②因为R,S两点在直线y=k(x-1)上,所以y1=k(x1-1),y2=k(x2-1),代入②得k(x1-1)(x2-t)+k(x2-1)(x1-t)(x1-t)(x2-t)=k[2x1x2-(t+1)(x1+x2)+2t](x1-t)(x2-t)=0,即2x1x2-(t+1)(x1+x2)+2t=0,③将①代入③得8k2-24-(t+1)8k2+2t(3+4k2)3+4k2=6t-243+4k2=0,④则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.【牛刀小试】1.(2018·郑州一检)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与直线ax +2by -3ab =0相切.(1)求椭圆C 的离心率;(2)如图,过F 1作直线l 与椭圆分别交于P ,Q 两点,若△P Q F 2的周长为42,求F 2P ―→·F 2Q ―→的最大值.解:(1)由题意知|-3ab |a 2+4b 2=c ,即3a 2b 2=c 2(a 2+4b 2)=(a 2-b 2)(a 2+4b 2).化简得a 2=2b 2,所以e =1-b 2a 2=22.(2)因为△P Q F 2的周长为42,所以4a =42,得a =2,由(1)知b 2=1,所以椭圆C 的方程为x 22+y 2=1,且焦点F 1(-1,0),F 2(1,0),①若直线l 的斜率不存在,则直线l ⊥x 轴,直线方程为x =-1,P (-1,22),Q (-1,-22),F 2P ―→=(-2,22),F 2Q ―→=(-2,-22),故F 2P ―→·F 2Q―→=72.②若直线l 的斜率存在,设直线l 的方程为y =k (x +1),由(y =k (x +1),x 2+2y 2=2,)消去y 并整理得(2k 2+1)x 2+4k 2x +2k 2-2=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1,F 2P ―→·F 2Q ―→=(x 1-1,y 1)·(x 2-1,y 2)=(x 1-1)(x 2-1)+y 1y 2=(k 2+1)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=(k 2+1)2k 2-22k 2+1+(k 2-1)(-4k 22k 2+1)+k 2+1=7k 2-12k 2+1=72-92(2k 2+1),由k 2>0可得F 2P ―→·F 2Q ―→∈(-1,72).综上所述,F 2P ―→·F 2Q ―→∈(-1,72),所以F 2P ―→·F 2Q ―→的最大值是72.2.(2019·沈阳教学质量监测)设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→=2NM ―→.(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.解:(1)设P (x ,y ),易知N (x,0),NP ―→=(0,y ),又NM ―→=12NP ―→=(0,y 2),∴M (x ,y 2),又点M 在椭圆上,∴x 29+(y 2)24=1,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:当直线l 1与x 轴重合时,|AB |=6,|CD |=163,∴1|AB |+1|CD |=1748.当直线l 1与x 轴垂直时,|AB |=163,|CD |=6,∴1|AB |+1|CD |=1748.当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k (x -1)(k ≠0),则直线l 2的方程为y =-1k(x -1),设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),联立直线l 1与曲线E 的方程,得(y =k (x -1),x 29+y 28=1,)得(8+9k 2)x 2-18k 2x +9k 2-72=0,可得(Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)>0,x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,)∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=48(1+k 2)8+9k 2,同理可得x 3+x 4=188k 2+9,x 1x 2=9-72k 28k 2+9.则|CD |=1+1k 2·(x 3+x 4)2-4x 3x 4=48(1+k 2)9+8k 2.∴1|AB |+1|CD |=8+9k 248(k 2+1)+9+8k 248(k 2+1)=1748.综上可得1|AB |+1|CD |为定值.3.(2019·惠州调研)已知点C 为圆(x +1)2+y =8的圆心,P 是圆上的动点,点Q 在圆的半径CP 上,且有点A (1,0)和AP 上的点M ,满足M Q ―→·AP ―→=0,AP ―→=2AM ―→.(1)当点P 在圆上运动时,求点Q 的轨迹方程;(2)若斜率为k 的直线l 与圆x 2+y 2=1相切,与(1)中所求点Q 的轨迹交于不同的两点F ,H ,O 是坐标原点,且34≤OF ―→·OH ―→≤45时,求k 的取值范围.解:(1)由题意知M Q 是线段AP 的垂直平分线,所以|CP |=|Q C |+|Q P |=|Q C |+|Q A |=22>|CA |=2,所以点Q 的轨迹是以点C ,A 为焦点,焦距为2,长轴长为22的椭圆,所以a =2,c =1,b =a 2-c 2=1,故点Q 的轨迹方程是x 22+y 2=1.(2)设直线l :y =kx +t ,F (x 1,y 1),H (x 2,y 2),直线l 与圆x 2+y 2=1相切⇒|t |k 2+1=1⇒t 2=k 2+1.联立(x 22+y 2=1,y =kx +t)⇒(1+2k 2)x 2+4ktx +2t 2-2=0,Δ=16k 2t 2-4(1+2k 2)(2t 2-2)=8(2k 2-t 2+1)=8k 2>0⇒k ≠0,x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2,所以OF ―→·OH ―→=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kt (x 1+x 2)+t 2=(1+k 2)(2t 2-2)1+2k 2+kt -4kt 1+2k 2+t 2=(1+k 2)2k 21+2k 2-4k 2(k 2+1)1+2k 2+k 2+1=1+k 21+2k 2,所以34≤1+k 21+2k 2≤45⇒13≤k 2≤12⇒33≤|k |≤22,所以-22≤k ≤-33或33≤k ≤22.故k 的取值范围是(-22,-33)∪(33,22).4.已知抛物线C :y 2=4x ,过其焦点F 作两条相互垂直且不平行于坐标轴的直线,它们分别交抛物线C 于点P 1,P 2和点P 3,P 4,线段P 1P 2,P 3P 4的中点分别为M 1,M 2.(1)求线段P 1P 2的中点M 1的轨迹方程.(2)求△FM 1M 2面积的最小值.(3)过M 1,M 2的直线l 是否恒过定点?若是,求出定点坐标;若不是,请说明理由.解:(1)由题设条件得焦点F (1,0),设直线P 1P 2的方程为y =k (x -1),k ≠0.联立(y =k (x -1),y 2=4x ,)得k 2x 2-2(2+k 2)x +k 2=0,则Δ=[-2(2+k 2)]2-4k 2·k 2=16(1+k 2)>0.设P 1(x 1,y 1),P 2(x 2,y 2),设M 1(xM 1,yM 1),(3)当k ≠±1时,由(2)知直线l 的斜率为k ′=k 1-k 2,∴直线l 的方程为y +2k =k 1-k 2(x -2k 2-1),即yk 2+(x -3)k -y =0,(*)当x =3,y =0时,方程(*)对任意k (k ≠±1)均成立,即直线l 过定点(3,0).当k =±1时,直线l 的方程为x =3,也过定点(3,0).综上可知,直线l 恒过定点(3,0).————————————————————————————————————《初、高中数学教研微信系列群》简介:目前有8个群(7个高中群、1个初中群),共3000多大学教授、教师、中学优秀、特、高级教师,省、市、区县教研员、教辅公司数学编辑、报刊杂志初、高中数学编辑等汇聚而成,是一个围绕初、高中数学教学研究展开教研活动的微信群.宗旨:脚踏实地、不口号、不花哨、接地气的初、高中数学教研!特别说明:1.本系列群只探讨初、高中数学教学研究、数学试题研究等相关话题;2.由于本群是集“研究—写作—发表(出版)”于一体的“桥梁”,涉及业务合作,特强调真诚交流,入群后立即群名片:教师格式:省+市+真实姓名,如:四川成都张三编辑格式:公司或者刊物(简写)+真实姓名欢迎各位老师邀请你身边热爱初、高中数学教研(不喜欢研究的谢绝)的教师好友(学生谢绝)加入,大家共同研究,共同提高!群主二维码:见右图————————————————————————————————————。

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编含解析

高考数学压轴专题(易错题)备战高考《平面解析几何》难题汇编含解析

新单元《平面解析几何》专题解析一、选择题1.已知点M 是抛物线24x y =上的一动点,F 为抛物线的焦点,A 是圆C :22(1)(4)1x y -+-=上一动点,则||||MA MF +的最小值为( )A .3B .4C .5D .6【答案】B 【解析】 【分析】根据抛物线定义和三角形三边关系可知当,,M A P 三点共线时,MA MF +的值最小,根据圆的性质可知最小值为CP r -;根据抛物线方程和圆的方程可求得CP ,从而得到所求的最值. 【详解】如图所示,利用抛物线的定义知:MP MF =当,,M A P 三点共线时,MA MF +的值最小,且最小值为1CP r CP -=-Q 抛物线的准线方程:1y =-,()1,4C415CP ∴=+= ()min 514MA MF ∴+=-=本题正确选项:B 【点睛】本题考查线段距离之和的最值的求解,涉及到抛物线定义、圆的性质的应用,关键是能够找到取得最值时的点的位置,从而利用抛物线和圆的性质来进行求解.2.已知椭圆C :2212x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C 于点B ,若3FA FB =u u u v u u u v,则AF u u u v =( )A 2B .2C 3D .3【答案】A 【解析】 【分析】设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v,得043x =,013y n =,根据点B 在椭圆上,求得n=1,进而可求得2AF =u u u v【详解】 根据题意作图:设点()2,A n ,()00,B x y .由椭圆C :2212x y += ,知22a =,21b =,21c =,即1c =,所以右焦点F (1,0).由3FA FB =u u u v u u u v,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =,013y n =. 将x 0,y 0代入2212x y +=,得221411233n ⎛⎫⎛⎫⨯+= ⎪ ⎪⎝⎭⎝⎭.解得21n =, 所以()2212112AF n u u u v =-+=+=故选A 【点睛】本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.3.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( ) A .22B 22-C .22D 22+【答案】D 【解析】 【分析】设P 、Q 、M 、N分别为第一、二、三、四象限内的点,根据对称性可得出,22P c c ⎛⎫ ⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题.4.已知点(,)P x y 是直线240x y -+=上一动点,直线,PA PB 是圆22:20C x y y ++=的两条切线,,A B 为切点,C 为圆心,则四边形PACB 面积的最小值是( ) A .2 BC.D .4【答案】A 【解析】圆22:20C x y y ++=即22(y 1)1x ++=,表示以C (0,-1)为圆心,以1为半径的圆。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

解析几何压轴题题型分类及专题探讨解析

解析几何压轴题题型分类及专题探讨解析

解析几何压轴题题型分类及专题探讨解析解析几何压轴题型梳理及探讨题型一:直线和圆锥曲线的位置关系问题已知直线l:y=kx+1与椭圆C:4m x^2 + y^2 = 1过动点(x,y),求m的取值范围。

解:根据直线l:y=kx+1的方程可知,直线恒过定点(-1,1),椭圆C:4m x^2 + y^2 = 1过定点(0,±√m),且m≠4.如果直线l:y=kx+1和椭圆C:4m x^2 + y^2 = 1始终有交点,则m≥1,且m≠4,即1≤m且m≠4.规律提示:通过直线的代数形式,可以看出直线的特点:l:y=kx+1→过定点(-1,1)l:y=k(x+1)→过定点(-1,0)l:y-2=k(x+1)→过定点(-1,2)题型二:弦的垂直平分线问题直线y=x与曲线y=x^2交于A、B两点,在x轴上是否存在一点E(x,0),使得△ABE是等边三角形,若存在,求出x;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于1.设直线l:y=k(x+1),k≠1,A(x1,y1),B(x2,y2)。

由y=k(x+1)①y=x^2②直线和抛物线交于两点,得△ABE的边长为√2|k-1|,若△ABE为等边三角形,则|k-1|=1,即k=0或k=2.当k=0时,直线l:y=1与x轴平行,不存在点E使得△ABE是等边三角形。

当k=2时,x=-(y-1)/2,代入②得到y^2-2y+5/4=0,无实数根,所以不存在点E使得△ABE是等边三角形。

题型三:动弦过定点的问题曲线x^2/a^2 + y^2/b^2 = 1上动点P(x1,y1),过点Q(a,0)的弦交于点M,求证:PM过定点。

解:设弦所在直线方程为y=kx+b,由过点Q(a,0)得到b=0,即弦所在直线过原点。

弦的斜率为k=y1/x1,所以弦的方程为y=y1/x1*x,代入曲线方程得到x^2/a^2 + (y1^2/x1^2)*x^2/b^2 = 1,整理得到x^2 = a^2*y1^2/(b^2-x1^2),所以M的坐标为(x2,y2)=(2a^2*x1/(b^2-x1^2)。

高中数学压轴题目突破练——解析几何(共42张PPT)

高中数学压轴题目突破练——解析几何(共42张PPT)

进而得到 x1+x2=-81m8 ,x1·x2=m21-818.
因为直线 l 与椭圆 C 相交于 A,B 两点, 所以 Δ=(8m)2-4×18×(m2-18)>0,
化简得 m2<162,解得-9 2<m<9 2.
因为以线段 AB 为直径的圆恰好经过原点, 所以O→A·O→B=0,所以 x1x2+y1y2=0.
解析
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
1.已知两条直线 l1:y=x,l2:ax-y=0,其中 a 为实数,当这两
条直线的夹角在0,1π2内变动时,a 的取值范围是
(C )
A.(0,1) B. 33, 3 C. 33,1∪(1, 3) D.(1, 3)
是 2 3.
练出高分
A组 专项基础训练
1
2
3
4
5
6
7
8
9
8.(10 分)已知椭圆 C 的中心为坐标原点 O,一个长轴顶点为(0,2),
它的两个短轴顶点和焦点所组成的四边形为正方形,直线 l 与 y
轴交于点 P(0,m),与椭圆 C 交于异于椭圆顶点的两点 A,B,且 A→P=2P→B. (1)求椭圆的方程;(2)求 m 的取值范围.
解析
由抛物线定义得以 AB 为直径的圆与抛物线的准线相切, 利用直角三角形中勾股定理得到弦长的解析式,再求弦长 的最小值.设以 AB 为直径的圆的半径为 r,则|AB|=2r≥4, r≥2,且圆心到 x 轴的距离是 r-1,所以在 x 轴上所截得 的弦长为 2 r2-r-12=2 2r-1≥2 3,即弦长的最小值
1
2

高中数学高考58第九章 平面解析几何 高考专题突破5 第2课时 定点与定值问题

高中数学高考58第九章 平面解析几何 高考专题突破5  第2课时 定点与定值问题
123456
技能提升练
5.(2018·保定模拟)设椭圆 C:ax22+by22=1(a>b>0)的离心率 e= 23,左顶点 M 到 直线ax+by=1 的距离 d=455,O 为坐标原点. (1)求椭圆 C 的方程;
123456
(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明: 点O到直线AB的距离为定值.
思维升华
圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究 变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点 与变量无关.
跟踪训练 1 已知焦距为 2 2的椭圆 C:ax22+by22=1(a>b>0)的右顶点为 A,直 线 y=43与椭圆 C 交于 P,Q 两点(P 在 Q 的左边),Q 在 x 轴上的射影为 B,且 四边形 ABPQ 是平行四边形. (1)求椭圆 C 的方程;
(1)求C的方程;
解 由椭圆定义得|MF1|+|MF2|=4,

由垂直得|MF1|2+|MF2|2=|F1F2|2=4(4-b2),

由题意得 S△MF1 F2 =12|MF1|·|MF2|=1,

由①②③,可得 b2=1,C 的方程为x42+y2=1.
123456
(2)设C的上顶点为H,过点(2,-1)的直线与椭圆交于R,S两点(异于H),求 证:直线HR和HS的斜率之和为定值,并求出这个定值.
123456
2.(2018·威海模拟)已知抛物线C:y2=2px(p>0)的焦点F,直线y=4与y轴的交 点为P,与抛物线C的交点为Q,且|QF|=2|PQ|. (1)求p的值; 解 设 Q(x0,4),由抛物线定义,|QF|=x0+2p, 又|QF|=2|PQ|,即 2x0=x0+p2,解得 x0=p2, 将点 Qp2,4代入抛物线方程,解得 p=4.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何压轴大题专题突破1. 已知命题 p :方程x 22m+y 29−m=1 表示焦点在 y 轴上的椭圆,命题 q :双曲线y 25−x 2m=1 的离心率 e ∈(√62,√2),若命题 p ,q 中有且只有一个为真命题,求实数 m 的取值范围.2. 在直角坐标系 xOy 中,曲线 C 1 的参数方程为 {x =√3cosα,y =sinα,(α 为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρsin (θ+π4)=2√2.(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;(2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 ∣PQ ∣ 的最小值及此时 P 的直角坐标.3. 在直角坐标系 xOy 中,直线 C 1:x =−2,圆 C 2:(x −1)2+(y −2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求 C 1,C 2 的极坐标方程;(2)若直线 C 3 的极坐标方程为 θ=π4(ρ∈R ),设 C 2 与 C 3 的交点为 M ,N ,求 △C 2MN 的面积.4. 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1,直线 l 与抛物线相交于不同的 A ,B 两点. (1)求抛物线的标准方程;(2)如果直线 l 过抛物线的焦点,求 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ 的值; (3)如果 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =−4,直线 l 是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.5. 已知抛物线 C:y 2=2px (p >0) 与直线 x −√2y +4=0 相切. (1)求该抛物线的方程;(2)在 x 轴正半轴上,是否存在某个确定的点 M ,过该点的动直线 l 与抛物线 C交于 A ,B 两点,使得 1∣AM∣+1∣BM∣ 为定值.如果存在,求出点 M 坐标;如果不存在,请说明理由.6. 在平面直角坐标系 xOy 中,动点 A 的坐标为 (2−3sinα,3cosα−2),其中 α∈R .在极坐标系(以原点 O 为极点,以 x 轴非负半轴为极轴)中,直线 C 的方程为 ρcos (θ−π4)=a .(1)判断动点 A 的轨迹的形状;(2)若直线 C 与动点 A 的轨迹有且仅有一个公共点,求实数 a 的值.7. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a +y 2b =1(a >b >0) 的离心率为 √63.且过点 (3,−1).(1)求椭圆 C 的方徎;(2)动点 P 在直线 l :x =−2√2 上,过 P 作直线交椭圆 C 于 M ,N 两点,使得PM =PN ,再过 P 作直线 lʹ⊥MN ,直线 lʹ 是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.8. 在平面直角坐标系 xOy 中,C 1:{x =t,y =k (t −1)(t 为参数).以原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C 2:ρ2+10ρcosθ−6ρsinθ+33=0. (1)求 C 1 的普通方程及 C 2 的直角坐标方程,并说明它们分别表示什么曲线; (2)若 P ,Q 分别为 C 1,C 2 上的动点,且 ∣PQ ∣ 的最小值为 2,求 k 的值.9. 设 F 1,F 2 分别是椭圆 C:x 2a 2+y 2b 2=1(a >b >0) 的左,右焦点,M 是 C 上一点且MF 2 与 x 轴垂直.直线 MF 1 与 C 的另一个交点为 N . (1)若直线 MN 的斜率为 34,求 C 的离心率;(2)若直线 MN 在 y 轴上的截距为 2,且 ∣MN∣=5∣F 1N ∣,求 a ,b .10. 已知抛物线 E:x 2=2py (p >0),直线 y =kx +2 与 E 交于 A ,B 两点,且 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =2,其中 O 为原点. (1)求抛物线 E 的方程;(2)点 C 坐标为 (0,−2),记直线 CA ,CB 的斜率分别为 k 1,k 2,证明:k 12+k 22−2k 2 为定值.11. 已知椭圆的一个顶点为 A (0,−1),焦点在 x 轴上.若右焦点到直线 x −y +2√2=0 的距离为 3. (1)求椭圆的方程;(2)设椭圆与直线 y =kx +m (k ≠0) 相交于不同的两点 M ,N .当 ∣AM∣=∣AN∣时,求 m 的取值范围.12. 双曲线 C 与椭圆x 28+y 24=1 有相同的焦点,直线 y =√3x 为 C 的一条渐近线.求双曲线 C 的方程.13. 已知不过第二象限的直线 l:ax −y −4=0 与圆 x 2+(y −1)2=5 相切. (1)求直线 l 的方程;(2)若直线 l 1 过点 (3,−1) 且与直线 l 平行,直线 l 2 与直线 l 1 关于直线 y =1 对称,求直线 l 2 的方程.14. 在直角坐标系 xOy 中,圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).以 O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆 C 的极坐标方程;(2)直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3 与圆 C 的交点为 O ,P ,与直线 l 的交点为 Q ,求线段 PQ 的长.15. 双曲线与椭圆有共同的焦点 F 1(0,−5),F 2(0,5),点 P (3,4) 是双曲线的渐近线与椭圆的一个交点,求椭圆的方程和双曲线方程.16. 在抛物线 y =4x 2 上有一点 P ,若点 P 到直线 y =4x −5 的距离最短,求该点 P坐标和最短距离.17. 已知函数 y =a 2−x +1(a >0,且 a ≠1)的图象恒过定点 A ,点 A 在直线 mx +ny =1(mn >0) 上,求 1m+1n 的最小值.18. 已知直线 l:y =x +m 与抛物线 y 2=8x 交于 A ,B 两点, (1)若 ∣AB ∣=10,求 m 的值;(2)若 OA ⊥OB ,求 m 的值.19. 若椭圆的对称轴在坐标轴上,两焦点与两短轴端点正好是正方形的四个顶点,又焦点到同侧长轴端点的距离为 √2−1,求椭圆的方程.20. 讨论直线 l:y =kx +1 与双曲线 C:x 2−y 2=1 的公共点的个数.21. 已知 p :方程 x 2+2mx +(m +2)=0 有两个不等的正根;q :方程x 2m+3−y 22m−1=1 表示焦点在 y 轴上的双曲线.(1)若 q 为真命题,求实数 m 的取值范围; (2)若“p 或 q ”为真,“p 且 q ”为假,求实数 m 的取值范围.22. 已知双曲线的焦点在 x 轴上,∣F 1F 2∣=2√3,渐近线方程为 √2x ±y =0,问:过点 B (1,1) 能否作直线 l ,使 l 与双曲线交于 M ,N 两点,并且点 B 为线段 MN 的中点?若存在,求出直线 l 的方程;若不存在,请说明理由.23. 已知点 P (2,0) 及圆 C :x 2+y 2−6x +4y +4=0.(1)设过 P 的直线 l 1 与圆 C 交于 M ,N 两点,当 ∣MN∣=4 时,求以 MN 为直径的圆 Q 的方程;(2)设直线 ax −y +1=0 与圆 C 交于 A ,B 两点,是否存在实数 a ,使得过点P (2,0) 的直线 l 2 垂直平分弦 AB ?若存在,求出实数 a 的值;若不存在,请说明理由.24. 在直角坐标系 xOy 中,已知直线 l:{x =1+√22ty =2+√22t(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线 C:ρ2(1+sin 2θ)=2. (1)写出直线 l 的普通方程和曲线 C 的直角坐标方程;(2)设点 M 的直角坐标为 (1,2),直线 l 与曲线 C 的交点为 A ,B ,求 ∣MA ∣⋅∣MB ∣ 的值.25. 已知椭圆 C :x 2a2+y 2b 2=1(a >b >0),离心率为 √32,两焦点分别为 F 1,F 2,过 F 1的直线交椭圆 C 于 M ,N 两点,且 △F 2MN 的周长为 8. (1)求椭圆 C 的方程;(2)过点 P (m,0) 作圆 x 2+y 2=1 的切线 l 交椭圆 C 于 A ,B 两点,求弦长 ∣AB∣ 的最大值.26. 已知数列 {a n } 的首项为 1,S n 为数列 {a n } 的前 n 项和,S n =qS n−1+1,其中q >0,n >1,n ∈N ∗.(1)若 2a 2,a 3,a 2+2 成等差数列,求 {a n } 的通项公式; (2)设双曲线 x 2−y 2a n2=1 的离心率为 e n ,且 e 2=3,求 e 12+e 22+⋯+e n 2.27. 已知曲线 C 的极坐标方程为 ρ=2cosθ−4sinθ,以极点为原点,极轴为 x 轴的正半轴,建立平面直角坐标系,直线 l 的参数方程为 {x =1+tcosα,y =−1+tsinα(t 为参数).(1)判断直线 l 与曲线 C 的位置关系,并说明理由; (2)若直线 l 和曲线 C 相交于 A ,B 两点,且 ∣AB ∣=3√2,求直线 l 的斜率.28. 已知椭圆x 2a+y 2b =1(a >b >0) 的离心率 e =√63,坐标原点到直线 l:y =bx +2的距离为 √2.(1)求椭圆的方程;(2)若直线 y =kx +2(k ≠0) 与椭圆相交于 C ,D 两点,是否存在实数 k ,使得以 CD 为直径的圆过点 E (−1,0)?若存在,求出 k 的值,若不存在,请说明理由.29. 在平面直角坐标系 xOy 中,直线 l 经过点 P (−3,0),其倾斜角为 α,以原点 O 为极点,以 x 轴非负半轴为极轴,与直角坐标系 xOy 取相同的长度单位,建立极坐标系.设曲线 C 的极坐标方程为 ρ2−2ρcosθ−3=0. (1)若直线 l 与曲线 C 有公共点,求倾斜角 α 的取值范围; (2)设 M (x,y ) 为曲线 C 上任意一点,求 x +y 的取值范围.30. 椭圆与双曲线有许多优美的对称性质.对于椭圆x 2a +y 2b =1(a >b >0) 有如下命题:AB 是椭圆x 2a +y 2b =1(a >b >0) 的不平行于对称轴且不过原点的弦,M 为AB 的中点,则 k OM ⋅k AB =−b 2a 为定值.那么对于双曲线x 2a −y 2b =1(a >0,b >0) 则有命题:AB 是双曲线 x 2a −y 2b =1(a >0,b >0) 的不平行于对称轴且不过原点的弦,M 为 AB 的中点,则 k OM ⋅k AB = 定值 .(在横线上填上正确的结论)并证明你的结论.31. (1)求中心在原点,焦点在 x 轴上,焦距等于 4,且经过点 P(3,−2√6) 的椭圆方程; (2)求 e =√63,并且过点 (3,0) 的椭圆的标准方程.32. 已知抛物线 y 2=4x ,焦点为 F ,顶点为 O ,点 P 在抛物线上移动,Q 是 OP 的中点,M 是 FQ 的中点,求点 M 的轨迹方程.33. 已知点 A (0,−2),椭圆 E :x 2a2+y 2b 2=1(a >b >0) 的离心率为 √32,F 是椭圆的焦点,直线 AF 的斜率为2√33,O 为坐标原点.(1)求 E 的方程;(2)设过点 A 的直线 l 与 E 相交于 P ,Q 两点,当 △OPQ 的面积最大时,求 l 的方程.34. P 为椭圆x 225+y 29=1 上一点,F 1,F 2 为左右焦点,若 ∠F 1PF 2=60∘.(1)求 △F 1PF 2 的面积; (2)求 P 点的坐标.35. 已知双曲线 C:x 2a −y 2b =1(a >0,b >0) 的渐近线方程为:y =±√3x ,右顶点为(1,0).(1)求双曲线 C 的方程;(2)已知直线 y =x +m 与双曲线 C 交于不同的两点 A ,B ,且线段 AB 的中点为 M (x 0,y 0).当 x 0≠0 时,求 y0x 0 的值.36. 已知双曲线x 216−y 24=1 的两焦点为 F 1,F 2.(1)若点 M 在双曲线上,且 MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,求 M 点到 x 轴的距离; (2)若双曲线 C 与已知双曲线有相同焦点,且过点 (3√2),求双曲线 C 的方程.37. 椭圆x 2a+y 2b =1(a >b >0) 的两个焦点为 F 1,F 2,点 P 在椭圆 C 上,且 ∣PF 1∣=43,∣PF 2∣=143,PF 1⊥PF 2.(1)求椭圆 C 的方程;(2)若直线 L 过圆 x 2+y 2+4x −2y =0 的圆心 M 交椭圆于 A ,B 两点,且 A ,B 关于点 M 对称,求直线 L 的方程.38. 已知半径为 5 的圆的圆心在 x 轴上,圆心的横坐标是整数,且与直线 4x +3y −29=0 相切. (1)求圆的方程;(2)设直线 ax −y +5=0(a >0) 与圆相交于 A ,B 两点,求实数 a 的取值范围; (3)在 (Ⅱ) 的条件下,是否存在实数 a ,使得弦 AB 的垂直平分线 l 过点 P (−2,4),若存在,求出实数 a 的值;若不存在,请说明理由.39. 已知直线 C 1:{x =1+tcosα,y =tsinα(t 为参数),圆 C 2:{x =cosθ,y =sinθ(θ 为参数).(1)当 α=π3 时,求 C 1 与 C 2 的交点坐标;(2)过坐标原点 O 作 C 1 的垂线,垂足为 A ,P 为 OA 的中点,当 α 变化时,求点 P 轨迹的参数方程,并指出它是什么曲线.40. 已知圆 C 和 y 轴相切,圆心在直线 x −3y =0 上,且被直线 y =x 截得的弦长为 2√7,求圆 C 的方程.41. 如图,直线 l:y =x +b 与抛物线 C:x 2=4y 相切于点 A .(1)求实数 b 的值; (2)求以 A 点为圆心,且与抛物线 C 的准线相切的圆的方程.42. 在直角坐标系 xOy 中,圆 C 的方程为 (x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求圆 C 的极坐标方程;(2)直线 l 的参数方程是 {x =tcosα,y =tsinα,(t 为参数),直线 l 与圆 C 交于 A ,B 两点,∣AB∣=√10,求 l 的斜率.43. 已知双曲线与椭圆x 29+y 225=1 有公共焦点 F 1,F 2,它们的离心率之和为 245.(1)求双曲线的标准方程; (2)设 P 是双曲线与椭圆的一个交点,求 cos∠F 1PF 2.44. 抛物线顶点在原点,它的准线过双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的一个焦点,并与双曲线实轴垂直,已知抛物线与双曲线的一个交点为 (32,√6),求抛物线与双曲线方程.45. 已知曲线 C 上任一点 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1. (1)求曲线 C 的方程;(2)过点 Q (1,2) 作两条倾斜角互补的直线与曲线 C 分别交于点 A ,B ,试问:直线 AB 的斜率是否为定值,请说明理由.46. 在平面直角坐标系 xOy 中,圆 C 的参数方程为 {x =2cosφ,y =2sinφ(φ 为参数),直线 l过点 (0,2) 且倾斜角为 π3.(1)求圆 C 的普通方程及直线 l 的参数方程; (2)设直线 l 与圆 C 交于 A ,B 两点,求弦 ∣AB ∣ 的长.47. 已知椭圆 C:x 2a+y 2b =1(a >b >0) 的一个长轴顶点为 A (2,0),离心率为 √22,直线y =k (x −1) 与椭圆 C 交于不同的两点 M ,N . (1)求椭圆 C 的方程; (2)当 △AMN 的面积为√103时,求 k 的值.48. 已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点为 F 1,F 2,A 点在椭圆上,离心率是 √22,AF 2 与 x 轴垂直,且 ∣AF 2∣=√2. (1)求椭圆的方程;(2)若点 A 在第一象限,过点 A 作直线 l ,与椭圆交于另一点 B ,求 △AOB 面积的最大值.49. 已知点 (1,√22) 在椭圆 C:x 2a2+y 2b 2=1(a >b >0) 上,椭圆离心率为 √22.(1)求椭圆 C 的方程;(2)过椭圆 C 右焦点 F 的直线 l 与椭圆交于两点 A ,B ,在 x 轴上是否存在点 M ,使得 MA ⃗⃗⃗⃗⃗⃗ ⋅MB ⃗⃗⃗⃗⃗⃗ 为定值?若存在,求出点 M 的坐标;若不存在,请说明理由.参考答案,仅供参考1. 若命题 p :方程x 22m+y 29−m=1 表示焦点在 y 轴上的椭圆为真命题;则 9−m >2m >0, 解得 0<m <3,则命题 p 为假命题时,m ≤0 或 m ≥3, 若命题 q :双曲线 y 25−x 2m=1 的离心率 e ∈(√62,√2) 为真命题; 则 √5+m 5∈(√62,√2), 即5+m 5∈(32,2),即 52<m <5,则命题 q 为假命题时,m ≤52 或 m ≥5,因为命题 p ,q 中有且只有一个为真命题, 当 p 真 q 假时,0<m ≤52,当 p 假 q 真时,3≤m <5,综上所述,实数 m 的取值范围是:0<m ≤52或 3≤m <5.2. (1) C 1:{x =√3cosα,y =sinα(α 为参数)的直角坐标方程是:x 23+y 2=1,C 2 的直角坐标方程:ρsin (θ+π4)=2√2,整理得,√22ρsinθ+√22ρcosθ=2√2,x +y =4.(2) 设 x +y =4 的平行线为 l 1:x +y +c =0, 当 l 1:x +y +c =0 且 c <0 和 C 1 相切时 ∣PQ ∣ 距离最小, 联立直线和椭圆方程得 x 23+(x +c )2−1=0,整理得4x 23+2cx +c 2−1=0,需要满足 Δ=−4c 23+163=0,求得 c =±2,当直线为 l 1:x +y −2=0 时,满足题意,此时 ∣PQ ∣=√2,此时直线 l 1 和椭圆交点即是 P 点坐标 (32,12).3. (1) C 1:ρcosθ=−2,C 2:ρ2−2ρcosθ−4ρsinθ+4=0. (2) C 3:y =x ,圆 C 2 的圆心 C 2 到 y =x 的距离 d =√2=√22, ∴∣MN∣=2⋅√12−(√22)2=√2,∴S △C 2MN =12⋅∣MN∣⋅d =12⋅√2⋅√22=12.4. (1) 已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为 x =−1, 所以 p2=1,p =2.所以抛物线的标准方程为 y 2=4x .(2) 设 l:my =x −1,与 y 2=4x 联立,得 y 2−4my −4=0, 设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=−4, 所以OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=(m 2+1)y 1y 2+m (y 1+y 2)+1=−3.(3) 假设直线 l 过定点,设 l:my =x +n ,{my =x +n,y 2=4x, 得 y 2−4my +4n =0,设 A (x 1,y 1),B (x 2,y 2), 所以 y 1+y 2=4m ,y 1y 2=4n . 由OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =−4=(m 2+1)y 1y 2−mn (y 1+y 2)+n 2=n 2+4n,解得 n =−2,所以 l:my =x −2 过定点 (2,0). 5. (1) 联立方程有,{x −√2y +4=0,y 2=2px,有 y 2−2√2py +8p =0,由于直线与抛物线相切,得 Δ=8p 2−32p =0,所以 p =4, 所以 y 2=8x .(2) 假设存在满足条件的点 M (m,0)(m >0),直线 l:x =ty +m ,有 {x =ty +m,y 2=8x,y 2−8ty −8m =0,设 A (x 1,y 1),B (x 2,y 2),有 Δ>0,y 1+y 2=8t ,y 1y 2=−8m ,∣AM ∣2=(x 1−m )2+y 12=(t 2+1)y 12,∣BM ∣2=(x 2−m )2+y 22=(t 2+1)y 22,1∣AM∣+1∣BM∣=1(t +1)y 12+1(t +1)y 22=1(t +1)(y 12+y 22y 12y 22)=1(t +1)(4t 2+m4m ),当 m =4,满足 Δ>0 时,1∣AM∣2+1∣BM∣2为定值,所以 M (4,0).6. (1) 设动点 A 的直角坐标为 (x,y ),则 {x =2−3sinα,y =3cosα−2,所以动点 A 的轨迹方程为 (x −2)2+(y +2)2=9,其轨迹是半径为 3 的圆.(2) 直线 C 的极坐标方程 ρcos (θ−π4)=a 化为直角坐标方程是 √2x +√2y =2a ,由∣∣2√2−2√2−2a ∣∣2=3,得 a =3 或 a =−3.7. (1) 因为椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √63.且过点 (3,−1),所以 {9a+1b =1,c 2a 2=a 2−b 2a 2=(√63)2,解得 a 2=12,b 2=4, 所以椭圆 C 的方程为x 212+y 24=1.(2) 因为直线 l 的方程为 x =−2√2, 设 P(−2√2,y 0),y 0∈(−2√33,2√33), 当 y 0≠0 时,设 M (x 1,y 1),N (x 2,y 2),由题意知 x 1≠x 2, 联立 {x 1212+y 124=1,x 2212+y 224=1,所以 x 12−x 2212+y 12−y 224=0, 所以y 1−y 2x 1−x 2=13⋅x 1+x 2y 1+y 2,又因为 PM =PN , 所以 P 为线段 MN 的中点, 所以直线 MN 的斜率为 −13⋅−2√2y 0=2√23y 0, 又 lʹ⊥MN ,所以 lʹ 的方程为 y −y 0=−02√2+2√2),即 y =−02√2(x +4√23), 所以 lʹ 恒过定点 (−4√23,0). 当 y 0=0 时,直线 MN 为 x =−2√2, 此时 lʹ 为 x 轴,也过点 (−4√23,0), 综上,lʹ 恒过定点 (−4√23,0). 8. (1) 由 {x =t,y =k (t −1),可得其普通方程为 y =k (x −1), 它表示过定点 (1,0),斜率为 k 的直线.由 ρ2+10ρcosθ−6ρsinθ+33=0 可得其直角坐标方程为 x 2+y 2+10x −6y +33=0,整理得 (x +5)2+(y −3)2=1,它表示圆心为 (−5,3),半径为 1 的圆. (2) 因为圆心 (−5,3) 到直线 y =k (x −1) 的距离 d =√1+k 2=√1+k 2,故 ∣PQ ∣ 的最小值为 √1+k 2−1,故√1+k 2−1=2,得 3k 2+4k =0, 解得 k =0 或 k =−43. 9. (1) 根据 c =2−b 2 及题设知 M (c,b2a),F 2(−c,0),由斜率公式并化简整理易得2b 2=3ac .将 b 2=a 2−c 2 代入 2b 2=3ac ,解得 ca=12或 ca=−2(舍去).故 C 的离心率为 12.(2) 由题意,得原点 O 为 F 1F 2 的中点,MF 2∥y 轴, 所以直线 MF 1 与 y 轴的交点 D (0,2) 是线段 MF 1 的中点,故 b 2a=4,即 b 2=4a. ⋯⋯①由 ∣MN∣=5∣F 1N ∣ 得 ∣DF 1∣=2∣F 1N ∣. 设 N (x 1,y 1),由题意知 y 1<0,则 {2(−c −x 1)=c,−2y 1=2, 即 {x 1=−32c,y 1=−1. 代入 C 的方程,得 9c 24a2+1b 2=1. ⋯⋯②将 ① 及 c =√a 2−b 2 代入 ② 得9(a 2−4a )4a 2+14a=1.解得 a =7,b 2=4a =28,故 a =7,b =2√7.10. (1) 将 y =kx +2 代入 x 2=2py ,得 x 2−2pkx −4p =0. 其中 Δ>0,设 A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=2pk ,x 1x 2=−4p . 所以 OA ⃗⃗⃗⃗⃗ ⋅OB⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+x 122p⋅x 222p=−4p +4. 由已知,−4p +4=2,解得 p =12,所以抛物线 E 的方程为 x 2=y .(2) 由(1)知,x 1+x 2=k ,x 1x 2=−2. k 1=y 1+2x 1=x 12+2x 1=x 12−x 1x 2x 1=x 1−x 2, 同理 k 2=x 2−x 1,k =y 1−y 2x 1−x 2=x 12−x 22x 1−x 2=x 1+x 2,所以 k 12+k 22−2k 2=−8x 1x 2=16.11. (1) 依题意可设椭圆方程为 x 2a 2+y 2=1,则右焦点 F(√a 2−1,0),由题设∣∣√a 2−1+2√2∣∣√2=3,解得 a 2=3, 故所求椭圆的方程为x 23+y 2=1.(2) 设 P 为弦 MN 的中点,由 {y =kx +m,x 23+y 2=1,得 (3k 2+1)x 2+6mkx +3(m 2−1)=0, 由于直线与椭圆有两个交点,所以 Δ>0,即 m 2<3k 2+1, ⋯⋯① 所以 x P =x M +x N2=−3mk 3k 2+1, 从而 y P =kx P +m =m3k +1, 所以 k AP =y P +1x P=−m+3k 2+13mk,又 ∣AM∣=∣AN∣, 所以 AP ⊥MN , 则 −m+3k 2+13mk=−1k ,即 2m =3k 2+1, ⋯⋯②把 ② 代入 ① 得 2m >m 2 解得 0<m <2, 由 ② 得 k 2=2m−13>0,解得 m >12.故所求 m 的取值范围是 (12,2).12. 设双曲线方程为 x 2a 2−y 2b 2=1(a >0,b >0),由椭圆x 28+y 24=1,求得两焦点为(−2,0),(2,0),所以对于双曲线 C :c =2.又 y =√3x 为双曲线 C 的一条渐近线, 所以 ba =√3,解得 a =1,b =√3.所以双曲线 C 的方程为 x 2−y 23=1.13. (1) 因为直线 l 与圆 x 2+(y −1)2=5 相切,所以 √1+a 2=√5,因为直线 l 不过第二象限,所以 a =2, 所以直线 l 的方程为 2x −y −4=0.(2) 因为直线 l 1 过点 (3,−1) 且与直线 l 平行, 所以设直线 l 1 的方程为 2x −y +b =0,因为直线 l 1 过点 (3,−1),所以 b =−7,则直线 l 1 的方程为 2x −y −7=0, 因为直线 l 2 与 l 1 关于 y =1 对称,所以直线 l 2 的斜率为 −2,且过点 (4,1), 所以直线 l 2 的方程为 y −1=−2(x −4),即化简得 2x +y −9=0.14. (1) 圆 C 的参数方程 {x =1+cosφ,y =sinφ(φ 为参数).消去参数可得:(x −1)2+y 2=1.把 x =ρcosθ,y =ρsinθ 代入化简得:ρ=2cosθ,即为此圆的极坐标方程. (2) 如图所示,由直线 l 的极坐标方程是 ρ(sinθ+√3cosθ)=3√3,射线 OM :θ=π3.可得普通方程:直线 l :y +√3x =3√3,射线 OM :y =√3x . 联立 {y +√3x =3√3,y =√3x,解得 {x =32,y =3√32,即 Q (32,3√32). 联立 {y =√3x,(x −1)2+y 2=1, 解得 {x =0,y =0 或 {x =12,y =√32.所以 P (12,√32).来自QQ 群284110736所以 ∣PQ ∣=√(12−32)2+(√32−3√32)2=2.15. 由共同的焦点 F 1(0,−5),F 2(0,5),可设椭圆方程为 y 2a 2+x 2a 2−25=1,双曲线方程为y 2b 2−x 225−b 2=1,点 P (3,4) 在椭圆上,16a2+9a 2−25=1,解得 a 2=40,双曲线的过点 P (3,4) 的渐近线为 y =43x , 故b 225−b =169,解得 b 2=16.所以椭圆方程为:y 240+x 215=1;双曲线方程为:y 216−x 29=1.16. 设点 P (t,4t 2),点 P 到直线 y =4x −5 的距离为 d ,则 d =∣2∣√17=4(t−12)2+4√17.当 t =12时,d 取得最小值,此时 P (12,1) 为所求的点,最短距离为 4√1717. 17. 当 x =2 时 y =2, 所以过定点 A (2,2), 因为 A 在直线上,所以 2m +2n =1,且 mn >0, 所以 1m +1n =(1m +1n )(2m +2n )=2+2+2m n+2n m≥4+2√4=8,即 1m+1n 的最小值为 8.18. (1) 设 A (x 1,y 1),B (x 2,y 2).{y =x +m,y 2=8x⇒x 2+(2m −8)x +m 2=0⇒{Δ=(2m −8)2−4m 2>0,x 1+x 2=8−2m,x 1x 2=m 2.∣AB ∣=√2∣x 1−x 2∣=√2√(x 1+x 2)2−4x 1x 2=10,m =716,因为 m <2, 所以 m =716.(2) 因为 OA ⊥OB , 所以 x 1x 2+y 1y 2=0,x 1x 2+(x 1+m )(x 2+m )=0,2x 1x 2+m (x 1+x 2)+m 2=0. 2m 2+m (8−2m )+m 2=0,m 2+8m =0,m =0 或 m =−8, 经检验 m =−8.19. 因为椭圆的对称轴在坐标轴上,两焦点与两短轴的端点恰好是正方形的四个顶点, 所以 b =c ,a =√2b ,又焦点到同侧长轴端点距离为 √2−1, 即 a −c =√2−1,即 a −b =√2−1,解得 a =√2,b =c =1, 所以当焦点在 x 轴时,椭圆的方程为:x 22+y 2=1;当焦点在 y 轴时,椭圆的方程为y22+x 2=1.20. 由方程组 {y =kx +1,x 2−y 2=1 消去 y ,得 (1−k 2)x 2−2kx −2=0,当 1−k 2=0,即 k =±1 时,有一个交点. 当 1−k 2≠0,即 k ≠±1 时,Δ=(−2k )2+4×2(1−k 2)=8−4k 2.由 Δ>0,即 8−4k 2>0,得 −√2<k <√2,此时有两个交点. 由 Δ=0,即 8−4k 2=0,得 k =±√2,此时有一个交点. 由 Δ<0,即 8−4k 2<0,得 k <−√2 或 k >√2,此时没有交点.综上知,当 k ∈(−√−1)∪(−1,1)∪(1,√ 时,直线 l 与曲线 C 有两个交点; 当 k =±√时,直线 l 与曲线 C 切于一点; 当 k =±1 时,直线 l 与曲线 C 交于一点;当 k ∈(−∞,−√2)∪(√2,+∞) 时,直线 l 与曲线 C 没有交点. 21. (1) 由已知方程x 2m+3−y 22m−1=1 表示焦点在 y 轴上的双曲线,则 {m +3<0,1−2m >0,得 {m <−3,m <12,得 m <−3,即 q :m <−3. (2) 若方程 x 2+2mx +(m +2)=0 有两个不等的正根,则 {Δ=4m 2−4(m +2)>0,−2m >0,m +2>0,解得 −2<m <−1,即 p :−2<m <−1. 因 p 或 q 为真,所以 p ,q 至少有一个为真. 又 p 且 q 为假,所以 p ,q 至少有一个为假.因此,p ,q 两命题应一真一假,当 p 为真,q 为假时,{−2<m <−1,m ≥−3,解得 −2<m <−1;当 p 为假,q 为真时,{m ≤−2或m ≥−1,m <−3,解得 m <−3.综上,−2<m <−1 或 m <−3. 22. 根据题意,c =√3,ba =√2,所以 a =1,b =√2. 所以双曲线的方程是:x 2−y 22=1.过点 B (1,1) 的直线方程为 y =k (x −1)+1 或 x =1.①当 k 存在时,联立方程可得 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0. 当直线与双曲线相交于两个不同点,可得 Δ=(2k 2−2k )2−4(2−k 2)(−k 2+2k −3)>0,k <32,又方程的两个不同的根是两交点 M ,N 的横坐标,所以 x 1+x 2=2(k−k 2)2−k .又因为 B (1,1) 是线段 MN 的中点, 所以2(k−k 2)2−k 2=2,解得 k =2.所以 k =2,使 2−k 2≠0 但使 Δ<0.因此当 k =2 时,方程 (2−k 2)x 2+(2k 2−2k )x −k 2+2k −3=0 无实数解,故过点 B (1,1) 与双曲线交于两点 M ,N 且 B 为线段 MN 中点的直线不存在. ②当 x =1 时,直线经过点 B 但不满足条件. 综上所述,符合条件的直线 l 不存在.23. (1) 由于圆 C :x 2+y 2−6x +4y +4=0 的圆心 C (3,−2),半径为 3,∣CP∣=√5,而弦心距 d =√5, 所以 d =∣CP∣=√, 所以 P 为 MN 的中点,所以所求圆的圆心坐标为 (2,0),半径为 12∣MN∣=2,故以 MN 为直径的圆 Q 的方程为(x −2)2+y 2=4;(2) 把直线 ax −y +1=0 即 y =ax +1 代入圆 C 的方程,消去 y ,整理得 (a 2+1)x 2+6(a −1)x +9=0.由于直线 ax −y +1=0 交圆 C 于 A ,B 两点,故 Δ=36(a −1)2−36(a 2+1)>0,即 −2a >0,解得 a <0. 则实数 a 的取值范围是 (−∞,0).设符合条件的实数 a 存在,由于 l 2 垂直平分弦 AB ,故圆心 C (3,−2) 必在 l 2 上. 所以 l 2 的斜率 k PC =−2, 所以 k AB =a =12,由于 12∉(−∞,0),故不存在实数 a ,使得过点 P (2,0) 的直线 l 2 垂直平分弦 AB .24. (1) 直线 l:{x =1+√22ty =2+√22t(t 为参数),消去参数 t 可得普通方程 l:x −y +1=0.曲线 C:ρ2(1+sin 2θ)=2,可得 ρ2+(ρsinθ)2=2, 可得直角坐标方程:x 2+y 2+y 2=2, 即 C:x 22+y 2=1.(2) 把 l:{x =1+√22t y =2+√22t代入x 22+y 2=1 中,整理得 3t 2+10√2t +14=0, 设 A ,B 对应的参数分别为 t 1,t 2, 所以 t 1⋅t 2=143,点 M 在直线上由 t 的几何意义可知,∣MA ∣∣MB ∣=∣t 1⋅t 2∣=143.25. (1) 由题得:ca =√32,4a =8,所以 a =2,c =√3. 又 b 2=a 2−c 2,所以 b =1,即椭圆 C 的方程为 x 24+y 2=1.(2) 由题意知,∣m∣≥1.当 m =1 时,切线 l 的方程 x =1,点 A ,B 的坐标分别为 (1,√32),(1,−√32),此时 ∣AB∣=√3;当 m =−1 时,同理可得 ∣AB∣=√3.当 ∣m∣>1 时,设切线 l 的方程为 y =k (x −m )(k ≠0), 由 l 与圆 x 2+y 2=1 相切,得√k 2+1=1,即 m 2k 2=k 2+1.得 k 2=1m 2−1.由 {y =k (x −m ),x 24+y 2=1得 (1+4k 2)x 2−8k 2mx +4k 2m 2−4=0. 设 A ,B 两点的坐标分别为 (x 1,y 1),(x 2,y 2),则 Δ=64k 4m 2−4(1+4k 2)(4k 2m 2−4)=48k 2>0,x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2−41+4k 2.所以∣AB∣=√(x 2−x 1)2+(y 2−y 1)2=√(1+k 2)[64k 4m 2(1+4k 2)2−4(4k 2m 2−4)1+4k 2]=4√3∣m∣m +3.因为 ∣m∣≥1, 所以 ∣AB∣=4√3∣m∣m +3=4√3∣m∣+3∣m∣≤2,且当 m =±√3 时,∣AB∣=2,由于当 m =±1 时,∣AB∣=√3,所以 ∣AB∣ 的最大值为 2.26. (1) 当 n ≥2 时,S n+1=qS n +1, ⋯⋯① S n =qS n−1+1, ⋯⋯②①−② 得 a n+1=q ⋅a n ,即从第二项开始,数列 {a n } 为等比数列,公比为 q , 当 n =2 时,S 2=qS 1+1,即 a 1+a 2=qa 1+1,可得 a 2=a 1q , 所以数列 {a n } 是以 1 为首项,q 为公比的等比数列, 所以 a 2=a 1q =q ,a 3=a 1q 2=q 2, 因为 2a 2,a 3,a 2+2 成等差数列,所以 2a 3=2a 2+a 2+2,即 2q 2=2q +q +2,解得 q =2, 所以数列 {a n } 是以 1 为首项,2 为公比的等比数列, 所以 a n =2n−1;(2) 由(1)可得数列 {a n } 是以 1 为首项,q 为公比的等比数列, 所以 a n =q n−1>0,根据题意,e n 2=1+a n 2,因为 e 2=3,所以 1+a 22=9,解得 a 2=2√2,所以 q =a 2a 1=2√2,所以 a n =(2√2)n−1,所以 e n 2=1+a n 2=1+8n−1,所以 e 12+e 22+⋯+e n2=n +(1+8+82+⋯+8n−1)=n +8n −17.27. (1) 因为曲线 C 的极坐标方程为 ρ=2cosθ−4sinθ, 所以 ρ2=2ρcosθ−4ρsinθ,所以曲线 C 的直角坐标方程为 x 2+y 2=2x −4y ,即 (x −1)2+(y +2)2=5, 因为直线 l 过点 (1,−1),且该点到圆心的距离为 √(1−1)2+(−1+2)2<√5,所以直线 l 与曲线 C 相交.(2) 当直线 l 的斜率不存在时,直线 l 过圆心,∣AB ∣=2√5≠3√2, 因此直线 l 必有斜率,设其方程为 y +1=k (x −1),即 kx −y −k −1=0, 圆心到直线 l 的距离 d =√k 2+1=√(√5)2−(3√22)2,解得 k =±1,所以直线 l 的斜率为 ±1.28. (1) 直线 l:y =bx +2,坐标原点到直线 l 的距离为 √2, 所以√b 2+1=√2,所以 b =1, 因为椭圆的离心率 e =√63, 所以a 2−1a =(√63)2,所以 a 2=3, 所以所求椭圆的方程是x 23+y 2=1.(2) 直线 y =kx +2 代入椭圆方程,消去 y 可得:(1+3k 2)x 2+12kx +9=0, 所以 Δ=36k 2−36>0, 所以 k >1 或 k <−1,设 C (x 1,y 1),D (x 2,y 2),则有 x 1+x 2=−12k 1+3k2,x 1x 2=91+3k 2,因为 EC ⃗⃗⃗⃗⃗ =(x 1+1,y 1),ED ⃗⃗⃗⃗⃗ =(x 2+1,y 2),且以 CD 为直径的圆过点 E ,所以 EC ⊥ED ,所以 (x 1+1)(x 2+1)+y 1y 2=0,所以 (1+k 2)x 1x 2+(2k +1)(x 1+x 2)+5=0, 所以 (1+k 2)×91+3k+(2k +1)×(−12k 1+3k )+5=0,解得 k =76>1,所以当 k =76 时,以 CD 为直径的圆过定点 E .29. (1) 将曲线 C 的极坐标方程 ρ2−2ρcosθ−3=0 化为直角坐标方程为 x 2+y 2−2x −3=0,直线 l 的参数方程为 {x =−3+tcosα,y =tsinα(t 为参数),将参数方程代入 x 2+y 2−2x −3=0,整理得 t 2−8tcosα+12=0, 因为直线 l 与曲线 C 有公共点,所以 Δ=64cos 2α−48≥0, 所以 cosα≥√32或 cosα≤−√32, 因为 α∈[0,π),所以 α 的取值范围是 [0,π6]∪[5π6,π).(2) 曲线 C 的方程 x 2+y 2−2x −3=0 可化为 (x −1)2+y 2=4,其参数方程为 {x =1+2cosθ,y =2sinθ(θ 为参数), 因为 M (x,y ) 为曲线上任意一点,所以 x +y =1+2cosθ+2sinθ=1+2√2sin (θ+π4),所以 x +y 的取值范围是 [1−2√2,1+2√2]. 30. b 2a 2证明:设 A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则有 {x 0=x 1+x22,y 0=y 1+y 22.x 12a 2−y 12b 2=1,x 22a −y 22b =1,两式相减得 x 12−x 22a 2=y 12−y 22b 2,即(x 1−x 2)(x 1+x 2)a 2=(y 1−y 2)(y 1+y 2)b 2,(y 1−y 2)(y 1+y 2)(x 1−x 2)(x 1+x 2)=b 2a 2即 k OM ⋅k AB =b 2a 2.31. (1) 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).因为椭圆的焦距等于 4,且经过点 P(3,−2√6), {2c =2√a 2−b 2=4,32a 2+(−2√6)2b 2=1,解得 {a 2=36,b 2=32.所以所求的椭圆方程为x 236+y 232=1.(2) ①当椭圆的焦点在 x 轴上时, 因为 a =3,e =c a=√63,所以 c =√6,可得 b 2=a 2−c 2=3.此时椭圆的标准方程为 x 29+y 23=1;②当椭圆的焦点在 y 轴上时, 因为 b =3,e =c a=√63, 所以√a 2−b 2a=√63,解得 a 2=27.此时椭圆的标准方程为y 227+x 29=1.综上所述,所求椭圆的标准方程为x 29+y 23=1 或y 227+x 29=1.32. 设 M (x,y ),P (x 1,y 1),Q (x 2,y 2), 易求 y 2=4x 的焦点 F 的坐标为 (1,0),因为 M 是 FQ 的中点,所以 {x =1+x22,y =y 22⇒{x 2=2x −1,y 2=2y, 又 Q 是 OP 的中点,所以 {x 2=x12,y 2=y 12⇒{x 1=2x 2=4x −2,y 1=2y 2=4y,因为 P 在抛物线 y 2=4x 上,所以 (4y )2=4(4x −2), 所以 M 点的轨迹方程为 y 2=x −12.33. (1) 设 F (c,0),由条件知 2c=2√33,得 c =√3.又 ca=√32, 所以 a =2,b 2=a 2−c 2=1,故 E 的方程为x 24+y 2=1.(2) 依题意当 l ⊥x 轴不合题意,故设直线 l :y =kx −2,设 P (x 1,y 1),Q (x 2,y 2),将 y =kx −2 代入x 24+y 2=1,得 (1+4k 2)x 2−16kx +12=0,当 Δ=16(4k 2−3)>0,即 k 2>34时,x 1,2=8k±2√4k 2−31+4k 2.从而 ∣PQ ∣=√k 2+1∣x 1−x 2∣=4√k 2+1⋅√4k 2−31+4k ,又点 O 到直线 PQ 的距离 d =√k 2+1,所以 △OPQ 的面积 S △OPQ =12d ∣PQ ∣=4√4k 2−31+4k ,设 2−3=t ,则 t >0,S △OPQ =4t t +4=4t+4t≤1,当且仅当 t =2,k =±√72等号成立,且满足 Δ>0,所以当 △OPQ 的面积最大时,l 的方程为:y =√72x −2 或 y =−√72x −2.34. (1) 因为 a =5,b =3, 所以 c =4,设 ∣PF 1∣=t 1,∣PF 2∣=t 2, 则 t 1+t 2=10, ⋯⋯①t 12+t 22−2t 1t 2⋅cos60∘=82, ⋯⋯②由 ①2−② 得 t 1t 2=12,所以 S △F 1PF 2=12t 1t 2⋅sin60∘=12×12×√32=3√3.(2) 设 P (x,y ),由 S △F 1PF 2=12⋅2c ⋅∣y ∣=4⋅∣y ∣ 得 4∣y ∣=3√3, 所以 ∣y ∣=3√34⇒y =±3√34,将 y =±3√34代入椭圆方程解得 x =±5√134, 所以 P (5√134,3√34) 或 P (5√134,−3√34) 或 P (−5√134,3√34) 或 P (−5√134,−3√34). 35. (1) 双曲线 C:x 2a−y 2b =1(a >0,b >0) 的渐近线方程为:y =±bax ,则由题意得,b a=√3,a =1,解得 b =√3, 则双曲线的方程为:x 2−y 23=1;(2) 联立直线方程和双曲线方程,得到,{y =x +m,x 2−y 23=1,消去 y ,得 2x 2−2mx −m 2−3=0, 设 A (x 1,y 1),B (x 2,y 2),则判别式 Δ=4m 2+8(m 2+3)>0,x 1+x 2=m , 中点 M 的 x 0=m2,y 0=x 0+m =32m ,则有y 0x 0=3.来自QQ 群28411073636. (1)如图所示,不妨设 M 在双曲线的右支上,M 点到 x 轴的距离为 ℎ, MF 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅MF 2⃗⃗⃗⃗⃗⃗⃗⃗ =0,则 MF 1⊥MF 2, 设 ∣MF 1∣=m ,∣MF 2∣=n ,由双曲线定义知,m −n =2a =8, ⋯⋯① 又 m 2+n 2=(2c )2=80, ⋯⋯②由 ①② 得 m ⋅n =8, ∴12mn =12∣F 1F 2∣⋅ℎ, ∴ℎ=2√55.来自QQ 群284110736(2) 设所求双曲线 C 的方程为 x 216−λ−y 24+λ=1(−4<λ<16),由于双曲线 C 过点 (3√2,2), 所以1816−λ−44+λ=1,解得 λ=4 或 λ=−14(舍去).∴ 所求双曲线 C 的方程为x 212−y 28=1.37. (1) ∵ 点 P 在椭圆 C 上, ∴2a =∣PF 1∣+∣PF 2∣=6,a =3.在 Rt △PF 1F 2 中,2c =∣F 1F 2∣=√∣PF 2∣2+∣PF 1∣2=√(143)2+(43)2=2√533;故椭圆的半焦距 c =√533,从而 b 2=a 2−c 2=289,∴ 椭圆 C 的方程为x 29+y 2289=1.(2) 已知圆的方程为 (x +2)2+(y −1)2=5,∴ 圆心 M 的坐标为 (−2,1). 设 A ,B 的坐标分别为 (x 1,y 1),(x 2,y 2). 由题意 x 1≠x 2 且 x 129+y 12289=1, ⋯⋯①x 229+y 22289=1. ⋯⋯②由 ②−① 得(x 1−x 2)(x 1+x 2)9+(y 1−y 2)(y 1+y 2)289=0. ⋯⋯③又 A ,B 关于点 M 对称,∴x 1+x 2=−4,y 1+y 2=2,代入 ③ 得 y 1−y 2x 1−x 2=5681,即直线 L 的斜率为 5681,∴ 直线 L 的方程为 y −1=5681(x +2),即 56x −81y +193=0.故所求的直线方程为 56x −81y +193=0.来自QQ 群28411073638. (1) 设圆心为 M (m,0)(m ∈Z ).由于圆与直线 4x +3y −29=0 相切,且半径为 5, 所以∣4m−29∣5=5,即 ∣4m −29∣=25. 因为 m 为整数,故 m =1.故所求圆的方程为 (x −1)2+y 2=25.(2) 把直线 ax −y +5=0,即 y =ax +5,代入圆的方程,消去 y ,整理,得 (a 2+1)x 2+2(5a −1)x +1=0,由于直线 ax −y +5=0 交圆于 A ,B 两点, 故 Δ=4(5a −1)2−4(a 2+1)>0, 即 12a 2−5a >0, 由于 a >0,解得 a >512,所以实数 a 的取值范围是 (512,+∞).(3) 设符合条件的实数 a 存在,则直线 l 的斜率为 −1a ,l 的方程为 y =−1a(x +2)+4,即 x +ay +2−4a =0,由于 l 垂直平分弦 AB ,故圆心 M (1,0) 必在 l 上, 所以 1+0+2−4a =0,解得 a =34. 由于 34∈(512,+∞),故存在实数 a =34.使得过点 P (−2,4) 的直线 l 垂直平分弦 AB .来自QQ 群28411073639. (1) 当 α=π3 时,C 1 的普通方程为y =√3(x −1),C 2 的普通方程为x 2+y 2=1.联立方程组{x 2+y 2=1,y =√3(x −1),解得 C 1 与 C 2 的交点为(1,0) 和 (1,−√3).(2) C 1 的普通方程为xsinα−ycosα−sinα=0,A 点坐标为 (sin 2α,−cosαsinα),故当 α 变化时,P 点轨迹的参数方程为{x =12sin 2α,y =−1sinαcosα,(α为参数). P 点轨迹的普通方程为(x −14)2+y 2=116.故 P 点轨迹是圆心为 (14,0),半径为 14的圆.40. 设圆心为 (3t,t ),半径为 r =∣3t∣, 则圆心到直线 y =x 的距离 d =√2=∣∣√2t ∣∣,由勾股定理及垂径定理得:(2√72)2=r 2−d 2,即 9t 2−2t 2=7,解得:t =±1,所以圆心坐标为 (3,1),半径为 3;或圆心坐标为 (−3,−1),半径为 3, 则圆 C 的方程为 (x −3)2+(y −1)2=9 或 (x +3)2+(y +1)2=9. 41. (1) 由 {y =x +b,x 2=4y得 x 2−4x −4b =0, ⋯⋯①因为直线 l 与抛物线 C 相切,所以 Δ=(−4)2−4×(−4b )=0, 解得 b =−1.(2) 由(1)知 b =−1,故方程 ① 即为 x 2−4x +4=0,解得 x =2,代入 x 2=4y ,得 y =1. 故点 A (2,1),因为圆 A 与抛物线 C 的准线相切,所以圆 A 的半径 r 等于圆心 A 到抛物线的准线 y =−1 的距离,即 r =∣1−(−1)∣=2, 所以圆 A 的方程为 (x −2)2+(y −1)2=4.42. (1) 由 {x =ρcosθ,y =ρsinθ, 可得,(ρcosθ+6)2+ρ2sin 2θ=25,整理得 ρ2+12ρcosθ+11=0 即为所求.(2) 令直线 l 的斜率为 k ,可得直线的直角坐标方程为 kx −y =0. 圆的半径为 r =5,圆心到直线的距离 d =√k 2+1,又因为 ∣AB∣=√10, 所以可得∣AB∣24+d 2=r 2,即 52+36k 2k 2+1=25,解得 k =±√153. 43. (1) 椭圆x 29+y 225=1 的焦点为 (0,±4),离心率为 e =45.因为双曲线与椭圆的离心率之和为 245, 所以双曲线的离心率为 2, 所以 ca =2.因为双曲线与椭圆 x 29+y 225=1 有公共焦点 F 1,F 2,所以 c =4,所以 a =2,b =√ 所以双曲线的方程是y 24−x 212=1.(2) 由题意,∣PF 1∣+∣PF 2∣=10,∣PF 1∣−∣PF 2∣=4, 所以 ∣PF 1∣=7,∣PF 2∣=3, 因为 ∣F 1F 2∣=8,所以 cos∠F 1PF 2=72+32−822⋅7⋅3=−17.44. 由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,所以 p =2c .设抛物线方程为 y 2=4c ⋅x ,因为抛物线过点 (32,√6),所以 6=4c ⋅32,所以 c =1,故抛物线方程为 y 2=4x . 又双曲线x 2a2−y 2b 2=1 过点 (32,√6),所以 94a 2−6b2=1.又 a 2+b 2=c 2=1,所以94a−61−a =1.所以 a 2=14或 a 2=9(舍).所以 b 2=34,故双曲线方程为 4x 2−4y 23=1.45. (1) 因为 P 到点 F (1,0) 的距离比它到直线 l :x =−2 的距离少 1, 所以 P 到点 F (1,0) 的距离与它到直线 l :x =−1 的距离相等,所以由抛物线定义可知点 P 的轨迹是以 F 为焦点、以直线 l :x =−1 为准线的抛物线, 设抛物线方程为 y 2=2px (p >0) ,所以 P =2,所以曲线 C 的方程为 y 2=4x . (2) 直线 AB 的斜率为定值 −1,理由如下:设 A (x 1,y 1),B (x 2,y 2),则 y 12=4x 1,y 22=4x 2,因为直线 AQ ,BQ 倾斜角互补, 所以 k AQ +k BQ =0,即y 1−2x 1−1+y 2−2x 2−1=0, 4y 1+2+4y 2+2=0,所以 y 1+y 2=−4,所以 k AB =y 1−y 2x 1−x 2=4y 1+y 2=−1.。

相关文档
最新文档