列方程解应用题(二)几何问题

合集下载

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。

①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。

求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。

2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。

3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。

现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。

你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。

4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。

解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。

第3章 列方程解应用题(二)知识点精讲精练 初中数学人教版七上课件

第3章  列方程解应用题(二)知识点精讲精练 初中数学人教版七上课件

【巩Байду номын сангаас】
方案1:尽可能多的制成奶片,其余直接销售鲜奶;
方案2:将一部分制成奶片,其余制成酸奶销售;
请问选择哪种方案获利更多?
解:选择方案2获利更多,理由如下: 方案1可获利润为 1×4×2000+(9-1×4)×500=10500(元) 方案2:设制作奶片x天,则制作酸奶(4-x)天. 依题意,得x+3(4-x)=9 解得x=1.5 所以制作酸奶4-x=2.5(天) 故方案2可获利润为 1×1.5×2000+3×2.5×1200=12000(元) 因为10500<12000, 所以选择方案2获利更多.
第三章 列方程解应用题(二)
知识点一:计费问题
【例1】 某市电力部门对居民用电按月收费,标准如下: ①用电不超过100度,每度收费0.5元; ②用电超过100度,超过部分每度收费0.8元 . (1)小明家1月份用电130度,应缴电费__7_4____元; (2)小明家2月份缴电费90元,则他家2月份用电多少度? 根据分段计费规则,应缴电费 100×0.5+0.8×(130-100)=74(元)
【例3】某地上网有如下两种收费方式,用户可以任选其一. A计时制:1元/时,B包月制:80元/月. 此外每一种上网方式 都加收通讯费0.1元/时. (1)某用户每月上网40 h,选择哪种上网方式比较合算? (2)某用户每月有100元用于上网,选择哪种上网方式比较 合算? (3)请你为用户设计一个方案,使用户能合理地选择上网 方式.
方案一:将蔬菜全部粗加工; 方案二:尽可能进行精加工,没来得及进行加工的在市场上 直接销售; 方案三:将部分蔬菜进行精加工,其余进行粗加工,恰好15 天完成. 你认为选择哪种方案获利最多?为什么?
先分别计算出三种方案的获利,再比较

第8讲 列方程解应用题

第8讲 列方程解应用题
示另一个量,解方程后,再代入求出另一个未知量 的值.
1.(2012·云南)某企业为严重缺水的甲、乙两所学校捐 赠矿泉水共2000件,已知捐给甲校的矿泉水件数比捐给乙 校件数的2倍少400件,求该企业捐给甲、乙两所学校的矿 泉水各多少件.
解:设该企业捐给乙校的矿泉水件数是x,则捐给甲校 的矿泉水件数是2x-400,依题意得方程(2x-400)+x= 2000,解得x=800,2x-400=1200.即该企业捐给甲校的 矿泉水1200件,捐给乙校的矿泉水800件
【点评】 (1)现实生活中存在大量的实际应用 问题,需要用一元二次方程的知识去解决,解决 这类问题的关键是在充分理解题意的基础上,寻 求问题中的等量关系,从而建立方程.(2)解出 方程的根要结合方程和具体实际选择合适的根, 舍去不合题意的根.
4.(2014·新疆)如图,要利用一面墙(墙长为25米)建 羊圈,用100米的围栏围成总面积为400平方米的三 个大小相同的矩形羊圈,求羊圈的边长AB,BC各为 多少米.
A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)=438 D.438(1+2x)=389
5.(2014·随州)某小区2012年屋顶绿化面积为2000平
方米,计划2014年屋顶绿化面积要达到2880平方米
.如果每年屋顶绿化面积的增长率相同,那么这个
增长率是 20%
(1)若每副乒乓球拍的价格为x元,请你用含x的代数 式表示该校购买这批乒乓球拍和羽毛球拍的总费用;
(2)若购买的两种球拍数一样,求x.
解:(1)(4000+25x)元 (2)购买每副乒乓球拍用去了 x 元,则购买每副羽毛球拍 用去了(x+20)元,由题意得20x00=20x0+0+2205x,解得 x1=40,x2=-40,经检验,x1,x2 都是原方程的根, 但 x>0,∴x=40.即每副乒乓球拍的价格为 40 元

(完整版)列方程解应用题练习题

(完整版)列方程解应用题练习题

一、列方程解应用题和倍问题例1 图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有多少本?例2 一个果园有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵树是龙眼的3倍,芒果的棵树是龙眼的2倍,这三种果树各有多少棵?例3一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍。

水池里有16吨水,打开两管5小时能把水排完,甲管每小时排水量多少吨?例4 某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米免的5倍,卖出的大米比玉米面多多少千克?较复杂的和倍问题例1甲粮仓有510吨大米,乙粮仓有1170吨大米,每天从乙粮仓调30吨大米到甲粮仓,多少天以后甲粮仓大米的吨数是乙粮仓的6倍?例2 图书馆买回来故事书、科普书和连环画236本,如果故事书增加10本,就是科普书本数的2倍,科普书减少12本,就是连环画本数的一半,买回来的故事书有多少本?例3 甲数与乙数的和是30,甲数的8倍与乙数的3倍的和是160.甲数、乙数各是多少?例4 甲站和乙站相距299千米,一辆大客车从甲站开往乙站,1.5小时后一辆小轿车从乙站开往甲站,行驶速度是客车的3倍,小轿车行驶2.5小时遇见大客车,小轿车每小时行多少千米?差倍问题一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。

列方程解差倍问题,可以吧问题中的一个未知数量用x表示,再根据问题中的“差”或“倍”的关系,把其他未知数量用含有x 的式子表示,再找出数量之间的等量关系列方程。

在设未知数x时,通常把倍的关系中作为1的数量设为x较好。

例1一张办公桌的价钱是一把椅子的4倍,办公桌的定价比椅子贵138元,一张办公桌的价钱是多少钱?例2 一个书柜下层放的书的本数是上层的3倍,如果从下层取43本数放到上层,两层的书的本数相同,这个书柜一共方有多少本书?例3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的2倍,第二天售出的千克数是第三天的1.5倍,第三天售出的比第一天少88千克,这批西瓜共有多少千克?例4 有对黑棋子和白棋子,其中黑棋子的个数是白棋子的3倍,每次取走相同的个数的黑棋子和白棋子,取了若干次后,白棋子还剩8个,黑棋子还剩94个,原来这堆棋子中多少个黑棋子?较复杂的差倍问题例1 有两根同样长的绳子,第一根绳子剪去10米,第二根绳子剪去28米,第一根绳子剩下的长度是第二根的4倍。

列方程解应用题(9.20)

列方程解应用题(9.20)

列方程解应用题一、数字问题1.两个相邻偶数的积是168,求这两个数。

2.两个连续正整数的和的平方比它们的平方和大112,求两个正整数。

3.一个两位数等于个位数的平方,且个位上的数字比十位上的数字大3,求这个两位数。

4.一个三位数,十位数字比百位数字大3,个位数字等于百位数字与十位数字的和,已知这个三位数比个位数字的平方的5倍大12,求这个三位数。

二、几何问题1.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,两直角边的长?2.若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2倍比正方形的面积多11cm2,原正方形的边长?3.如图,小明家有一块长150cm,宽100cm的矩形地毯,为了使地毯美观,小明请来工匠在地毯的四周镶上宽度相同的花色地毯,镶完后地毯的面积是原地毯面积的2倍。

求花色地毯的宽?4.如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2另三边(门除外)用竹篱笆围成,篱笆总长33米。

求鸡场的长和宽各为多少米?5.一块矩形耕地大小尺寸如图所示,要在这块地上沿东西、南北方向分别挖3条和4条水渠。

如果水渠的宽相等,而且要保证余下的可耕地面积为8700m2,那么水渠应挖多宽?6.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种草坪,要使草坪的面积为540m2,求道路的宽。

7.如图,一个矩形的硬纸片,它的长比宽的2倍少厘米,在它的四个角上各剪去一个边长为2然后折成一个无盖的小盒子,如果这个小盒子的体积为立方厘米,求原来矩形纸片的长和宽。

8.如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体盒子,且此长方体箱子的底面的长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?9.如图,已知△ABC 是边长3cm 的等边三角形,运点P 、Q同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动。

五年级下册数学-列方程解应用题精选练习(二)

五年级下册数学-列方程解应用题精选练习(二)
教法:此题需要注意隐藏的时间的使用,需要先求出规定时间,才能解出题目。
答案:135km
试一试:小明家离学校3千米。他每天骑车以每分钟200米的速度上学,正好准时到。有一天他出发几分钟后因交通阻塞耽误4分钟。为了准时到校,后面的路必须每分钟多行100米。求小明是在离家多远的地方遇阻塞的?
教法:此题看上去是行程问题,本质上其实是盈亏问题,需要设规定时间为未知数,求出时间才能解决问题。需要教会学生用盈亏问题的思想解这种题目。
答案:12.5km
6.甲、乙两人生产同一种零件,甲每天生产30个,乙每天生产24个,当乙生产这种零件3天后,甲开始工作,求甲工作几天后产量可赶上乙?
答案:12天
答案:7小时
试一试:小明和小光从相距2100米的两地相向出发,小明每分钟走70米,小光每分钟走80米,那么他们几分钟后可以相遇?
答案:12分钟
例2. A、B两地相距960千米,甲、乙两辆汽车分别从两地同时出发,相向开出,6小时后两车相遇;已知甲车的速度是乙车的1.5倍。求甲、乙两车的速度各是多少?
答案:甲的速度是96km/h,乙车的速度是64km/h。
答案:甲车速度500km/h,乙车速度96km/h
4.姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?
答案:750米
5.骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进?
试一试:从甲地到乙地,公共汽车原来需行驶7小时,开通高速公路后,车速平均提高30km/h,只需4小时即可到达。求甲、乙两地间的距离。

列方程解应用题(二)

列方程解应用题(二)

和差倍分问题---式子的和差倍分关系
例1 已知2x-5的值的-3倍与-43+9的值相等,求x的 值。
解析:2x-5的值的-3倍用式子表示为-3(2x-5),它与-4x+9 的值相等,可列出方程,解这个方程即可。
例2 一桶油连桶共重8千克,用去一半油后,连桶 共重4.5千克,求桶中原有油多少千克?
解析:相等关系为:用去的油的质量+余下的油及桶的质量 =原来一桶油及桶的质量
跟踪练习
环形追及问题中的等量关系(同时同地出发): (1)同向相遇:第一次相遇快者的路程-第一次相遇慢者 的路程=跑道一圈的长度; (2)反向相遇:第一次相遇快者的路程+第一次相遇慢者 的路程=跑道一圈的长度 甲、乙两人在环形跑道上练习跑步,已知跑道一圈的长 度为400m,甲的速度是6m/s,乙的速度是8m/s,如果甲、乙 两人在跑道上相距8m,同时反向出发,那么经过几秒两人首 次相遇?
跟踪练习
1、小明乘家门口的公共汽车赶往火车站,估计如果乘公共 汽车一直到火车站,到火车站时火车正好开出,于是在公共 汽车行驶了一半路程时,小明马上下车,并立即乘出租车赶 往火车站,出租车的速度是公共汽车速度的2倍,结果在火 车开车前15min到达火车站,已知公共汽车的平均速度30km/h 那么小明家到火车站的路程是多少千米? 2、一队学生去校外进行军事训练,他们以5km/h的速度行 进, 走路48min的时候,学校要将一个紧急通知传给队长, 通讯员从学校出发,骑自行车以14km/h的速度按学生行进 的路线追上,通讯员用多久时间可以追上学生队伍?
跟踪练习
小王乘船由甲地顺流而下到乙地,然后又逆流而上到丙地, 共用了3h,已知船在静水中的平均速度是8km/h。水流速度为 2km/h,甲、丙两地相距2km,求甲、乙两地之间的距离

二元一次方程组的应用练习题(二)[1]

二元一次方程组的应用练习题(二)[1]

列二元一次方程组解应用题列方程解应用题的基本关系量(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(2)工程问题:工作效率×工作时间=工作量(3)浓度问题:溶液×浓度=溶质(4)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)例题:(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人。

题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数,可列方程为:x-9=2、抽5人后到甲工厂的人数= ;可列方程为:(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?解:设共买x枚10分邮票,y枚20分邮票。

题中的两个相等关系:1、10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:2、10分邮票的总价+ =全部邮票的总价可列方程为:10X+ =(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?解:设平均做1个小狗需x小时,平均做1个小汽车需要y小时。

题中的两个相等关系:1、做4个小狗的时间+ =3时42分,可列方程为:2、+做6个小汽车的时间=3时37分;可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题(二)
——几何问题
【教学目的】
通过分析图形问题中的数量关系,建立方程解决问题,进一步体会到运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性.
【教学重难点】
1.会找题中隐含的等量关系,列方程
2.分析变化中的不变量
【知识要点】
列方程解应用题的方法及步骤
(1)审题:要明确已知什么,未知什么及其相互关系,并用X表示题中的一个合理未知数(2)根据题意找出能够表示应用题全部含义的一个相等关系(关键一步)
(3)根据相等关系,正确列出方程,即所列的方程应满足等号两边的量相等,且方程两边的代数式的单位要相同
(4)解方程:求出未知数的值
(5)检验求得的值是否正确和符合实际情况,并写出答案
【典型例题】
例1.用直径为4cm的圆钢铸造3个直径为2cm,高为16cm的圆柱形零件需要截多长的圆钢?
例2.用直径为10cm的圆柱形铅柱铸造9只直径为10cm的铅球,则应截取多长的铅柱?(损耗忽略不计)
例3.用一根长为10米的铁丝围成一个长方形.
(1)使得长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?
(2)使得该长方形的长比宽多出0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?
【经典练习】
1.一个圆柱,半径增加到原来的3倍,而高变成原来的3
1则变化后的圆柱的体积是原来圆柱体的( )
A 、1倍
B 、2倍
C 、3倍
D 、9倍
2.长方形的周长为20米,长比宽多2米,那么它的面积是( )
A 、24米2
B 、90米2
C 、48米2
D 、96米2
3.底面半径为R ,高为h 的圆柱与底面半径为r ,高为h 的圆柱体的体积比是9:25,则R:r 等于( )
A 、9:25
B 、25:9
C 、3:5
D 、5:3
4、将一个底面直径是10cm ,高为36cm 的“瘦长”形圆柱锻压成底面直径为40cm 的“矮胖”形圆柱,则“矮胖”形圆柱的高度为多少cm ?
5.要锻造一个直径为70mm,高为45mm 的圆柱形零件毛坯,要截取直径为50mm 的圆钢多少
毫米?
6.一桶汽油连桶共重96千克,第一次用去汽油的一半,第二次用去剩下的一半,第三次又用去剩下的一半,最后剩下的油连桶重19千克,则原有汽油多少千克?
7.现有篱笆120m,靠墙围成一个长方形菜地(墙可做菜地的一个长边,其余三面用篱笆围成),要使菜地的长是宽的2倍,则菜地的长和宽各是多少米?
【作业】
1.把一段铁丝围成的长方形,发现长比宽多2cm围成正方形时,边长恰好为4cm,求所围成的长方形的长和宽各是多少?
2.用一根长60cm 的铁丝围成一个长方形.(1)使长方形的宽是长的
3
2,求这个长方形的长和宽;(2)使长方形的宽比长少4cm,求这个长方形的面积;(3)比较(1)(2)所得两个长方形的面积的大小,还能围成面积更大的长方形吗?
3.有一只船,载重800t,容积是795m 3,现在装运铁和棉花两种物质,铁每吨体积是0.3m 3,棉花每吨体积4m 3,钢铁和棉花各装多少吨才能充分利用船厂的载重量和容积?。

相关文档
最新文档