中考数学专题讲座 函数、方程、不等式问题

合集下载

中考数学复习:函数与方程、不等式的关系

中考数学复习:函数与方程、不等式的关系

中考数学复习:函数与方程、不等式的关系1.函数与方程的关系(1)关于x的一元二次方程ax2+bx+c=0(a≠0)的解⇔抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标的值;(2)关于x的一元二次方程ax2+bx+c=mx+n(am≠0)的解⇔抛物线y=ax2+bx+c (a≠0)与直线y=mx+n(m≠0)交点的横坐标的值.2.函数与不等式的关系(1)关于x的不等式ax2+bx+c>0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴上方的所有点的横坐标的值;(2)关于x的不等式ax2+bx+c<0(a≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于x轴下方的所有点的横坐标的值;(3)关于x的不等式ax2+bx+c>mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)上方的所有点的横坐标的值;(4)关于x的不等式ax2+bx+c<mx+n(ma≠0)的解集⇔抛物线y=ax2+bx+c(a≠0)位于直线y=mx+n(m≠0)下方的所有点的横坐标的值.例题讲解例1在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.若该抛物线在-2<x<-1这一段位于直线l:y=-2x+2的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的表达式.解:如图,因为抛物线的对称轴是x=1,且直线l与直线AB关于对称轴对称.所以抛物线在-1<x<0这一段位于直线l的下方.又因为抛物线在-2<x<-1这一段位于直线l的上方,所以抛物线与直线l的一个交点的横坐标为-1.当x=-1时,y=-2×(-1)+2=4,则抛物线过点(-1,4),将(-1,4)代入y=mx2-2mx-2,得m+2m-2=4,则m=2.所以抛物线的表达式为y=2x2-4x-2.例2已知y=ax²+bx+c(a≠0)的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,且抛物线经过点A(1,-1)和点B(-1,1).求a的取值范围.解:因为抛物线y=ax²+bx+c经过A(1,-1)和点B(-1,1),代入得a+b+c=-1,a-b+c=1,所以a+c=0,b=-1,则抛物线y=ax²-x-a,对称轴为x=12a.①当a<0时,抛物线开口向下,且x=12a<0,如图可知,当12a≤-1时符合题意,所以-12≤a<0.当-1<12a<0时,图像不符合-1≤y≤1的要求,舍去.②当a>0时,抛物线开口向上,且x=12a>0.如图可知,当12a≥1时符合题意,所以0<a≤12.当0<12a<1时,图像不符合-1≤y≤1的要求,舍去.综上所述,a的取值范围是-12≤a<0或0<a≤12.例3在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,'b)给出如下定义:1 '1b abb a ≥⎧=⎨-<⎩,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5).(1)若点P在函数y=﹣x+3(﹣2≤x≤k,k>﹣2)的图象上,其限变点Q的纵坐标b′的取值范围是﹣5≤b′≤2,求k的取值范围;(2)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b′的取值范围是b′≥m或b′<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.解:(1)依题意,y=﹣x+3(x≥﹣2)图象上的点P的限变点必在函数y=313-21x xx x-+≥⎧⎨-≤<⎩的图象上.∴b′≤2,即当x=1时,b′取最大值2.当b′=﹣2时,﹣2=﹣x+3.∴x=5.当b′=﹣5时,﹣5=x﹣3或﹣5=﹣x+3.∴x=﹣2或x=8.∵﹣5≤b′≤2,由图象可知,k的取值范围是5≤k≤8.(2)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].∴s=m﹣n=t+(1﹣t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.1);点B;5≤k≤8;s≥2.进阶训练1.若关于x 的一元二次方程x 2+ax +b =0有两个不同的实数根m ,n (m <n ),方程x 2+ax+b =1有两个不同的实数根p ,q (p <q ),则m ,n ,p ,q 的大小关系为( )A .m <p <q <nB .p <m <n <qC .m <p <n <qD .p <m <q <nB【提示】 函数y =x 2+ax +b 和函数y =x 2+ax +b -1的图像如图所示,从而得到p <m <n<q解:函数y =x 2+ax +b 如图所示: xq n m p O2.在平面直角坐标系xOy 中,p (n ,0)是x 轴上一个动点,过点P 作垂直于x 轴的直线,交一次函数y =kx +b 的图像于点M ,交二次函数y =x ²-2x -3的图像于点N ,若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的表达式.y =-2x +1【提示】 依据题意并结合图像可知,一次函数的图像与二次函数的图像的交点的横坐标分别为-2和2,由此可得交点坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3)将交点坐标分别代入一次函数表达式即可3.在平面直角坐标系xOy中,二次函数y=mx2-(2m+1)x+m-5的图像与x轴有两个公共点,若m取满足条件的最小整数,当n≤x≤1时,函数值y的取值范围是-6≤y≤4-n,求n的值n的值为-2【提示】根据已知可得m=1.图像的对称轴为直线x=32.当n≤x≤1<32时,函数值y随自变量x的增大而减小,所以当x=1时,函数的值为-6,当x=n时,函数值为4-n.所以n2-3n-4=4-n,解得n=-2或n=4(不符合题意,舍去),则n的值为-2。

数与代数专题讲座课件3

数与代数专题讲座课件3
第二讲 方程(组)与不等式(组)
一.知识解读
方程(组)与不等式(组)是中学数学的重 要内容和重要的数学工具,是对代数知识应用的 深入与提高,包含内容众多而且基础,是新课程 标准强调的重点基础知识之一,也是展示学生数 学学习能力和应用能力的一个重要方面.方程(组) 与不等式(组)的知识是中学数学中后续与之相 关知识内容的基础和解决问题的方法工具,它是 培养学生的数学建模能力和分析问题、解决问题 的能力的重要方面.理解掌握方程(组)与不等式 (组)的有关知识及其相关技能是学好中学数学 的基础,也是中考考查的必考内容,因此,方程 (组)与不等式(组)是我们中学数学学习和中 考数学复习的一个重点和知识核心.
三.考点透视
1.考点要求: 方程(组)部分: 理解一元二次方程的定义及其解法,掌 握解一元二次方程的配方法、公式法和因式 分解法;会用一元二次方程根的判别式判别 方程的根的情况,会利用根与系数的关系解 决关于两根的具体问题,会列一元二次方程 解实际问题. 理解掌握分式方程的解法、分式方程根 的检验及增根的知识,这是中考的热点之一. 理解掌握一次方程组的解法,能够列方 程组解实际问题,会检验解的合理性.
四.例题精讲
解:①解方程: 方程两边同乘以x-2, 1 32 x 1 x 化简,整理 4 x 8 解得 x2 检验:当 时, , x2 x20 所以 是增根,原方程无解 .
x2
1 1 x 3 x2 2 x
四.例题精讲
解:②当 xx 1 0 时,得 x 0或x 1 , 去分母把原分式方程化为整式方程 当 时,由上式得 , m0 x0 因为 ,所以 不合题意舍去; m0 当 m0 时,由上式为 , 6m ,则 m1 m x 1 因为 ,所以 . 故填入 6 1 m m5 m5. 0

九年级数学中考复习专题——方程与不等式(附答案)

九年级数学中考复习专题——方程与不等式(附答案)

知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。

(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。

知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。

中考数学专题讲座 函数、方程、不等式问题

中考数学专题讲座 函数、方程、不等式问题

中考数学专题讲座 函数、方程、不等式问题【知识纵横】函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。

也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。

又如例4复合了一次函数、二次函数,并对所得的函数要结合自变量的取值范围来考虑最值,这就需要结合图像来解决。

【典型例题】【例1】(天津市)已知抛物线,(1)若,,求该抛物线与轴公共点的坐标;(2)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围; (3)若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【思路点拨】(Ⅰ)令y=0,求方程的两根;(2)考虑判别式;(3)由不等式及结合图像解之。

c bx ax y ++=2321==b a 1-=c x 1==b a 11<<-x x c 0=++c b a 01=x 01>y 12=x 02>y 10<<x x【例2】(黄石市)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,. (1)求抛物线的解析式及其顶点D 的坐标;(2)设直线CD 交x 轴于点E .在线段OB 的垂直平分线上是否存在点P ,使得点P 到直线CD 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线CD 于点F ,将抛物线沿 其对称轴平移,使抛物线与线段EF 总有公共点.试探究:抛 物线向上最多可平移多少个单位长度?向下最多可平移多少个 单位长度?【思路点拨】(2)设(2)P t ,,建立关于t 的方程; (3)考虑抛物线向上平移、向下平移两种情况。

【例3】(吉林长春)已知两个关于x 的二次函数1y 与当x k =时,217y =;且二次函数2y 的图象的对称轴是直线1x =-.222112()2(0)612y y a x k k y y x x =-+>+=++,,(1)求k 的值;(2)求函数12y y ,的表达式;(3)在同一直角坐标系内,问函数1y 的图象与2y 的图象是否有交点?请说明理由. 【思路点拨】(1)2y =(y 1 + y 2)—1y ;(2)由对称轴的方程,求出a 的值;(3)考虑方程根的判别式。

九年级上册 专题03 二次函数与方程、不等式(知识点串讲)(教师版含解析)

九年级上册 专题03 二次函数与方程、不等式(知识点串讲)(教师版含解析)

专题03 二次函数与方程、不等式知识网络重难突破知识点一二次函数与一元二次方程二次函数y=ax2+bx+c(a,b,c是常数,a≠0)1.抛物线与x轴的交点的横坐标是一元二次方程ax2+bx+c=0的解.2.若已知二次函数y=ax2+bx+c的函数值为s,求自变量x的值,就是解一元二次方程ax2+bx+c=s.【典例1】(2019•镇海区一模)若二次函数y=ax2﹣2ax+c(a≠0)的图象经过点(﹣1,0),则方程ax2﹣2ax+c =0的解为()A.x1=﹣3,x2=﹣1 B.x1=﹣1,x2=3C.x1=1,x2=3 D.x1=﹣3,x2=1【点拨】先确定抛物线的对称轴为直线x=1,再根据抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),从而根据抛物线与x轴的交点问题得到方程ax2﹣2ax+c=0的解.【解析】解:抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个交点坐标为(﹣1,0),所以抛物线与x轴的另一个交点坐标为(3,0),所以方程ax2﹣2ax+c=0的解为x1=﹣1,x2=3.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.【变式训练】1.(2018秋•江汉区期中)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c=0(a≠0)的一个近似解x1的范围是()x…﹣3 ﹣2 ﹣1 0 1 …y…﹣11 ﹣5 ﹣1 1 1 …A.﹣3<x1<﹣2 B.﹣2<x1<﹣1 C.﹣1<x1<0 D.0<x1<1【点拨】根据函数的增减性:函数在[﹣1,0]上y随x的增大而增大,可得答案.【解析】解:当x=﹣1时,y=﹣1,x=1时,y=1,函数在[﹣1,0]上y随x的增大而增大,得一元二次方程ax2+bx+c=0(a≠0)的一个近似解在﹣1<x1<0,故选:C.【点睛】本题考查了图象求一元二次方程的近似根,两个函数值的积小于零时,方程的解在这两个函数值对应的自变量的中间.2.(2019•德城区一模)关于x的方程(x﹣3)(x﹣5)=m(m>0)有两个实数根α,β(α<β),则下列选项正确的是()A.3<α<β<5 B.3<α<5<βC.α<2<β<5 D.α<3且β>5【点拨】根据平移可知:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,依此画出函数图象,观察图形即可得出结论.【解析】解:将抛物线y=(x﹣3)(x﹣5)往下平移m个单位可得出抛物线y=(x﹣3)(x﹣5)﹣m,画出函数图象,如图所示.∵抛物线y=(x﹣3)(x﹣5)与x轴的交点坐标为(3,0)、(5,0),抛物线y=(x﹣3)(x﹣5)﹣m与x轴的交点坐标为(α,0)、(β,0),∴α<3<5<β.故选:D.【点睛】本题考查了抛物线与x轴的交点、二次函数的图象以及平移的性质,依照题意画出函数图象,利用数形结合解决问题是解题的关键.3.(2019秋•镇海区校级期中)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为﹣3,1.【点拨】根据抛物线与直线的交点坐标的横坐标即可求解.【解析】解:因为抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,4),B(1,1),所以关于x的方程ax2=bx+c的解为x1=﹣3,x2=1,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣3,x2=1.故答案为﹣3、1.【点睛】本题考查了抛物线与直线交点坐标,解决本题的关键是两交点的横坐标就是方程的解.知识点二二次函数与x轴交点情况对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0)△=b2﹣4ac决定抛物线与x轴的交点个数:①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.【典例2】下列二次函数的图象与x轴没有交点的是()A.y=﹣3x2﹣4x B.y=x2﹣3x﹣4 C.y=x2﹣6x+9 D.y=2x2+4x+5【点拨】分别计算四个选项中的判别式的值,然后根据判别式的意义确定抛物线与x轴的交点个数,从而可对各选项进行判断.【解析】解:A、△=(﹣4)2﹣4×(﹣3)×0>0,此抛物线与x轴有两个交点,所以A选项错误;B、△=(﹣3)2﹣4×(﹣4)>0,此抛物线与x轴有两个交点,所以B选项错误;C、△=(﹣6)2﹣4×9=0,此抛物线与x轴有1个交点,所以C选项错误;D、△=42﹣4×2×5<0,此抛物线与x轴没有交点,所以D选项正确.故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.△=b2﹣4ac决定抛物线与x轴的交点个数(△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点).【变式训练】1.(2019秋•新昌县校级月考)二次函数y=2x2﹣5x+3的图象与x轴的交点有()A.1个B.2个C.3个D.4个【点拨】△=b2﹣4ac=25﹣4×2×3=1>0,即可求解.【解析】解:△=b2﹣4ac=25﹣4×2×3=1>0,故二次函数y=2x2﹣5x+3的图象与x轴有两个交点,故选:B.【点睛】本题考查的是抛物线与x轴的交点,主要考查根的判别式,要求学生非常熟悉函数与坐标轴的交点代表的意义.2.(2018秋•西湖区期末)一元二次方程x2+bx+c=0有一个根为x=﹣3,则二次函数y=2x2﹣bx﹣c的图象必过点()A.(﹣3,0) B.(3,0) C.(﹣3,27) D.(3,27)【点拨】先把x=﹣3代入方程x2+bx+c=0得3b﹣c=9,利用整体代入的方法计算出自变量为﹣3对应的函数值为27,从而可判断抛物线经过点(﹣3,27).【解析】解:把x=﹣3代入方程x2+bx+c=0得9﹣3b+c=0,则3b﹣c=9,当x=﹣3时,y=2x2﹣bx﹣c=18+3b﹣c=18+9=27,所以二次函数y=2x2﹣bx﹣c的图象必过点(﹣3,27).故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的图象上点的坐标特征.3.(2018秋•瑞安市期末)已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,对称轴是直线x=﹣1,若点A的坐标为(1,0),则点B的坐标是()A.(﹣2,0) B.(0,﹣2) C.(0,﹣3) D.(﹣3,0)【点拨】利用点B与点A关于直线x=﹣1对称确定B点坐标.【解析】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=﹣1,点A的坐标为(1,0),∴点B的坐标是(﹣3,0).故选:D.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.知识点三二次函数与不等式(组)1.涉及一元二次不等式的,可以利用二次函数图像图象求解2.两个函数的值的大小比较,上方图象的函数值大于下方图象的函数值.【典例4】(2019秋•新昌县校级月考)已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是()A.<x<2 B.x>2或x<C.x<﹣2或x>D.﹣2<x<【点拨】联立y1=x2、y2=x+3并解得:x=﹣2或,y1<y2,此时直线在抛物线上方,即可求解.【解析】解:联立y1=x2、y2=x+3并解得:x=﹣2或,∵y1<y2,即直线在抛物线上方时,确定x的取值范围,此时,﹣2<x,故选:D.【点睛】本题考查的是二次函数与不等式(组),要求学生通过函数图象交点,比较函数值的大小,从而确定不等式的解值,而不是采取直接解不等式的方法求解.【变式训练】1.(2018秋•苍南县期中)如图,二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),则不等式ax2+bx+c>2的解集为0<x<4.【点拨】直接利用二次函数图象利用A,B点坐标得出不等式ax2+bx+c>2的解集.【解析】解:如图所示:∵二次函数y=ax2+bx+c的图象与y轴交于A(0,2),且经过B(4,2),∴不等式ax2+bx+c>2的解集为:0<x<4.故答案为:0<x<4.【点睛】此题主要考查了二次函数与不等式,正确利用数形结合分析是解题关键.2.(2018秋•下城区期末)已知函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过A(4,﹣4).若y2≤y1,则x的取值范围为x≤0或x≥4.【点拨】先A点坐标代入y2=mx+2得4m+2=﹣4,再求出m,则可判断二次函数图象的开口向上,易得函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),然后根据函数图象,写出直线不在抛物线上方所对应的自变量的范围即可.【解析】解:把A(4,﹣4)代入y2=mx+2得4m+2=﹣4,解得m=﹣,∵﹣(m+1)>0,∴二次函数图象的开口向上,∵函数y1=﹣(m+1)x2+nx+2与y2=mx+2的图象都经过点(0,2),∴y2≤y1,则x的取值范围为x≤0或x≥4.故答案为x≤0或x≥4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.3.(2019秋•秀洲区期中)如图,直线y=x+m和抛物线y=x2+bx+3都经过点A、点B,且A(1,0),(1)求m的值及点B的坐标;(2)求不等式x2+bx+3≥x+m的解集.(直接写出答案)【点拨】(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,同理解得:b=﹣4,联立方程组即可求解;(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【解析】解:(1)将点A的坐标代入一次函数表达式得:0=1+m,解得:m=﹣1,故直线的表达式为:y=x﹣1…①;将点A的坐标代入抛物线表达式得:0=1+b+3,解得:b=﹣4,故抛物线的表达式为:y=x2﹣4x+3…②,联立①②并解得:x=1或4,故点B(4,3);(2)从图象可以看出:不等式x2+bx+3≥x+m的解集为:x≤1或x≥4.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.巩固训练1.(2019春•西湖区校级月考)函数y=ax2+bx+c如图所示,若方程ax2+bx+c=k有两个不相等的实数根,则()A.k>0 B.k>﹣3 C.k<﹣3 D.k=0【点拨】结合函数图象,利用当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,从而可对各选项进行判断.【解析】解:抛物线y=ax2+bx+c的顶点的纵坐标为﹣3,直线y=﹣3与抛物线y=ax2+bx+c=0只有一个交点,当k>﹣3时,直线y=k与抛物线y=ax2+bx+c=0有两个交点,所以当k>﹣3时,方程ax2+bx+c=k有两个不相等的实数根.故选:B.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.2.(2019春•安吉县期中)如图,抛物线y=﹣x2+mx的对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx ﹣t=0(t为实数)在1<x<3的范围内有解,则t的取值范围是()A.﹣5<t≤4 B.3<t≤4 C.﹣5<t<3 D.t>﹣5【点拨】先利用抛物线的对称轴方程求出m得到抛物线解析式为y=﹣x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【解析】解:∵抛物线y=﹣x2+mx的对称轴为直线x=2,∴﹣=2,解得m=4,∴抛物线解析式为y=﹣x2+4x,抛物线的顶点坐标为(2,4),当x=1时,y=﹣x2+4x=3;当x=3时,y=﹣x2+4x=3,∵关于x的一元二次方程x2+mx﹣t=0(t为实数)在1<x<3的范围内有解,∴抛物线y=﹣x2+4x与直线y=t在1<x<3的范围内有公共点,∴3<t≤4.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.(2019•慈溪市模拟)已知抛物线y=x2+mx+n与x轴只有一个公共点,且过点A(a,b),B(a﹣4,b),则b 的值为()A.4 B.2 C.6 D.9【点拨】根据抛物线y=x2+mx+n与x轴只有一个公共点,可知△=0,从而可以得到m与n的关系,再根据抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),可以得到a和m的关系,从而可以求得b的值.【解析】解:∵抛物线y=x2+mx+n与x轴只有一个公共点,∴△=m2﹣4×1×n=m2﹣4n=0,∴n=m2,∵抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),∴b=a2+ma+n,b=(a﹣4)2+m(a﹣4)+n,∴a2+ma+n=(a﹣4)2+m(a﹣4)+n,化简,得a=,∴b=a2+ma+n=()2+m×+m2=4,故选:A.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,求出b的值.4.(2019•杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y =(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2C.M=N或M=N+1 D.M=N或M=N﹣1【点拨】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.【解析】解:∵y=(x+a)(x+b),a≠b,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.【点睛】本题主要考查一次函数与二次函数与x轴的交点问题,关键是根据根的判别式的取值确定抛物线与x轴的交点个数,二次项系数为字母的代数式时,要根据系数是否为0,确定它是什么函数,进而确定与x轴的交点个数.5.(2019春•西湖区校级月考)函数y=x2+bx+c与y=x的图象如图所示,则不等式x2+(b﹣1)x+c<0的解集为1<x<3.【点拨】根据当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解析】解:∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.∴不等式x2+(b﹣1)x+c<0的解集为1<x<3,故答案为1<x<3.【点睛】主要考查二次函数与不等式(组),此题难度适中,注意掌握数形结合思想的应用.6.(2019•拱墅区校级模拟)已知如图二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(﹣2,4),B(8,2)(如图所示)则能使y1<y2成立的x的取值范围是﹣2<x<8.【点拨】根据函数图象,写出抛物线在直线下方部分的x的取值范围即可.【解析】解:由图可知,﹣2<x<8时,y1<y2.故答案为:﹣2<x<8.【点睛】本题考查了二次函数与不等式组,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.7.(2019•柯城区校级一模)如图,已知直线y1=﹣x+2与x轴交于点A,与y轴交于点B.过A,B两点的抛物线y2=ax2+bx+c交x轴于点C(﹣1,0).(1)求A,B的坐标;(2)求抛物线的解析式;(3)求出当y1>y2时,自变量x的取值范围.【点拨】(1)利用一次函数的解析式确定A、B的坐标;(2)利用待定系数法求抛物线解析式;(3)写出抛物线在直线下方所对应的自变量的范围.【解析】解:(1)当x=0时,y=﹣x+2=2,则B(0,2);当y=0时,﹣x+2=0,解得x=4,则A(4,0);(2)设抛物线解析式为y=a(x+1)(x﹣4),把B(0,2)代入得a(0+1)(0﹣4)=2,解得:a=﹣,所以抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;(3)当y1>y2时,x的取值范围为x<0或x>4.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.也考查了抛物线与x轴的交点问题和二次函数的性质.8.(2019春•西湖区校级月考)若二次函数y=kx2+(3k+2)x+2k+2.(1)若抛物线的对称轴是直线x=﹣1,求k的值;(2)求证:抛物线与x轴有交点.(3)经研究发现,无论k为何值,抛物线经过某些特定的点,请求出这些定点.(4)若y1=2x+2,在﹣2<x<﹣1范围内请比较y1,y的大小.【点拨】(1)抛物线的对称轴是直线x=﹣1=﹣,即可求解;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,即可求解;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,即可求解;(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【解析】解:(1)抛物线的对称轴是直线x=﹣1=﹣,解得:k=﹣2;(2)△=b2﹣4ac=(3k+2)2﹣4k(2k+2)=(k+2)2≥0,故:抛物线与x轴有交点;(3)y=kx2+(3k+2)x+2k+2=k(x2+3x+2)+2x+2,当x2+3x+2=0时,函数过定点,则x=﹣1或﹣2,则定点为:(﹣1,0)、(﹣2,﹣2);(4)如图所示,抛物线过定点:(﹣1,0)、(﹣2,﹣2),由图象可见:当k>0时,y1>y;当k<0时,y1<y.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.。

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第6讲 一元二次方程及其应用

2025年湖南中考数学一轮复习考点研析 第二章 方程(组)与不等式(组)第6讲 一元二次方程及其应用
×100%;总利润
进价(成本)
利润问题 =总售价-总进价(总成本)=单个利润×总销售量.
“每每问题”:若单价每涨a元,少卖b件,则涨价x元,少卖的数量


·


常见
等量关系
类型
面积
问题
S阴影=(a-2x)
S阴影=(a-x)(b-x)
·(b-2x)
循环 握手问题:总次数=(-1)(x为人数)
2
D.6
答案
(2023·怀化)已知关于x的一元二次方程x2+mx-2=0的一个根为
-1
x=-1,则m的值为_______,另一个根为x=_____.
2
变式2-2
变式2-3
(2023·常德)若关于x的一元二次方程x2-2x+a=0有两个不相等
a<1
的实数根,则实数a的取值范围是________.
考点3
答案
1.(2024·贵州)一元二次方程x2-2x=0的解是( B )
A.x1=3,x2=1
B.x1=2,x2=0
C.x1=3,x2=-2
D.x1=-2,x2=-1
2.[易错题](2024·龙东地区)关于x的一元二次方程(m-2)x2+4x+2=0有两个
实数根,则m的取值范围是( D )
A.m≤4
B.m≥4
解:设这款文创产品每件应降价x元.
根据题意,得(30-x)(100+10x)=3 640,
即x2-20x+64=0,
解得x=4或x=16.
当x=4时,100+10x=140;
当x=16时,100+10x=260.
∵要尽快减少库存,
∴x=16.
答:这款文创产品每件应降价16元.

《中考数学专题讲座》课件

《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。

中考数学专题复习课件 --- 第十五讲函数与方程(组)、不等式

中考数学专题复习课件 --- 第十五讲函数与方程(组)、不等式

的取值范围.
【思路点拨】把(-1,0),(0,3)分别代入y=-x2+bx+c,得关
于b、c的二元一次方程组,解方程组得b、c的值,从而得到函 数值y为正数时,自变量x的取值范围.
【自主解答】(1)把(-1,0),(0,3)分别代入y=-x2+bx+c, 得 1 b c 0 ,解得
所以直线AB与直线CD的交点坐标为(-2,2).
1.(2010· 孝感中考)若直线x+2y=2m与直线2x+y=2m+3(m为常 数)的交点在第四象限,则整数m的值为( (A)-3,-2,-1,0 )
(B)-2,-1,0,1
(C)-1,0,1,2
(D) 0,1,2,3
【解析】选B.解方程组 x 2y 2m
x 2 2 x 2 8. (2010·黄冈中考)若函数 y , 则当函数值 2x x 2
y=8时,自变量x的值是( (A) 6 (C) 6 或4
)
(B)4 (D)4或 6
【解析】选D.本题函数有两种情况(1)y=x2+2,当 y=8时 ,有
3 y x,整理得 3.5 2
4.(2011·连云港中考)因长期 干旱,甲水库蓄水量降到了正 常水位的最低值.为灌溉需要, 由乙水库向甲水库匀速供水, 20 h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20 h,甲水库打开另一个排灌闸同时灌溉,再经过40 h,乙水库 停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表
【例3】(2010 ·株洲中考)二次函数 y=x2-mx+3的图象与x轴的交点如图所 示,根据图中信息可得到m的值是_____. 【思路点拨】由图象可以看出抛物线与 x轴的一个交点的坐标,把这个交点坐标 代入二次函数y=x2-mx+3,解方程得m的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题讲座 函数、方程、不等式问题【知识纵横】函数、方程、不等式的结合,是函数某一变量值一定或在某一范围下的方程或不等式,体现了一般到特殊的观念。

也体现了函数图像与方程、不等式的内在联系,例求两个函数的交点坐标,一般通过函数解析式组成的方程组来解决。

又如例4复合了一次函数、二次函数,并对所得的函数要结合自变量的取值范围来考虑最值,这就需要结合图像来解决。

【典型例题】【例1】(天津市)已知抛物线c bx ax y ++=232,(1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【思路点拨】(Ⅰ)令y=0,求方程的两根;(2)考虑判别式;(3)由不等式及结合图像解之。

【例2】(黄石市)如图,已知抛物线与x 轴交于点(20)A -,,(40)B ,,与y 轴交于点(08)C ,. (1)求抛物线的解析式及其顶点D 的坐标;(2)设直线C D 交x 轴于点E .在线段O B 的垂直平分线上是否存在点P ,使得点P 到直线C D 的距离等于点P 到原点O 的距离?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)过点B 作x 轴的垂线,交直线C D 于点F其对称轴平移,使抛物线与线段E F 单位长度?【思路点拨】(2)设(2)P t ,,建立关于t 的方程; (3)考虑抛物线向上平移、向下平移两种情况。

【例3】(吉林长春)已知两个关于x 的二次函数1y 与当x k =时,217y =;且二次函数2y 的图象的对称轴是直线1x =-.222112()2(0)612y y a x k k y y x x =-+>+=++,,(1)求k 的值;(2)求函数12y y ,的表达式;(3)在同一直角坐标系内,问函数1y 的图象与2y 的图象是否有交点?请说明理由. 【思路点拨】(1)2y =(y 1 + y 2)—1y ;(2)由对称轴的方程,求出a 的值;(3)考虑方程根的判别式。

【例4】(广西南宁)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。

某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图①所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润1y 与2y 关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?【思路点拨】:(2)设获得的利润是z 万元,则z =1y +2y ,注意x 范围内最值求法。

【学力训练】1、(广州)如图,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标; (2)求出两函数解析式;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值.2、(江西省卷)已知:如图所示的两条抛物线的解析式分别是211y ax ax =--+,221y ax ax =--(其中a 为常数,且0a >). (1)请写出三条..与上述抛物线有关的不同类型的结论;(2)当12a =时,设211y ax ax =--+与x 轴分别交于M N ,两点(M 在N 的左边),221y ax ax =--与x 轴分别交于E F ,两点(E 在F 的左边),观察M N E F ,,,四点坐标,请写出一个..你所得到的正确结论,并说明理由; (3)设上述两条抛物线相交于A B ,两点,直线12l l l ,,都垂直于x 轴,12l l ,分别经过A B ,两点,l 在直线12l l ,之间,且l 与两条抛物线分别交于C D ,两点,求线段C D 的最大值.3、(四川自贡)抛物线)0(2≠++=a c bx ax y 的顶点为M ,与x 轴的交点为A 、B (点B 在点A 的右侧),△ABM 的三个内角∠M 、∠A 、∠B 所对的边分别为m 、a 、b.若关 于x 的一元二次方程0)(2)(2=+++-a m bx x a m 有两个相等的实数根.(1)判断△ABM 的形状,并说明理由.(2)当顶点M 的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大 致图形.(3)若平行于x 轴的直线与抛物线交于C 、D 两点,以CD 为直径的圆恰好与x 轴相切, 求该圆的圆心坐标.(青海省卷)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某4、一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中O A是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?(学习收益总量=解题的学习收益量+回顾反思的学习收益量)图甲图乙函数、方程、不等式问题的参考答案【典型例题】【例1】(天津市)(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x .∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,.(Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点. 对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31.①当31=c 时,由方程031232=++x x ,解得3121-==x x .此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,.②当31<c 时,11-=x 时,c c y +=+-=1231, 12=x 时,cc y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤. 综上,31=c 或51c -<-≤.(Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a . ∴0>>c a .∵关于x 的一元二次方程0232=++c bx ax 的判别式])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. 又该抛物线的对称轴ab x 3-=,由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<ab .又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象, 可知在10<<x 范围内,该抛物线与x 轴有两个公共点.【例2】(黄石市)(1)设抛物线解析式为(2)(4)y a x x =+-,把(08)C ,代入得1a =-.228y x x ∴=-++2(1)9x =--+,顶点(19)D ,(2)假设满足条件的点P 存在,依题意设(2)P t ,, 由(08)(19)C D ,,,求得直线C D 的解析式为8y x =+,它与x 轴的夹角为45 ,设O B 的中垂线交C D 于H ,则(210)H ,.则10PH t =-,点P 到C D的距离为2d PH t ==-.又PO ==.t ∴=-.平方并整理得:220920t t +-=10t =-±∴存在满足条件的点P ,P的坐标为(210-±,. (3)由上求得(80)(412)E F -,,,.①若抛物线向上平移,可设解析式为228(0)y x x m m =-+++>.当8x =-时,72y m =-+. 当4x =时,y m =.720m ∴-+≤或12m ≤. 072m ∴<≤.②若抛物线向下移,可设解析式为228(0)y x x m m =-++->. 由2288y x x m y x ⎧=-++-⎨=+⎩, 有20x x m -+=.140m ∴=-≥△,104m ∴<≤.∴向上最多可平移72个单位长,向下最多可平移14个单位长【例3】(吉林长春)(1)由22112()2612y a x k y y x x =-++=++,得22222121()612()2610()y y y y x x a x k x x a x k =+-=++---=++--.又因为当x k =时,217y =,即261017k k ++=, 解得11k =,或27k =-(舍去),故k 的值为1.(2)由1k =,得2222610(1)(1)(26)10y x x a x a x a x a =++--=-+++-,所以函数2y 的图象的对称轴为262(1)a x a +=--,于是,有2612(1)a a +-=--,解得1a =-,所以2212212411y x x y x x =-++=++,.(3)由21(1)2y x =--+,得函数1y 的图象为抛物线,其开口向下,顶点坐标为(12),;由22224112(1)9y x x x =++=++,得函数2y 的图象为抛物线,其开口向上,顶点坐标为(19)-,;故在同一直角坐标系内,函数1y 的图象与2y 的图象没有交点.【例4】(广西南宁)(1)设1y =kx ,由图①所示,函数1y =kx 的图像过(1,2),所以2=1⋅k ,2=k故利润1y 关于投资量x 的函数关系式是1y =x 2;因为该抛物线的顶点是原点,所以设2y =2ax ,由图12-②所示,函数2y =2ax 的图像过(2,2),所以222⋅=a ,21=a故利润2y 关于投资量x 的函数关系式是221x y =;(2)设这位专业户投入种植花卉x 万元(80≤≤x ),则投入种植树木(x -8)万元,他获得的利润是z 万元,根据题意,得z =)8(2x -+221x =162212+-x x =14)2(212+-x当2=x 时,z 的最小值是14;因为80≤≤x ,所以622≤-≤-x 所以36)2(2≤-x 所以18)2(212≤-x所以32141814)2(212=+≤+-x ,即32≤z ,此时8=x当8=x 时,z 的最大值是32.【学力训练】1、(广州)(1)y =0.5x +1,y =x12(2)-6<x <0或x >42、(江西省卷)(1)解:答案不唯一,只要合理均可.例如:①抛物线211y ax ax =--+开口向下,或抛物线221y ax ax =--开口向上;②抛物线211y a x a x =--+的对称轴是12x =-,或抛物线221y a x a x =--的对称轴是12x =;③抛物线211y ax ax =--+经过点(01),,或抛物线221y ax ax =--经过点(01)-,; ④抛物线211y ax ax =--+与221y ax ax =--的形状相同,但开口方向相反;⑤抛物线211y ax ax =--+与221y ax ax =--都与x 轴有两个交点;⑥抛物线211y ax ax =--+经过点(11)-,或抛物线221y ax ax =--经过点(11)-,;等等. (2)当12a =时,2111122y x x =--+,令2111022x x --+=,解得21M N x x =-=,. 2211122y x x =--,令2111022x x --=,解得12E F x x =-=,.①00M F N E x x x x +=+=∴ ,,点M 与点F 对称,点N 与点E 对称; ②0M F N E x x x x M N E F +++=∴ ,,,,四点横坐标的代数和为0;③33M N EF M N EF ==∴= ,,(或M E N F =).(3)0a > ,∴抛物线211y ax ax =--+开口向下,抛物线221y ax ax =--开口向上.根据题意,得22212(1)(1)22C D y y ax ax ax ax ax =-=--+---=-+.∴当0x =时,C D 的最大值是2.3、(四川自贡)(1)令0))((4)2(2=+--=∆a m a m b ,得222m b a =+由勾股定理的逆定理和抛物线的对称性知△ABM 是一个以a 、b 为直角边的等腰直角三角形(2)设1)2(2-+=x a y ∵△ABM 是等腰直角三角形∴斜边上的中线等于斜边的一半 又顶点M(-2,-1) ∴121=AB ,即AB =2∴A(-3,0),B(-1,0)将B(-1,0) 代入1)2(2-+=x a y 中得1=a∴抛物线的解析式为1)2(2-+=x y ,即342++=x x y 图略(3)设平行于x 轴的直线为y k =解方程组243y ky x x =⎧⎨=++⎩得121++-=k x ,122+--=k x ()1->k∴线段CD 的长为12+k ∵以CD 为直径的圆与x 轴相切 据题意得k k =+1 ∴12+=k k第 11 页 共 11 页 解得 251±=k ∴圆心坐标为)251,2(+-和)251,2(--4、(青海省卷)(1)设y kx =,把(24),代入,得2k =.2y x ∴=.自变量x 的取值范围是:030x ≤≤.(2)当05x ≤≤时,设2(5)25y a x =-+,把(00),代入,得25250a +=,1a =-.22(5)2510y x x x ∴=--+=-+. 当515x ≤≤时,25y =即210(05)25(515)x x x y x ⎧-+=⎨⎩≤≤≤≤. (3)设王亮用于回顾反思的时间为(015)x x ≤≤分钟,学习效益总量为Z , 则他用于解题的时间为(30)x -分钟.当05x ≤≤时,222102(30)860(4)76Z x x x x x x =-++-=-++=--+. ∴当4x =时,76Z =最大.当515x ≤≤时,252(30)285Z x x =+-=-+.Z 随x 的增大而减小,∴当5x =时,75Z =最大.综合所述,当4x =时,76Z =最大,此时3026x -=.即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时,学习收益总量最大.。

相关文档
最新文档