广二模理数答案

合集下载

广东省深圳市2020届高三年级第二次调研考试数学(理科)试题含答案

广东省深圳市2020届高三年级第二次调研考试数学(理科)试题含答案

2020年深圳市高三年级第二次调研考试数学(理科)2020.6一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题 目要求的。

1.设21(1)iz i +=-则|z|=( )A .12B C .1D2.已知集合{}{}023,22<+-===x x x B y y A x ,则( ) A .A∩B=AB .A ∪B=RC .A ⊆BD .B ⊆A3.设α为平面,m ,n 为两条直线,若m ⊥α,则“m ⊥n ”是”n ⊂α”的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件4.已知双曲线2222:10,0)(y x C a b a b-=>>的两条渐近线互相垂直,则C 的离心率为( )A B .2 C D .35.已知定义在R 上的函数f(x)满足()()2,f x f x +=当01x ≤≤时,13()f x x =,则178f ⎛⎫⎪⎝⎭= A .12 B .2 C.18D .8 6.若x 1,x 2,…,x n 的平均数为a ,方差为b ,则1223,23,23n x x x +++L 的平均数和方差分别为 A .2a ,2bB .2a ,4bC .2a+3,2bD .2a+3,4b7.记等差数列{a n }的前n 项和为S n ,若244,2,S S ==则6S = A .-6B .-4C .-2D .08.函数()()14sin 2xxx f x -=的部分图象大致为9已知椭圆C :22213x y a +=的右焦点为F ,O 为坐标原点,C 上有且只有一个点P 满足|OF|=|FP|,则C 的方程为A .221123x y += B.22183x y += C .22163x y += D.22143x y += 10.下面左图是某晶体的阴阳离子单层排列的平面示意图其阴离子排列如下面右图所示,右图中圆的半径均为1,且相邻的圆都相切,A ,B ,C ,D 是其中四个圆的圆心,则AB CD ⋅=u u u r u u u rA .24B .26C .28D .3211.意大利数学家斐波那契(1175年—1250年)以兔子繁殖数量为例,引入数列:1,1,2,3,5,8,…,该数列从第三项起,每一项都等于前两项之和,即()21,n n n a a a n +++=+∈N 故此数列称为斐波那契数列,又称“兔子数列”,其通项公式为.n n n a ⎡⎤=-⎥⎦(设n是不等式(1211x x x ->+的正整数解,则n 的最小值为A .10B .9C .8D .712.已知直线y ω=与函数()()()sin 01x f x ϕωω=+<<的图象相交,将其中三个相邻交点从左到右依次记为A ,B ,C ,且满足()*.N AC nBC n =∈u u u r u u u r 有下列结论:①n 的值可能为2②当n=3,且|φ|<π时,f(x)的图象可能关于直线x=-φ对称③当φ=6π时,有且仅有一个实数ω,使得(),11f x ππωω⎡⎤-⎢⎥++⎣⎦在上单调递增; ④不等式n ω>1恒成立 其中所有正确结论的编号为 A .③B .①②C .②④D .③④二、填空题:本大题共4小题,每小题5分,共20分. 13.曲线y=xlnx 在点(1,0)处的切线方程为 ▲14.若x ,y 满足约束条件20,0,30,y x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则y z x =的最大值为 ▲15.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足和医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援若将4名医生志愿者分配到两家医院(每人去一家医院,每家医院至少去1人),则共有 ▲ 种分配方案16.已知正方形ABCD 边长为3,点E ,F 分别在边AB ,AD 上运动(E 不与A ,B 重合,F 不与A ,D 重合),将△AEF 以EF 为折痕折起,当A ,E ,F 位置变化时,所得五棱锥A-EBCDF 体积的最大值为 ▲ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。

广东省广州高三第二次模拟考试数学试卷(理科)有答案

广东省广州高三第二次模拟考试数学试卷(理科)有答案

广东省广州市高山文化培训学校高三第二次模拟考试数学试卷(理)第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则集合=()A. B. C. D.2.圆与直线没有公共点的充要条件是()A. B.C. D.3.复数的虚部是()A. B. C. D.4.设P为曲线C:上的点,且曲线C在点P处切线斜率的取值范围为,则点P横坐标的取值范围为()A. B. C. D.5.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A. B. C. D.6.已知O,A,B是平面上的三个点,直线AB上有一点C,满足,则()A. B. C. D.7.已知点P是抛物线上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为()A. B. C. D.8.设是连续的偶函数,且当x>0时是单调函数,则满足的所有x之和为()A. B. C. D.第Ⅱ卷(非选择题共110分)二、填空题(本大题共7小题,每小题5分,满分30分.其中13~15题是选做题,考生只能选做两题,三题全答的,只计算前两题得分.注意:答案不完整不给分)9.设离散型随机变量可能取的值为1,2,3,4;(1,2,3,4).则 .10、函数的图象与x轴所围成的封闭图形的面积为11、已知函数图像上任意一点处的切线的斜率都小于1,则实数的取值范围是;12.已知,且在区间有最小值,无最大值,则=__________.13.(坐标系与参数方程选做题)点是椭圆上的一个动点,则的最大值为** .14.(不等式选讲选做题)在三角形中,所对的边长分别为,其外接圆的半径,则的最小值为*** 。

15.(几何证明选讲选做题)如右图,AB,CD是⊙O的两条弦,它们相交于P,连结AD,BD。

已知AD=BD=4,PC=6,那么CD的长为*** .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16. (本小题满分12分)已知向量,,(1)若⊥, 且-<<.求;(2)求函数的单调增区间和函数图像的对称轴方程.17.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4频数20 50 30(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求的分布列和数学期望.18.(本小题满分14分)如图,四棱锥中,底面是直角梯形,,,,侧面底面,且为等腰直角三角形,,为的中点.(Ⅰ)求证:;(Ⅱ)求证:平面;(Ⅲ)求二面角的正切值.19.(本小题满分14分)已知椭圆的左焦点为F,O为坐标原点。

广东二模 高三数学考试(理科)-含答案

广东二模 高三数学考试(理科)-含答案

广东二模 高三数学考试(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|321},{|320}A x x B x x x =-<=-≥,则A B =( )A .(1,2]B .91,4⎛⎤ ⎥⎝⎦C .31,2⎛⎤ ⎥⎝⎦D .(1,)+∞2.已知复数z 满足(3)(1i)64i z +-=-(i 为虚数单位),则z 的共轭复数所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知72sin cos ,2sin cos 55αααα+=--=-,则cos2α=( ) A .725B .725-C .1625D .1625-4.如图1为某省2018年1~4月快递义务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误..的是( )A .2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2018年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看,2018年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长 5.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,若,4,24ABC C a S π===△,则232sin 3sin sin a c bA C B+-=+- ( )AB .C .D .6.已知平面向量,a b 满足2,1a b ==,且()()432a b a b -⋅+=,则向量,a b 的夹角θ为( ) A .6π B .3π C .2π D .23π7.为了得到2cos 2y x =-的图象,只需把函数2cos 2y x x =-的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向右平移6π个单位长度8.已知抛物线21:2(0)C x py y =>的焦点为1F ,抛物线22:(42)C y p x =+的焦点为2F ,点01(,)2P x 在1C 上,且134PF =,则直线12F F 的斜率为( ) A .12-B .14-C .13-D .15-9.如图,B 是AC 上一点,分别以,,AB BC AC 为直径作半圆.从B 作BD AC ⊥,与半圆相交于D .6,AC BD == )A .29B .13C .49D .2310.某几何体的三视图如图所示,则该几何体的各条棱中,最长的棱与最短的棱所在直线所成角的正切值为( ) ABCD.11.已知双曲线22221(0,0)x y a b a b -=>>的离心率为2,12,F F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F △的面积分别为12,S S ,则12S S =( )A .4B .8C. D.12.已知函数()ln (0,1)x xf x a e x a a a =+->≠,对任意12,[0,1]x x ∈,不等式21()()2f x f x a --≤恒成立,则a 的取值范围为( ) A .21,2e ⎡⎤⎢⎥⎣⎦B .[,)ee +∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .2[,]ee e二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.在42x x ⎛⎫+ ⎪⎝⎭的展开式中,含2x -的项的系数是 .14.已知实数,x y 满足12,3321,14,2y x y x y x ⎧-+⎪⎪--⎨⎪⎪+⎩≥≤≤ 则目标函数3z x y =-的最大值为 .15.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,()()f x g x -=222x x x b +++(b 为常数),则(1)(1)f g -+-= .16.在四面体A BCD -中,2AB AC AD BC BD =====,若四面体A BCD -的外接球的体积V =,则CD = . CABDMN O三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分) 已知数列{}n a 的前n 项和为n S ,满足11S =,且对任意正整数n ,都有111n n n S n S S n +++=-+. (1)求数列{}n a 的通项公式;(2)若2nn na b =,求数列{}n b 的前n 项和n T . 18.(12分)某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A 类(不参加课外阅读),B 类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C 类(参加课外(1)求出表中x ,y (2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加阅读与否”与性别有关;(3)从抽出的女生中再随机抽取3人进一步了解情况,记X 为抽取的这3名女生中A 类人数和C 类人数差的绝对值,求X的数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++.19.(12分)如图,在五面体ABCDFE 中,底面ABCD 为矩形,//EF AB ,BC FD ⊥,过BC 的平面交棱FD 于P ,交棱FA 于Q .(1)证明://PQ 平面ABCD ;(2)若,,2,CD BE EF EC CD EF BC tEF ⊥===,求平面ADF 与平面BCE 所成锐二面角的大小.ABCDEF PQ20.(12分)已知F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,点(2,3)P 在C 上,且PF x ⊥轴.(1)求C 的方程;(2)过F 的直线l 交C 于,A B 两点,交直线8x =于点M .判定直线,,PA PM PB 的斜率是否依次构成等差数列?请说明理由.21.(12分)设函数()(1)1xxf x xe a e =+-+. (1)求函数()f x 的单调区间;(2)若函数()f x 在(0,)+∞上存在零点,证明:2a >. 22.[选修4—4:坐标系与参数方程](10分) 在直角坐标系xOy 中,曲线1C 的参数方程为5cos 55sin x y αα=⎧⎨=+⎩(α为参数).M 是曲线1C 上的动点,将线段OM 绕O 点顺时针旋转90︒得到线段ON ,设点N 的轨迹为曲线2C .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线12,C C 的极坐标方程; (2)在(1)的条件下,若射线(0)3πθρ=≥与曲线12,C C 分别交于,A B 两点(除极点外),且有定点(4,0)T ,求TAB △的面积.23.[选修4—5:不等式选讲](10分) 已知函数()22(0)f x x m x m m =+-->. (1)当12m =时,求不等式1()2f x ≥的解集; (2)对于任意的实数x ,存在实数t ,使得不等式()34f x t t +-<+成立,求实数m 的取值范围.高三数学考试(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|321},{|320}A x x B x x x =-<=-≥,则A B =( )A .(1,2]B .91,4⎛⎤ ⎥⎝⎦C .31,2⎛⎤ ⎥⎝⎦D .(1,)+∞1.答案:C解析:因为3{|1},02A x x B x x ⎧⎫=>=⎨⎬⎩⎭≤≤,所以312AB x x ⎧⎫=<⎨⎬⎩⎭≤.2.已知复数z 满足(3)(1i)64i z +-=-(i 为虚数单位),则z 的共轭复数所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.答案:D 解析:因为64i32i 1iz -=-=+-,所以2i z =-. 3.已知72sin cos ,2sin cos 55αααα+=--=-,则cos2α=( )A .725B .725-C .1625D .1625-3.答案:A解析:因为7sin cos 522sin cos 5αααα⎧+=-⎪⎪⎨⎪-=-⎪⎩,所以3sin 5α=-,从而27cos 212sin 25αα=-=.4.如图1为某省2018年1~4月快递义务量统计图,图2是该省2018年1~4月快递业务收入统计图,下列对统计图理解错误..的是( )A .2018年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2018年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看,2018年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2018年快递业务收入同比增长率逐月增长 4.答案:D解析:选项A ,B 显然正确;对于选项C ,2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误.5.在ABC △中,内角,,A B C 所对的边分别是,,a b c ,若,4,24ABC C a S π===△,则232sin 3sin sin a c bA C B+-=+- ( )A B .C .D .5.答案:B解析:11,4,sin 424222ABC C a S ab C b π====⨯⨯⨯=△,得b =,又根据余弦定理得:2222cos 10c a b ab C =+-=,即c =,所以2322sin 3sin sin sin a c b cR A C B C+-===+-6.已知平面向量,a b 满足2,1a b ==,且()()432a b a b -⋅+=,则向量,a b 的夹角θ为( ) A .6πB .3π C .2π D .23π 6.答案:D解析:因为()()224343112,2,1a b a b a b a b a b -⋅+=-+⋅===,所以1a b ⋅=-, 由cos 2cos 1a b a b θθ⋅=⋅==-,得1cos 2θ=-,所以23πθ=.7.为了得到2cos 2y x =-的图象,只需把函数2cos 2y x x =-的图象( )A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向右平移6π个单位长度7.答案:D解析:因为2cos 22cos 22cos 236y x x x x ππ⎛⎫⎛⎫=-=-+=-+ ⎪ ⎪⎝⎭⎝⎭,要得到函数2cos 2y x =-,只需将2cos 2y x x =-的图象向右平移6π个单位长度即可. 8.已知抛物线21:2(0)C x py y =>的焦点为1F ,抛物线22:(42)C y p x =+的焦点为2F ,点01(,)2P x 在1C 上,且134PF =,则直线12F F 的斜率为( ) A .12-B .14-C .13-D .15-8.答案:B解析:因为134PF =,所以13224p +=,解得22121211.:,:4,(0,),(1,0)24p C x y C y x F F ===,所以直线12F F 的斜率为114014=--.9.如图,B 是AC 上一点,分别以,,AB BC AC 为直径作半圆.从B 作BD AC ⊥,与半圆相交于D .6,AC BD == )A .29B .13C .49D .239.答案:C解析:连接,AD CD ,可知ACD △是直角三角形,又BD AC ⊥,所以2BD AB BC =⋅,设(06)AB x x =<<,则有8(6)x x =-,得2x =,所以2,4AB BC ==,由此可得图中阴影部分的面积等于2223122222ππππ⎛⎫⨯⨯⨯-+= ⎪⎝⎭,故概率241992P ππ==⨯. 10.某几何体的三视图如图所示,则该几何体的各条棱中,最长的棱与最短的棱所在直线所成角的正切值为( ) ABCD.10.答案:C解析:如图,可知最长的棱为长方体的体对角线AC =最短的棱为1BD =,异面直线AC 与BD 所成的角为ACE ∠,由三视图中的线段长度可得,1,AB BD CE CD AE =====tan ACE ∠=.ABCD E11.已知双曲线22221(0,0)x y a b a b -=>>的离心率为2,12,F F 分别是双曲线的左、右焦点,点(,0)M a -,(0,)N b ,点P 为线段MN 上的动点,当12PF PF ⋅取得最小值和最大值时,12PF F △的面积分别为12,S S ,则12S S =( ) A .4 B .8C.D.11.答案:A 解析:由2ce a==,得2,c a b ==,故线段MN所在直线的方程为)y x a =+,又点P 在线段MN上,可设()P m +,其中[,0]m a ∈-,由于12(,0),(,0)F c F c -,即12(2,0),(2,0)F a F a -,得12(2,33),(2,)PF a m m a PF a m =----=-,所以221246PF PF m ma a ⋅=+-223134()44m a a =+-.由于[,0]m a ∈-,可知当34m a =-时,12PF PF ⋅取得最小值,此时4P y a =,当0m =时,12PFPF ⋅取得最大值,此时P y ,则214S S ==. 12.已知函数()ln (0,1)x xf x a e x a a a =+->≠,对任意12,[0,1]x x ∈,不等式21()()2f x f x a --≤恒成立,则a 的取值范围为( )A .21,2e ⎡⎤⎢⎥⎣⎦B .[,)ee +∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .2[,]ee e12.答案:B解析:因为()ln x x f x a e x a =+-,所以()ln ln (1)ln x x x xf x a a e a a a e '=+-=-+.当1a >时,对任意的[0,1]x ∈,10,ln 0x a a ->≥,恒有()0f x '>;当01a <<时,10,ln 0xa a -<≤,恒有()0f x '>,所以()f x 在[0,1]x ∈是单调递增的.那么对任意的12,[0,1]x x ∈,不等式21()()f x f x -2a -≤恒成立,只要max min ()()2f x f x a --≤,max ()(1)ln f x f a e a ==+-,min ()(0)112f x f ==+=,所以2ln 2a a e a -+--≥,即ln ,e a e a e ≥≥.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.在42x x ⎛⎫+ ⎪⎝⎭的展开式中,含2x -的项的系数是 .13.答案:32 解析:44214422rr rr r rr T C xC x x --+⎛⎫==⋅ ⎪⎝⎭,令422r -=-,得3r =,所以含2x -的项的系数为334232C ⋅= 14.已知实数,x y 满足12,3321,14,2y x y x y x ⎧-+⎪⎪--⎨⎪⎪+⎩≥≤≤ 则目标函数3z x y =-的最大值为 .14.答案:4-解析:作可行域如图所示,由图可知,当3z x y =- 过点(1,1)B -时,z 取得最大值4-.15.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,()()f x g x -=222x x x b +++(b 为常数),则(1)(1)f g -+-= .15.答案:4-解析:由()f x 为定义在R 上的奇函数可知(0)0f =,所以0(0)(0)20f g b -=+=,得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1)(1)[(1)(1)]4f g f g f g -+-=-+=--=-.16.在四面体A BCD -中,2AB AC AD BC BD =====,若四面体A BCD -的外接球的体积V =,则CD = . 16.答案:解析:设CD 的中点为M ,AB 的中点为N ,则四面体A BCD -的外接球球心O 在线段MN 上,设四面体A BCD -的外接球半径为r,由3433V r π==,得r =2CD x =,在Rt OAN △中,1ON ==,在Rt ADN △中,DN =,在Rt DMN △中,MN ==1OM MN ON =-=,在Rt ODM △中,222OM OD DM =-,由221)2x =-,解得x =CD =CABDMN O三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分) 已知数列{}n a 的前n 项和为n S ,满足11S =,且对任意正整数n ,都有111n n n S n S S n +++=-+. (1)求数列{}n a 的通项公式; (2)若2nn n a b =,求数列{}n b 的前n 项和n T . 17.解析:(1)由11S =,得11a =.……………………………………………………………………1分 又对任意正整数n ,111n n n S n S S n +++=-+都成立,即11(1)(1)(1)n n n S n n n S n S ++++=+-+,所以1(1)(1)n n nS n S n n +-+=+,所以111n nS S n n+-=+,………………………………………………3分 即数列n S n ⎧⎫⎨⎬⎩⎭是以1为公差,1为首项的等差数列.……………………………………………………4分 所以nS n n=,即2n S n =,得121(2)n n n a S S n n -=-=-≥,………………………………………5分 又由11a =,所以21()n a n n N *=-∈.…………………………………………………………………6分解法2:由1111n n n n S n S S a n ++++=-=+,可得11(1)(1)n n S n n n a ++++=+, 当2n ≥时,(1)n n S n n na +-=,两式相减,得112(1)n n n a n n a na +++=+-,整理得12n n a a +-=, 在111n n S n a n +++=+中,令2n =,得2212Sa +=,即22122a a ++=,解得23a =,212a a ∴-=, 所以数列{}n a 是首项为1,公差为2的等差数列,12(1)21n a n n ∴=+-=-.(2)由(1)可得2122n n n n a n b -==,……………………………………………………………………7分 所以231135232122222n n nn n T ---=+++++, ①……………………………………………………8分则234111352321222222n n n n n T +--=+++++, ②……………………………………………………9分 -①②,得2341112222212222222n n n n T +-=+++++-,……………………………………………10分整理得1113221323222222n n n n n n T ++-+=--=-,…………………………………………………………11分所以2332n nn T +=-.……………………………………………………………………………………12分18.(12分)某中学为了解中学生的课外阅读时间,决定在该中学的1200名男生和800名女生中按分层抽样的方法抽取20名学生,对他们的课外阅读时间进行问卷调查.现在按课外阅读时间的情况将学生分成三类:A 类(不参加课外阅读),B 类(参加课外阅读,但平均每周参加课外阅读的时间不超过3小时),C 类(参加课外阅读,且平均每周参加课外阅读的时间超过3小时).调查结果如下表:(1)求出表中x ,y (2)根据表中的统计数据,完成下面的列联表,并判断是否有90%的把握认为“参加阅读与否”与性别有关;(3)从抽出的女生中再随机抽取3人进一步了解情况,记X 为抽取的这3名女生中A 类人数和C 类人数差的绝对值,求X 的数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++.18.解析:(1)设抽取的20人中,男、女生人数分别为12,n n ,则122012001220002080082000n n ⨯⎧==⎪⎪⎨⨯⎪==⎪⎩,……1分所以12534x =--=,………………………………………………………………………………2分8332y =--=.………………………………………………………………………………………3分(2)列联表如下:5分2K 的观测值220(4628)100.159 2.70612814663k ⨯⨯-⨯==≈<⨯⨯⨯, 所以没有90%的把握认为“参加阅读与否”与性别有关.……………………………………………7分(3)X 的可能取值为0,1,2,3,则311132333819(0)56C C C C P X C +===,……………………………………………………………………8分 3121122133322323383(1)7C C C C C C C C P X C +++===,………………………………………………………9分 21212333383(2)14C C C C P X C +===,………………………………………………………………………10分 33381(3)56C P X C ===,……………………………………………………………………………………11分所以193131510123567145656EX =⨯+⨯+⨯+⨯=.………………………………………………………12分 19.(12分)如图,在五面体ABCDFE 中,底面ABCD 为矩形,//EF AB ,BC FD ⊥,过BC 的平面交棱FD 于P ,交棱FA 于Q .(1)证明://PQ 平面ABCD ;(2)若,,2,CD BE EF EC CD EF BC tEF ⊥===,求平面ADF 与平面BCE 所成锐二面角的大小.ABCDEF PQ19.(1)证明:因为底面ABCD 为矩形,所以//AD BC ,又因为AD ⊂平面ADF ,BC ⊄平面ADF ,所以//BC 平面ADF ,……………………………………………………………………………………2分 又因为BC ⊂平面BCPQ ,平面BCPQ平面ADF PQ =,所以//BC PQ ,…………………………4分又因为PQ ⊄平面ABCD ,CD ⊂平面ABCD ,所以//PQ 平面ABCD .…………………………6分 (2)解:,,CD BE CD CB BE CB B ⊥⊥=,CD ∴⊥平面BCE ,又因为CE ⊂平面BCE ,所以CD CE ⊥;因为,,BC CD BC FD CD FD D ⊥⊥=,所以BC ⊥平面CDFE ,所以BC CE ⊥,以C为坐标原点,,,CD CB CE 所在方向为,,x y z 轴正方向建立如图所示空间直角坐标系C xyz -,设1EF CE ==,则(2,,0),(2,0,0),(1,0,1)A t D F ,所以(0,,0),(1,,1)AD t AF t =-=--…………7分设平面ADF 的一个法向量为(,,)n x y z =,则0n AD ty n AF x ty z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩,令1x =,得(1,0,1)n =…9分易知平面BCE 的一个法向量为(1,0,0)m =,…………………………………………………………10分 设平面ADF 与平面BCE 所成的锐二面角为θ,则2cos 2n m n mθ⋅==⋅,……………………………11分 所以4πθ=,故平面ADF 与平面BCE 所成锐二面角为4π.20.(12分)已知F 为椭圆2222:1(0)x y C a b a b+=>>的右焦点,点(2,3)P 在C 上,且PF x ⊥轴.(1)求C 的方程;(2)过F 的直线l 交C 于,A B 两点,交直线8x =于点M .判定直线,,PA PM PB 的斜率是否依次构成等差数列?请说明理由.20.解:(1)因为点(2,3)P 在C 上,且PF x ⊥轴,所以2c =………………………………………1分由22224914a ba b ⎧+=⎪⎨⎪-=⎩,得221612a b ⎧=⎪⎨=⎪⎩,…………………………………………………………………………4分 故椭圆C 的方程为2211612x y +=.…………………………………………………………………………5分 (2)由题意可知直线l 的斜率存在,设直线l 的的方程为(2)y k x =-,令8x =,得M 的坐标为(8,6)k .……………………………………………………………………6分由2211612(2)x y y k x ⎧+=⎪⎨⎪=-⎩,得2222(43)1616(3)0k x k x k +-+-=.…………………………………………7分 设1122(,),(,)A x y B x y ,则有221212221616(3),4343k k x x x x k k -+==++.①…………………………8分 设直线,,PA PM PB 的斜率分别为123,,k k k , 从而121231233631,,22822y y k k k k k x x ---====----.……………………………………………………9分因为直线AB 的方程为(2)y k x =-,所以1122(2),(2)y k x y k x =-=-, 所以12121212121233113222122y y y y k k x x x x x x ⎛⎫--+=+=+-+ ⎪------⎝⎭1212124232()4x x k x x x x +-=-⨯-++. ②……………………………………………………………………10分把①代入②,得2212222216443232116(3)3244343k k k k k k k kk k -++=-⨯=---+++.………………………………11分 又312k k =-,所以1232k k k +=,故直线,,PA PM PB 的斜率成等差数列.…………………………12分21.(12分)设函数()(1)1xxf x xe a e =+-+. (1)求函数()f x 的单调区间;(2)若函数()f x 在(0,)+∞上存在零点,证明:2a >.21.(1)解:函数()f x 的定义域为(,)-∞+∞,…………………………………………………………1分 因为()(1)1xxf x xe a e =+-+,所以()(1)xf x x a e '=+-.…………………………………………2分 所以当1x a >-时,()0f x '>,()f x 在(1,)a -+∞上是增函数;当1x a <-时,()0f x '<,()f x 在(,1)a -∞-上是减函数.……………………………………4分 所以()f x 在(1,)a -+∞上是增函数,在(,1)a -∞-上是减函数.…………………………………5分 (2)证明:由题意可得,当0x >时,()0f x =有解,即1(1)11111x x x x x xe x e x x a x e e e +-+-+===+---有解.………………………………………………6分 令1()1x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--.…………………………………………7分 设函数()2,()10xxh x e x h x e '=--=->,所以()h x 在(0,)+∞上单调递增.又2(1)30,(2)20h e h e =-<=->,所以()h x 在(0,)+∞上存在唯一的零点.………………………8分 故()g x '在(0,)+∞上存在唯一的零点.设此零点为k ,则(1,2)k ∈.………………………………9分当(0,)x k ∈时,()0g x '<;当(,)x k ∈+∞时,()0g x '>.所以()g x 在(0,)+∞上的最小值为()g k .………………………………………………………………10分 又由()0g k '=,可得2ke k =+,所以1()1(2,3)1kk g k k k e +=+=+∈-,…………………………11分 因为()a g x =在(0,)+∞上有解,所以()2a g k >≥,即2a >.………………………………12分 解法2:(2)证明:由题意可得,当0x >时,()0f x =有解,由(1)可知()f x 在(1,)a -+∞上是增函数,在(,1)a -∞-上是减函数,且(0)1f =.①当10a -<,即1a <时,()f x 在(0,)+∞上单调递增,所以当0x >时,()(1)1f x f >=,不符合题意; ②当10a ->,即1a >时,()f x 在(0,1)a -上单调递减,在(1,)a -+∞上单调递增,所以当1x a =-时,()f x 取得最小值(1)f a -,由题意可知111(1)(1)(1)110≤a a a f a a e a e a e ----=-+-+=-+,设1()1(1)x g x x ex -=-+>,则1()10x g x e -'=-<,所以函数()g x 在(1,)+∞上单调递减,又(2)30g e =->,而()≤0g a ,所以2a >.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4—4:坐标系与参数方程](10分) 在直角坐标系xOy 中,曲线1C 的参数方程为5cos 55sin x y αα=⎧⎨=+⎩(α为参数).M 是曲线1C 上的动点,将线段OM 绕O 点顺时针旋转90︒得到线段ON ,设点N 的轨迹为曲线2C .以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求曲线12,C C 的极坐标方程; (2)在(1)的条件下,若射线(0)3πθρ=≥与曲线12,C C 分别交于,A B 两点(除极点外),且有定点(4,0)T ,求TAB △的面积.22.解:(1)由题设,得1C 的直角坐标方程为22(5)25x y +-=,即22100x y y +-=,…………2分 故1C 的极坐标方程为210sin 0ρρθ-=,即10sin ρθ=.………………………………………………3分 设点(,)(0)N ρθρ≠,则由已知得,2M πρθ⎛⎫+⎪⎝⎭,代入1C 的极坐标方程得10sin()2πρθ=+,即10cos (0)ρθρ=≠.……………………………………………………………………………………5分(2)将3πθ=代入12,C C的极坐标方程得,5,33A B ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,………………………………7分 又因为(4,0)T ,所以1sin 1523TOA S OA OT π=⋅=△,………………………………………………8分1sin 23TOB S OB OT π=⋅=△,……………………………………………………………………9分所以15TAB TOA TOB S S S =-=-△△△10分 23.[选修4—5:不等式选讲](10分) 已知函数()22(0)f x x m x m m =+-->. (1)当12m =时,求不等式1()2f x ≥的解集; (2)对于任意的实数x ,存在实数t ,使得不等式()34f x t t +-<+成立,求实数m 的取值范围.23.解:因为0m >,所以3,()223,3,x m x mf x x m x m x m m x m x m x m --⎧⎪=+--=--<<⎨⎪-+⎩≤≥.……………………1分(1)当12m =时,31,22111()3,,22231,22x x f x x x x x ⎧--⎪⎪⎪=--<<⎨⎪⎪-+⎪⎩≤≥ …………………………………………………………2分所以由1()2f x ≥,可得31,2212x x ⎧-⎪⎪⎨⎪-⎪⎩≥≤或113,221122x x ⎧-⎪⎪⎨⎪-<<⎪⎩≥ 或312212x x ⎧-+⎪⎪⎨⎪⎪⎩≥≥ ,…………………………3分解得1132x <≤或112x ≤≤,………………………………………………………………………………4分 故原不等式的解集为113xx ⎧⎫<⎨⎬⎩⎭≤.………………………………………………………………………5分 (2)因为()34()43f x t t f x t t +-<+⇔+--≤,令()43g t t t =+--,则由题设可得max max ()()≤f x g t .…………………………………………6分由3,()3,3,x m x m f x x m m x m x m x m --⎧⎪=--<<⎨⎪-+⎩≤≥,得max ()()2f x f m m ==.……………………………………7分因为43(4)(3)7t t t t +--+--=≤,所以7()7g t -≤≤.……………………………………8分 故max ()7g t =,从而27m <,即72m <,………………………………………………………………9分 又已知0m >,故实数m 的取值范围是70,2⎛⎫ ⎪⎝⎭.…………………………………………………………10分。

2021年广东省广州市高考数学二模试卷(理科)(解析版)

2021年广东省广州市高考数学二模试卷(理科)(解析版)

2021年广东省广州市高考数学二模试卷(理科)(解析版)2021年广东省广州市高考数学二模试卷(理科)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|��1<x<1},N={x|x2<2,x∈Z},则() A.M?N B.N?M C.M∩N={0} D.M∪N=N 2.已知复数z=,其中i为虚数单位,则|z|=()A. B.1 C. D.2)的值是()3.已知cos(A.B.��θ)=,则sin(C.�� D.��4.已知随机变量x服从正态分布N(3,?2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.165.不等式组b)的解集记为D,若(a,∈D,则z=2a��3b的最小值是()A.��4 B.��1 C.1 6.使(x2+A.3B.4D.4)n(n∈N)展开式中含有常数项的n的最小值是() C.5D.6)的图象的一个对称中心为(,0),则函7.已知函数f(x)=sin(2x+φ)0<φ<数f(x)的单调递减区间是()A.[2kπ��C.[kπ��,2kπ+,kπ+](k∈Z)B.[2kπ+,2kπ+](k∈Z)](k∈Z) D.[kπ+,kπ+](k∈Z)8.已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为() A.π B.π C.π D.π,则下列命题9.已知命题p:?x∈N*,()x≥()x,命题q:?x∈N*,2x+21��x=2中为真命题的是() A.p∧q B.C.p∧(�Vq) D.(�Vp)∧q (�Vp)∧(�Vq)10.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()第1页(共21页)A.4+6π B.8+6π C.4+12π D.8+12π11.已知点O为坐标原点,点M在双曲线C:x2��y2=λ(λ为正常数)上,过点M 作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|?|MN|的值为() A.B.C.λD.无法确定12.设函数f(x)的定义域为R,f(��x)=f(x),f(x)=f(2��x),当x∈[0,1]时,f (x)=x3.则函数g(x)=|cos(πx)|��f(x)在区间[��,]上的所有零点的和为()A.7B.6C.3D.2二.填空题:本大题共4小题,每小题5分.13.曲线f(x)=+3x在点(1,f(1))处的切线方程为______. 14.已知平面向量与的夹角为, =(1,),|��2|=2.则||=______.15.已知中心在坐标原点的椭圆C的右焦点为F(1,0),点F关于直线y=x的对称点在椭圆C上,则椭圆C的方程为______.16.在△ABC中,a,b,c分别为内角A,B,C的对边,a+c=4,(2��cosA)tan=sinA,则△ABC的面积的最大值为______.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.设Sn是数列{an}的前n项和,已知a1=3,an+1=2Sn+3(n∈N)(I)求数列{an}的通项公式;(Ⅱ)令bn=(2n��1)an,求数列{bn}的前n项和Tn.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:2 3 4 5 6 7 学生序号i 1 数学成绩 60 65 70 75 85 87 90 xi 物理成绩 70 77 80 85 90 86 93 yi (i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;第2页(共21页)(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.76 83 812 526 19.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.20.已知点F(1,0),点A是直线l1:x=��1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.21.已知函数f(x)=e��x��ax(x∈R).(Ⅰ)当a=��1时,求函数f(x)的最小值;(Ⅱ)若x≥0时,f(��x)+ln(x+1)≥1,求实数a的取值范围;(Ⅲ)求证:.四.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-1:几何证明选讲]22.如图,四边形ABCD是圆O的内接四边形,AB是圆O的直径,BC=CD,AD的延长线与BC的延长线交于点E,过C作CF⊥AE,垂足为点F.(Ⅰ)证明:CF是圆O的切线;(Ⅱ)若BC=4,AE=9,求CF的长.第3页(共21页)[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C的参数方程为(θ为参数).以点O为极=.点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+(Ⅰ)将曲线C和直线l化为直角坐标方程;(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x��2|��a).(Ⅰ)当a=7时,求函数f (x)的定义域;(Ⅱ)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.第4页(共21页)2021年广东省广州市高考数学二模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|��1<x<1},N={x|x2<2,x∈Z},则() A.M?N B.N?M C.M∩N={0} D.M∪N=N 【考点】集合的包含关系判断及应用.【分析】N={x|x2<2,x∈Z}={��1,0,1},从而解得.【解答】解:N={x|x2<2,x∈Z}={��1,0,1},故M∩N={0},故选:C.2.已知复数z=,其中i为虚数单位,则|z|=()A. B.1 C. D.2【考点】复数求模.【分析】先根据复数的运算法则化简,再根据计算复数的模即可.【解答】解:z=∴|z|=1,故选:B.3.已知cos(A.B.��θ)=,则sin(C.�� D.��)的值是()===,【考点】三角函数的化简求值.【分析】由已知及诱导公式即可计算求值.【解答】解:cos(��θ)=sin[��(��θ)]=sin()=,故选:A.4.已知随机变量x服从正态分布N(3,?2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.16【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(x≤4)=0.84的概率可求出P(x<2)=P(x>4)=0.16,即可求出P(2<x<4).【解答】解:∵P(x≤4)=0.84,第5页(共21页)感谢您的阅读,祝您生活愉快。

2020届广东省广州市高三二模数学(理)试题(解析版)

2020届广东省广州市高三二模数学(理)试题(解析版)
设 =0的根为m,即有a=2me2m, .
当0<x<m时, <0,f(x)单调递减;当x>m时, >0,f(x)单调递增,
可得x=m处f(x)取得极小值,且为最小值e2m﹣alnm,
由题意可得e2m﹣alnm a,即 alnm a,
化为m+2mlnm≤1,设g(m)=m+2mlnm, =1+2(1+lnm),
所以面NEMF∥平面BCC1B1,而EF 面MN,
所以EF∥平面BCC1B1,
所以要使EF∥平面BCC1B1,则动点F的轨迹为线段FN.
故选:A.
【点睛】
本题主要考查线线平行,线面平行,面面平行的转化,还考查了空间想象和逻辑推理的能力,属于中档题.
7.函数 的图象大致是()
A. B.
C. D.
【答案】C
【详解】
解:如图,
在正四棱锥P﹣ABCD中,由底面边长为2,侧棱长为 ,
可得△PAC为正三角形,取PC的中点G,得AG⊥PC,且AG .
设过AG与PC垂直的平面交PB于E,交PD于F,连接EF,
则EG⊥PC,FG⊥PC,可得Rt△PGE≌Rt△PGF,得GE=GF,PE=PF,
在△PAE与△PAF中,由PA=PA,PE=PF,∠APE=∠APF,得AE=AF.
则A∩B={x|0≤x≤1}=[0,1].
故选:B.
【点睛】
本题主要考查一元二次不等式的解法,考查函数定义域的求法,考查集合的交集运算,意在考查学生对这些知识的理解掌握水平.
2.已知复数 ,若 是纯虚数,则b=()
A.﹣2B. C. D.1
【答案】A
【解析】根据复数的除法法则把 化成复数的一般形式,然后由实部为零,虚部不等于零计算即可.

2022年广西高考理科数学二模试卷及答案解析

2022年广西高考理科数学二模试卷及答案解析

2022年广西高考理科数学二模试卷一、选择题:本大题共I2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A ={x ||x |<2},集合B ={﹣1,0,1,2,3},则A ∩B =( ) A .{0,1}B .{0,1,2}C .{﹣1,0,1}D .{﹣1,0,1,2}2.(5分)若复数z 满足(1﹣i )z =3+i (其中i 为虚数单位),则|z |=( ) A .1B .√2C .2D .√53.(5分)已知a =(12)3,b =0.3﹣2,c =log 122,则a ,b ,c 的大小关系( )A .a >b >cB .a >c >bC .c >b >aD .b >a >c4.(5分)已知a →,b →均为单位向量,若|a →−2b →|=√3,则a →与b →的夹角是( ) A .π6B .π3C .5π6D .2π35.(5分)若等差数列{a n }和等比数列{b n }满足a 1=b 1=﹣1,a 4=b 4=8,a 2b 2=( )A .﹣4B .﹣1C .1D .46.(5分)已知直线l 过点A (a ,0)且斜率为1,若圆x 2+y 2=4上恰有3个点到l 的距离为1,则a 的值为( ) A .3√2B .±3√2C .±2D .±√27.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2017年1月至2019年12月期间月接待游客量(单位:万人)的数据,绘制了如图的折线图.根据该折线图,下列结论错误的是()A .年接待游客量逐年增加B .各年的月接待游客量高峰期在8月C .2017年1月至12月月接待游客量的中位数为30万人D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 8.(5分)(1﹣ax )(1+x )6的展开式中,x ³项的系数为﹣10,则实数a 的值为( ) A .23B .2C .﹣2D .−239.(5分)函数f(x)=12x 2−xsinx 的大致图象可能是( )A .B .C .D .10.(5分)执行如图所示的程序框图,则输出的S 的值为( )A .√2021B .√2019C .2√505D .2√505−111.(5分)如图所示,在直角梯形BCEF 中,∠CBF =∠BCE =90°,A ,D 分别是BF ,CE 上的点,AD ∥BC ,且AB =DE =2BC =2AF (如图1),将四边形ADEF 沿AD 折起,连结BE 、BF 、CE (如图2).在折起的过程中,下列说法中正确的个数( )①AC ∥平面BEF ;②B 、C 、E 、F 四点可能共面;③若EF ⊥CF ,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .0B .1C .2D .312.(5分)已知点F 1,F 2分别是双曲线C :x 2−y 2b2=1(b >0)的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足|F 1F 2|=2|OP |,tan ∠PF 2F 1≥3,则双曲线C 的离心率的取值范围为( ) A .(1,√102] B .[√102,+∞) C .(1,√102) D .(√102,2] 二、填空题:本题共4小题,每小题5分,共20分。

2024年中考数学第二次模拟考试+解析(广东广州卷)

2024年中考数学第二次模拟考试+解析(广东广州卷)

2024年中考第二次模拟考试(广州卷)数学·全解全析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.若一个数与它的相反数在数轴上对应的点之间的距离为4,则这个数是()A.-2B.0C.±2D.±4【答案】C【分析】根据相反数的性质,结合数轴确定出所求即可.【详解】解:若一个数与它的相反数在数轴上对应点之间的距离为4,则这个数是±2,故选:C.【点睛】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行解答即可.2【详解】解:根据主视图和左视图为矩形可判断出该几何体是柱体, 根据俯视图是两个矩形可判断出该几何体为.故选:D .【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.如图,ABC 内接于⊙O ,30A ∠=︒,则BOC ∠的度数为( )A .30︒B .60︒C .75°D .120°【答案】B【分析】本题考查了圆周角定理,直接利用圆周角定理即可得出答案. 【详解】解:∵弧BC 对的圆心角是BOC ∠,对的圆周角是A ∠,∴12A BOC ∠=∠,∴223060BOC A ∠=∠=⨯︒=︒. 故选:B .4.下列运算结果正确的是( ) A .347a a a += B .3332a a a ⋅= C .339236a a a ⋅=D .()362-a a =−【答案】D【分析】依次根据合并同类项,同底数幂的乘法(m n mna a a ⋅= ),单项式乘单项式,幂的乘方公式(()m n mna a =)对各选项判断即可.【详解】A .3a 与4a 不是同类项不能合并,故该选项错误;B .33336a a a a +⋅==,故该选项错误;C .633236a a a ⋅=,故该选项错误;D .()362-a a =−,故该选项正确.故选:D .【点睛】本题考查合并同类项、幂的相关计算和单项式乘单项式.解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及单项式乘单项式的运算法则. 5.一个不等式组12322x x x x−⎧<⎪⎨⎪−≥⎩,那么它的解集在数轴上表示正确的是( )A .B .C .D .【答案】B【分析】先求出每个不等式的解集,后把解集表示到数轴上即可. 【详解】解:12322 x x x x −⎧<⎪⎨⎪−≥⎩①②,解不等式①,得:1x >−, 解不等式②,得:2x ≥, ∴该不等式组的解集为2x ≥, 其解集在数轴上表示如下:故选:B .【点睛】本题考查了一元一次不等式组的解法,解集的数轴表示,熟练求得不等式组的解集是解题的关键.6.如果当0x >时,反比例函数(0)ky k x=≠的函数值随x 的增大而增大,那么一次函数123y kx k =−的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4【答案】B【分析】本题考查了一次函数的图象性质:y kx b =+与y 轴交于()0,b ,当0b >时,()0,b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,()0,b 在y 轴的负半轴,直线与y 轴交于负半轴.①0,0k b y kx b >>⇔=+的图象在一、二、三象限;②0,0k b y kx b ><⇔=+的图象在一、三、四象限;③0,0k b y kx b <>⇔=+的图象在一、二、四象限;④0,0k b y kx b <<⇔=+的图象在二、三、四象限.反比例函数的图象性质,反比例函数(0)ky k x =≠的图象是双曲线,当0k >,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当0k <,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.由反比例函数的性质可判断k 的符号,再根据一次函数的性质即可判断一次函数的图象经过的象限. 【详解】解:由题意得:0k <, 103k ∴<,20k −>,∴一次函数123y kx k=−的图象经过第一、二、四象限,故选:B .7.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是( ) A .这组数据的众数是9.6分 B .这组数据的方差是13300C .这组数据的平均数是9.4分D .这组数据的中位数是9.5分【答案】D【分析】根据平均数、众数、中位数和方差的定义分别计算即可. 【详解】解:这组数据从大到小排列为9.6,9.6,9.5,9.4,9.3,9.0,9.6分出现次数最多,则这组数据的众数是9.6分,故A 选项正确,不符合题意;处于中间的两个数是9.5,9.4,则这组数据的中位数是9.45分,故D 选项错误,符合题意;这组数据的平均数为9.629.59.49.399.46⨯++++=,故C 选项正确,不符合题意; 方差为()()()()()22222129.69.49.59.49.49.49.39.49.09.46⎡⎤⨯⨯−+−+−+−+−⎣⎦ 13300=,故B 选项正确,不符合题意;故选:D .【点睛】本题主要考查方差,解题的关键是掌握平均数、众数、中位数和方差的定义. 8.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC 为9m ,则这两棵树之间的坡面AB 的长为( )A .18mB .C .D .【答案】C【分析】AB 是Rt ABC △的斜边,这个直角三角形中,已知一边和一锐角,满足解直角三角形的条件,可求出AB 的长.【详解】解:如图,30BAC ∠=︒,90ACB ∠=︒,9AC =m , ∴AB=2BC ,∴222AC BC AB +=,即22294BC BC +=,解得:BC =,∴AB =, 故选:C .【点睛】本题考查了坡度坡角问题,直角三角形的性质,勾股定理.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.9.课本习题:“A ,B 两种机器人都被用来搬运化工原料,A 型机器人比B 型机器人每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,两种机器人每小时分别搬运多少化工原料?”下列四位同学列方程正确的是( ) ①设A 型机器人每小时搬运x kg 化工原料,则: 甲列的方程为:90060030x x =+;乙列的方程为:90060030x x =− ②设A 型机器人搬运900kg 化工原料需要x 小时,则: 丙列的方程为:90060030x x +=;丁列的方程为:60090030x x+=6A .甲、丙B .甲、丁C .乙、丙D .乙、丁【答案】D【分析】分别从不同角度设未知数列出方程进行判断即可.【详解】解:设A 型机器人每小时搬运xkg 化工原料,则B 型机器人每小时搬运(x -30)kg 化工原料, 则90060030xx =− 故乙正确;设A 型机器人搬运900kg 化工原料需要x 小时,则60090030x x +=故丁正确. 故选:D .【点睛】本题考查由实际问题抽象出分式方程,解题关键是合理设元,找到等量关系列出方程.10.已知关于x 的方程()21210−−−=k x 有实数根,则k 的取值范围为( )A .2k ≥B .1k ≥−且12k ≠C .12k −≤≤且12k ≠D .12k −≤≤ 【答案】D【分析】根据已知分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,再结合即可.【详解】解:∵关于x 的方程()21210−−−=k x 有实数根,若1-2k=0,则k=12,方程为10−=,此时方程有解,∴k=12;若1-2k≠0,则(()()24121k −⨯−⨯−−≥0,k+1≥0,分别解得:k≠12,k≤2,k≥-1,则k 的取值范围是:-1≤k≤2,且k≠12,综上:-1≤k≤2. 故选:D .【点睛】本题考查了根的判别式的应用,能根据题意分1-2k=0和1-2k≠0分别讨论求出k 的取值范围,当1-2k≠0时还需要满足(()()24121k −⨯−⨯−−≥0,k+1≥0.二、填空题(本大题共6个小题,每小题3分,共18分)11.5月5日,记者从襄阳市文化和旅游局获悉,五一长假期间,我市41家A 级景区全部开放,共接待游客约2270000人次.数据2270000用科学记数法表示为 . 【答案】62.2710⨯【分析】科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数. 【详解】解:2270000用科学记数法表示为 62.2710⨯,故答案为:62.2710⨯.【点睛】本题考查了科学记数法—表示较大的数,科学记数法的表现形式为10na ⨯的形式,其中110a ≤<,n 为整数,表示时关键是要正确确定a 的值以及n 的值.12.若二次函数2y x k =+的图像经过点()11,y −,()23,y ,则1y 2y (选填:﹥,﹤,=) 【答案】<【分析】本题考查了二次函数的图象与性质,根据二次函数的对称轴和开口方向,判断所给点到对称轴的距离大小即可求解.【详解】解:∵二次函数2y x k =+的对称轴为直线0x =,且图象开口向上, 又()011−−=,303−=,13<,∴1y 2y <故答案为:<13.明德华兴中学自2021年下学期恢复高中办学后,街舞社按四个年级分A 、B 、C 、D 四个学习小组,小明同学根据各小组的成员人数绘制了条形统计图(1),小华同学绘制了扇形统计图(2),其中m = .8【答案】72【分析】用360°乘以D 组的人数和总人数得出D 组所占的百分比即可得出答案. 【详解】解:四个小组的总人数为:4+8+12+6=30(人),D 组的人数在扇形统计图中所对应的圆心角的度数为:6360=7230⨯︒︒, ∴m=72, 故答案为:72.【点睛】本题考查了条形统计图、扇形统计图,以及用样本估计总体,弄清题意是解题的关键.14.若正方形的面积为36,则该正方形的对角线长为 .【答案】【分析】根据正方形面积公式,求出边长,再根据勾股定理即可求解. 【详解】解:∵正方形的面积为36, ∴6=,∴=,故答案为:【点睛】本题主要考查了正方形的性质,勾股定理,解题的关键是掌握正方形四条边相等.15.如图,已知BD CD ,分别是ABC ∠和ACE ∠的平分线,连接AD ,46DAC ∠=︒,BDC ∠= .【答案】44︒/44度【分析】过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,根据角平分线的判定和性质可得DF DG DH ==,46DAC FAD ∠=∠=︒,从而得到88BAC ∠=︒,再由角平分线的性质和三角形外角的定义可得111222BDC ABC BAC ABC∠+∠=∠+∠,进行计算即可得到答案.【详解】解:如图,过点D 作DF BA ⊥,交BA 的延长线于点F ,过点D 作DH AC ⊥于点H ,过点D 作DG BA ⊥,交BC 的延长线于点G ,BD CD ,分别是ABC ∠和ACE ∠的平分线,DF BA ⊥,DH AC ⊥,DG BA ⊥, DF DG DH ∴==,DH AC DF BA ⊥⊥,,DF DH =,AD ∴平分CAF ∠, 46DAC FAD ∴∠=∠=︒, 180DAC FAD BAC ∠+∠+∠=︒, 180464688BAC ∴∠=︒−︒−︒=︒,BD CD ,分别是ABC ∠和ACE ∠的平分线,12DCE ACE ∠=∠∴,12DBC ABC∠=∠,DCE BDC DBC ACE ABC BAC ∠=∠+∠∠=∠+∠,,()1122BDC DBC ACE BAC ABC ∴∠+∠=∠=∠+∠,111222BDC ABC BAC ABC∴∠+∠=∠+∠,11884422BDC BAC ∴∠=∠=⨯︒=︒,故答案为:44︒.【点睛】本题主要考查了角平分线的判定与性质,三角形外角的定义及性质,熟练掌握角平分线的判定与性质,三角形外角的定义及性质,添加适当的辅助线是解题的关键.1016.如图,在Rt △ABC 中∠BAC =90°,点D 和点E 分别是AB ,AC 的中点,点F 和点G 分别在BA 和CA 的延长线上,若BC =10,GF =6,EF =4,则GD 的长为 .【答案】【分析】先利用三角形的中位线的性质求得线段152DE BC ==,然后在ADE ∆,AEF ∆,ADG ∆,AGF ∆中分别利用勾股定理即可求解.【详解】解:∵点D 和点E 分别是AB ,AC 的中点,BC =10, ∴152DE BC ==,∵Rt △ABC 中∠BAC =90°,∴ADE ∆,AEF ∆,ADG ∆,AGF ∆都是直角三角形, ∵GF =6,EF =4,∴由勾股定理得,22236AF AG GF +== ①,22216AF AE EF +==②, 22225AD AE DE +==③,∴−+①②③,得2245AD AG +=,∵在Rt ADG ∆中,222AD AG GD +=,∴245GD =,解得GD =GD =−故答案为:【点睛】本题考查了三角形的中位线的性质及勾股定理的应用,此处勾股定理的灵活运算是解题的关键.三、解答题(本大题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分4分) 解方程:(21)2(21)x x x −=−. 【答案】12122x x ==,【分析】运用因式分解法求解即可.【详解】解:移项得:(21)2(21)0x x x −−−=, 因式分解得:()()2210x x −−=,∴20x −=或210x −=, 解得:12122x x ==,.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解法解一元二次方程的一般步骤是解题的关键. 18.(本小题满分4分)如图,点B 在线段AC 上,BD CE ∥,AB EC =,DB BC =.求证:AD EB =.【答案】见解析【分析】首先根据平行线的性质得到ABD C ∠=∠,然后证明出()SAS ABD ECB ≌,最后根据全等三角形的性质求解即可. 【详解】证明:∵BD CE ∥, ∴ABD C ∠=∠,∴在ABD △和ECB 中,AB CE ABD C DB BC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ECB ≌,∴AD EB =.【点睛】本题考查的知识点是全等三角形的性质和判定,解题的关键是熟练的掌握全等三角形的判定. 19.(本小题满分6分)12如图,ABC 在平面直角坐标系中,其中点()3,2A −−,点()4,1B −,点()1,3C −.(1)将ABC 向右平移4个单位得到111A B C △,在图中画出111A B C △,并写出点1A 的坐标; (2)求111A B C △的面积. 【答案】(1)见解析,()11,2A −(2)5.5【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点1A ,1B ,1C 并顺次连接即可得到111A B C △,根据点1A 在坐标系中的位置即可写出坐标;(2)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可. 【详解】(1)如图所示,111A B C △为所求,()11,2A −(2)111A 1113532313251535 5.52222B C S =⨯−⨯⨯−⨯⨯−⨯⨯=−−−=△【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是掌握平移变换的性质学会用割补法求三角形的面积. 20.(本小题满分6分)已知三个整式24x x +,44x +,2x .(1)从中选出两个进行加法运算,使所得整式可以因式分解,并进行因式分解; (2)从中选出两个分别作为分式的分子与分母,要求这个分式不是最简分式,并对这个分式进行约分. 【答案】(1)见解析 (2)见解析【分析】(1)先找出两个整式的和,再看看能否分解因式即可;(2)先找出两个整式分别作为分式的分子与分母,再看看能否约分即可 【详解】(1)解:()2244(2)x x x ++=+或()()22242422x x x x x x x ++=+=+;(2)解:()222444x x x x x x x x +++==或()222444x x x x x x x x ==+++.【点睛】本题考查了最简分式,因式分解,约分等知识点,能熟记完全平方公式和能正确约分是解此题的关键. 21.(本小题满分8分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.【答案】(1)见解析,23;(2)不公平,见解析【分析】(1)用列表法表示所有可能出现的结果,进而求出相应的概率即可; (2)求出小明、小亮获胜的概率即可.14【详解】(1)解:根据题意可列表或树状图如下:从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23=;(2)解:不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,2133≠, ∴不公平.【点睛】本题考查了列表法或树状图法求简单随机事件发生的概率,列举出所有可能出现的结果是正确解答的关键. 22.(本小题满分10分)金百超市经销某品牌童装,单价为每件50元时,每天销量为60件,当单价每件从50元降了20元时,一天销量为100件.设降x 元时,一天的销量为y 件.已知y 是x 的一次函数.(1)求y 与x 之间的关系式;(2)若某天销售童装80件,则该天童装的单价是多少? 【答案】(1)y 与x 之间的关系式为y=2x+60 (2)该天童装的单价是每件40元【分析】(1)根据题意先设出y 与x 的函数关系式y=kx+b ,再根据题目中的数据,即可求出该函数的解析式;(2)将y= 80代入(1) 中函数关系式,求出相应的x 的值即可. 【详解】(1)因为y 是x 的一次函数.所以,设y 与x 的函数关系式为y=kx+b ,由题意知,当x=0时, y=60 ;当x=20时, y= 100,所以,6020100b k b =⎧⎨+=⎩,解之得:602b k =⎧⎨=⎩ 所以y 与x 之间的关系式为y=2x+60 ; (2)当y=80时,由80=2x+60, 解得x=10, 所以50- 10= 40(元),所以该天童装的单价是每件40元.【点睛】本题考查一次函数的应用, 解答本题的关键是明确题意,求出相应的函数关系式.23.(本小题满分10分)已知抛物线224y ax ax a =++−的顶点为点P ,与x 轴分别交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点C(1)直接写出点P 的坐标为 ;(2)如图,若A 、B 两点在原点的两侧,且3OA OB =,四边形MNEF 为正方形,其中顶点E 、F 在x 轴上,M 、N 位于抛物线上,求点E 的坐标; (3)若线段2AB =,点Q 为反比例函数ky x=与抛物线224y ax ax a =++−在第一象限内的交点,设Q 的横坐标为m ,当13m <<时,求k 的取值范围. 【答案】(1)()1,4P −−;(2))2,0E;(3)12180k <<.16【分析】(1)利用配方把解析式配成顶点式即可;(2)根据正方形的性质则可以得出EF EN =,再由抛物线点的特征列出一元二次方程,求解即可得出点E 坐标;(3)利用二次函数和反比例函数的增减性即可求解. 【详解】(1)∵()222414y ax ax a a x =++−=+−,∴顶点()1,4P −−,故答案为:()1,4−−,(2)设()1,0A x ,()2,0B x ,∵抛物线对称轴为直线=1x −, ∴122x x +=−, 又∵3OA OB =, ∴123x x −=, ∴13x =−,21x =, ∴()30A −,,()10B ,,将()10B ,代入224y ax ax a =++−,解得1a =,∴抛物线解析式为:223y x x =+−, 设(),0(0)E m m >,则()2,0F m −−,∴()21EF m =+,()223EN m m =−+−,根据题意,得:()()22123m m m +=−+−,解得:12m =,22m =(舍去), ∴点)2,0E,(3)∵线段2AB =,抛物线对称轴为直线1x =, ∴()2,0A −,()0,0B ,∴02040a a a ⨯+⨯+−=,解得4a =,∴抛物线解析式为:248y x x =+,当13m <<时,对于抛物线248y x x =+,y 随x 的增大而增大, 对于反比例函数ky x =,y 随x 的增大而减小,∴1x =时,双曲线在抛物线上方, 即:241811k>⨯+⨯,解得:12k >,∴当3x =时,双曲线在抛物线下方, 即:43833k<⨯+⨯,解得:180k <,∴k 的取值范围:12180k <<.【点睛】此题考查了二次函数的图象及其性质、反比例函数的性质,熟练运用二次函数与反比例函数的性质是解题的关键. 24.(本小题满分12分) 问题发现:(1)如图1,在ABC 中,AB BC =,90ABC D ∠=︒.为BC 的中点,以CD 为直角边,在BC 下方作等腰直角CDE ,其中90CDE ∠=︒.以BD 为直角边,在BC 上方作等腰直角BDG ,其中90BDG ∠=︒,AE 与BG 交于点F .求证:AF EF =. 类比探究:(2)如图2,若将CDE 绕点C 顺时针旋转90︒,则()1中的结论是否仍然成立?请说明理由; 拓展延伸:(3)如图3,在()2的条件下,再将等腰直角CDE 沿直线BC 向右平移k 个单位长度,得到'''CDE,若AB a =,试求'AFFE 的值.(用含k ,a 的式子表示)【答案】(1)证明见解析 (2)成立,理由见解析18(3)'AF aFE k a =+【分析】(1)利用AAS 证明ABF △≌EGF △,可得结论;(2)连接EG ,BE ,首先利用SAS 证明DEG △≌DCB △,得GE BC =,DBC DGE ∠∠=,再利用AAS 证明ABF △≌EGF △,得AF EF =;(3)连接'EG ,由()2同理得''BCD ≌''GED ,再说明ABF △∽'EGF ,得''AF AB aFE GE k a ==+.【详解】(1)证明:由题意可得:点E 、D 、G 三点共线,且EG BC AB ==,AB EG ,BAE AEG ∴∠=∠,AFB EFG ∠∠=,ABF ∴≌()EGF AAS , AF EF ∴=.(2)解:(1)中的结论仍然成立,理由如下: 如图2,连接EG ,BE ,由题意得,BD GD =,DE DC =,90BDG CDE ∠∠==︒,点E 为AC 的中点,BDG BDE CDE BDE ∠∠∠∠∴−=−, GDE BDC ∠∠∴=, DEG ∴≌()DCB SAS , GE BC ∴=,DBC DGE ∠∠=,AB BC EG ∴==,又4545ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,AFB EFG ∠=∠, ABF ∴≅()AAS EGF ,AF EF ∴=.(3)解:由题意得,BC AB a ==,'CC k =, 则'BC k a =+,如图3,连接'EG, 由()2同理得BC D ''≅GE D '',''GE BC ∴=,D BC D GE ∠''=∠'',又45''45'''ABF DBC DGE EGF ∠∠∠∠=︒−=︒−=,'AFB EFG∠∠=, ABF ∴∽'EGF ,''AF AB aFE GE k a ∴==+.【点睛】本题是相似形综合题,主要考查了等腰直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质、旋转和平移的性质等知识点,熟练掌握旋转相似的基本模型是解题的关键. 25.(本小题满分12分)问题探究:数学课上老师让同学们解决这样的一个问题:如图①,已知E 是BC 的中点,点A 在DE 上,且BAE CDE ∠=∠.求证:AB CD =.分析:证明两条线段相等,常用的方法是应用全等三角形或者等腰三角形的性质.本题中要证相等的两条线段不在同一个三角形中,所以考虑从全等三角形入手,而AB 与CD 所在的两个三角形不全等.因此,要证AB CD =,必须添加适当的辅助线构造全等三角形.以下是两位同学添加辅助线的方法.第一种辅助线做法:如图②,延长DE 到点F ,使DE EF =,连接BF ;第二种辅助线做法:如图③,作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F .20(1)请你任意选择其中一种对原题进行证明:方法总结:以上方法称之为“倍长中线”法,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线构造全等三角形来解决问题.(2)方法运用:如图④,AD 是ABC 的中线,BE 与AD 交于点F 且AE EF =.求证:BF AC =.【答案】(1)证明见解析; (2)证明见解析.【分析】(1)第一种辅助线做法:延长DE 到点F ,使DE EF =,连接BF .只要证明△BEF ≌△CED ,即可解决问题.第二种辅助线做法:作CG DE ⊥于点G ,BF DE ⊥交DE 延长线于点F ,先证明△BEF ≌△CEG ,再证明△ABF ≌△DCG 即可.(2)延长AD 到点Aˊ,使得DAˊ=AD ,连接BAˊ,只要证得△BDAˊ≌△CDA 即可. 【详解】(1)第一种辅助线做法:证明:如图1,延长DE 到点F ,使得DE=EF ,连接BF , ∵E 是BC 的中点 ∴BE=CE在△BEF与△CED中,BE CEBEF CEDDE FE=⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CED(SAS)∴BF=CD ,∠F=∠CDE又∵∠BAE=∠CDE∴∠BAE=∠F∴BF=AB∴AB=CD第二种辅助线做法:证明:如图2,作CG⊥DE于点G,BF⊥DE交DE延长线于点E;则∠F=∠CGE=∠CGD=90°,∵E是BC的中点,∴BE=CE在△BEF与△CEG中,F CGEBEF CEG BE CE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BEF≌△CEG (AAS)∴BF=CG,在△ABF与△DCG中,BAE CDEF CGDBF CG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△DCG(AAS),∴AB=CD .(2)如图3,延长AD到点Aˊ,使得DAˊ=AD,连接BAˊ,∵AD是△ABC的中线,∴BD=CD.在△BDAˊ与△CDA中,BD CDBDA CDADA DA=⎧⎪∠=∠⎨⎪=⎩ˊˊ,∴△BDAˊ≌△CDA (SAS)∴BAˊ=AC,∠Aˊ=∠CAD,又∵AE=EF,∴∠CAD=∠EFA=∠BFAˊ,∠Aˊ=∠BFAˊ∴BF=BAˊ∴BF=AC.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、三角形的中线等知识,解题的关键是学会添加辅助线构造全等三角形解决问题,属于中考常考题型.22。

2020-2021学年广东省高考数学二模试卷(理科)及答案解析

2020-2021学年广东省高考数学二模试卷(理科)及答案解析

广东省高考数学二模试卷(理科)一、选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的.1.函数f(x)=+lg(6﹣3x)的定义域为()A.(﹣∞,2)B.(2,+∞)C.[﹣1,2)D.[﹣1,2]2.己知复数z=(a∈R,i是虚数单位)是纯虚数,则|z|为()A.B.C.6 D.33.“p∧q是真命题”是“p∨q是真命题”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知sinα﹣cosα=,则cos(﹣2α)=()A.﹣ B.C.D.5.己知0<a<b<l<c,则()A.a b>a a B.c a>c b C.log a c>log b c D.log b c>log b a6.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器﹣﹣商鞍铜方升,其三视图如图所示(单位:升),则此量器的体积为(单位:立方升)()A.14 B.12+C.12+πD.38+2π7.设计如图的程序框图,统计高三某班59位同学的数学平均分,输出不少于平均分的人数(用j表示),则判断框中应填入的条件是()A.i<58?B.i≤58?C.j<59?D.j≤59?8.某撤信群中四人同时抢3个红包,每人最多抢一个,则其中甲、乙两人都抢到红包的概率为()A.B.C.D.9.己知实数x,y满足不等式组,若z=x﹣2y的最小值为﹣3,则a的值为()A.1 B.C.2 D.10.函数f(x)=x2﹣()x的大致图象是()A.B.C.D.11.已知一长方体的体对角线的长为l0,这条对角线在长方体一个面上的正投影长为8,则这个长方体体积的最大值为()A.64 B.128 C.192 D.38412.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内有零点,则ω的取值范围是()A.(,)∪(,+∞)B.(0,]∪[,1)C.(,)∪(,)D.(,)∪(,+∞)二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上.13.已知向量=(x﹣1,2),=(2,x﹣1)满足=﹣||•||,则x= .14.已知直线3x﹣4y﹣6=0与圆x2+y2﹣2y+m=0(m∈R)相切,则m的值为.15.在△ABC中,已知与的夹角为150°,||=2,则||的取值范围是.16.己知双曲线﹣=1(b>0)的离心率为,F1,F2时双曲线的两个焦点,A 为左顶点、B(0,b),点P在线段AB上,则•的最小值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}中,a1=1,a n+1=+n+1.(I)求证:数列{+1}是等比教列.(II)求数列{a n}的前n项和为S n.18.(12分)己知图1中,四边形ABCD是等腰梯形,AB∥CD,EF∥CD,O、Q分别为线段AB,CD的中点,OQ与EF的交点为P,OP=1,PQ=2,现将梯形ABCD沿EF 折起,使得OQ=,连结AD,BC,得一几何体如图2示.(I)证明:平面ABCD⊥平面ABFE;(II)若图1中.∠A=45°,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.19.(12分)某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n﹣1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.(Ⅰ)估计小明在1次游戏中所得奖品数的期望值;(II)估计小明在3次游戏中至少过两关的平均次数;(Ⅲ)估计小明在3次游戏中所得奖品超过30件的概率.20.(12分)己知椭圆+=1(a>b>0)与抛物线y2=2px(p>0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|﹣1,且椭圆与抛物线的交点Q满足|QF2|=.(I)求抛物线的方程和椭圆的方程;(II)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A,B两点,设线段AB的中点为C(x0,y0),求x0的取值范围.21.(12分)设函数f(x)=(x﹣a)2(a∈R),g(x)=lnx,(I)试求曲线F(x))=f(x)+g(x)在点(1,F(1))处的切线l与曲线F(x)的公共点个数;(II)若函数G(x)=f(x).g(x)有两个极值点,求实数a的取值范围.(附:当a<0,x趋近于0时,2lnx﹣趋向于+∞)三、请考生在第(12)、(23)題中任选一题作答,如果多做,则按所做的第一个题目计分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,已知直线l1:y=tanα•x(0≤a<π,α),抛物线C:(t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系(Ⅰ)求直线l1和抛物线C的极坐标方程;(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.五、[选修4-5:不等式选讲](共1小题,满分0分)23.己知函数f(x)=|2|x|﹣1|.(I)求不等式f(x)≤1的解集A;(Ⅱ)当m,n∈A时,证明:|m+n|≤mn+1.参考答案与试题解析一、选择题:共12小题,每小题5分,共60分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
M
第 5 页 共 15 页
ed u. c
B
n/
ì ï-3 y + 3 z = 0, ï î3 3 x - 2 y = 0.
在△ ABA1 中, AM = AN = 1 , AB = AA1 = 3 , 所以
AM AN = , AB AA1
所以 MN P BA1 .…………………………………………………………………………………………4分 所以 MN P DE1 . 所以 M , N , E1 , D 四点共面.………………………………………………………………………6分
取 y = 3 3 ,则 x = 2 , z = 3 3 . 所以 n = 2,3 3,3 3 是平面 MNE1 D 的一个法向量.………………………………………………12分 设直线 BC 与平面 MNE1 D 所成的角为 q ,
(
)
=
2
æ 3 3ö 3 2´ç ÷+ 3 3´ +3 3´0 2 è 2 ø
F
(
)
ed u. c
B D1 C1 B1 D C
ht t
r uuu r æ 3 3 3 ö uuuu 则 BC = ç , DE1 = ( 0, -3,3) , , , 0 ÷ B ç 2 2 ÷ A M è ø x uuuu r DM = 3 3, -2, 0 .……………………………………………………………………………………10分

第(1) (2)问均用向量法:

(1)证明:以点 E 为坐标原点, EA , ED , EE1 所在的直线 分别为 x 轴, y 轴, z 轴,建立如图的空间直角坐标系,
gu
an gz
F1 A1
故直线 BC 与平面 MNE1 D 所成角的正弦值为
174 .………………………………………………14分 116
8 15
1 ………………………………………10 分 15
tr .
第 3 组人数为 5 ¸ 0.5 = 10 ,所以 n = 10 ¸ 0.1 = 100 .…………………………………………………2 分
ed u. c
n/
解得 R = 14 . 所以△ ABC 外接圆半径的大小为 14 . …………………………………………………………………12 分
p: /
所以 sin A = 1 - cos A =
2
由(1)知 b = 5k , c = 3k , 数学(理科)试题 A 第 1 页 共 15 页
/w ww .
所以可设 a = 7 k , b = 5k , c = 3k ( k > 0 ) ,…………………………………………………………2 分
广
3 .………………………………………………………………………6 分 2

N
F
A
M

所以
AM AN = , AB AA1
所以 MN P DE1 .
gu
所以 M , N , E1 , D 四点共面.………………………………………………………………………6分

an gz
所以 MN P BA1 .…………………………………………………………………………………………4分
分别为 x 轴, y 轴, z 轴,建立如图的空间直角坐标系,
0
2 5
所以 EX = 0 ´
2 8 1 2 + 1´ + 2 ´ = . ………………………………………………………………12 分 5 15 15 3
数学(理科)试题 A 第 2 页 共 15 页
an gz
1 2
第 4 组人数为 100 ´ 0.25 = 25 ,所以 a = 25 ´ 0.4 = 10 .……………………………………………4 分
p: /
uuuu r uuuu r 所以 DE1 = ( 0, -3,3) , MN = ( 0, -1,1) . ………………3分
ht t
所以 DE1 P MN .…………………………………………5分
x
A
M
B
所以 M , N , E1 , D 四点共面.………………………………………………………………………6分
数学(理科)试题 A
第 4 页 共 15 页
n/
y
(2)解:由(1)知 BC = ç ç
uuu r
r uuuu r æ 3 3 3 ö uuuu , DE1 = ( 0, -3,3) , DM = 3 3, -2, 0 .………………10分 , ,0÷ ÷ è 2 2 ø
(
)
(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分) 设 n = ( x, y, z ) 是平面 MNE1 D 的法向量,
2015 年广州市普通高中毕业班综合测试(二) 数学(理科答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据 试题主要考查的知识点和能力比照评分标准给以相应的分数. 2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的 内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得 分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.
/w ww .
æ3 3 9 ö 则 B 3 3,3, 0 , C ç ç 2 , 2 ,0÷ ÷ , D ( 0,3, 0 ) , è ø
(
)
tr .
z
E1 E F N
2 + 3 3
( ) + (3 3 )
2
2
æ 3 3 ö æ 3 ö2 2 ´ ç÷ +ç ÷ +0 2 2 è ø è ø
2
=
174 . 116
(2)因为第 3,4 组答对全卷的人的比为 5 :10 = 1: 2 ,
所以第 3,4 组应依次抽取 2 人,4 人.…………………………………………………………………5 分
广
P ( X = 1) = P ( X = 2) =
1 C1 8 2C4 = ,………………………………………………………………………………8 分 2 C6 15 0 C2 1 2C4 = ,………………………………………………………………………………9 分 2 C6 15

17. (本小题满分12分) 解: (1)根据频率直方分布图,得 ( 0.010 + 0.025 + c + 0.035 ) ´ 10 = 1 ,
解得 c = 0.03 .……………………………………………………………………………………………1 分

第 1 组人数为 100 ´ 0.35 = 35 ,所以 b = 28 ¸ 35 = 0.8 .……………………………………………3 分
18. (本小题满分14分) 本题的底面凸六边形可以是正六边形,也可以是非正六边形(两种) ,但如图所示的三组对边互相平 行,考生按任何一种情形解答正确均给满分.以下给出三种情形的解答: 情形1:底面 ABCDEF 为正六边形. 第(1)问用几何法,第(2)问用向量法: (1)证明:连接 A1 B , B1 D1 , BD , A1 E1 , 在四边形 A1 B1 D1 E1 中, A1 E1 P B1 D1 且 A1 E1 =B1 D1 , 在四边形 BB1 D1 D 中, BD P B1 D1 且 BD =B1 D1 , 所以 A1 E1 P BD 且 A1 E1 =BD , 所以四边形 A1 BDE1 是平行四边形. 所以 A1 B P E1 D .………………………………2分 在△ ABA1 中, AM = AN = 1 , AB = AA1 = 3 , F1 A1 E1 D1 C1 B1
/w ww .
故直线 BC 与平面 MNE1 D 所成角的正弦值为
174 .………………………………………………14分 116
广
p: /
在四边形 A1 B1 D1 E1 中, A1 E1 P B1 D1 且 A1 E1 =B1 D1 , 在四边形 BB1 D1 D 中, BD P B1 D1 且 BD =B1 D1 , F1 A1
(
)
设 n = ( x, y, z ) 是平面 MNE1 D 的法向量, 数学(理科)试题 A 第 3 页 共 15 页
n/
C
E
D
y
uuuu r ì n g DE ï 1 = 0, 则 í uuuu r ï îng DM = 0.
即í
ì ï-3 y + 3 z = 0, ï î3 3 x - 2 y = 0.
ed u. c
D1 C1 B1 D C
uuu r ng BC 则 sin q = uuu r n g BC

) ( )
广
E1 ( 0, 0,3) , M 3 3,1, 0 , N 3 3, 0,1 ,……………2分
(
uuuu r uuuu r 因为 DE1 = 3MN ,且 MN 与 DE1 不重合,

1 3 ´ 5k ´ 3k ´ = 45 3 , 2 2
解得 k = 2 3 .…………………………………………………………………………………………10 分
由正弦定理
a 7k 14 3 = 2 R ,即 2 R = = ,…………………………………………………11 分 sin A sin A 3 2

8 C
题号 答案
1 C
2 D
3 A
4
5
6 B
7 C
相关文档
最新文档