核酸的降解和核苷酸代谢
核酸的降解和核苷酸代谢

A-腺嘌呤
PHi O 2次黄2嘌呤
核糖
次腺黄苷苷
嘧啶的分解
HOHHβHH-氨OOO基OHO异HβHH-O丁丙H酸OOO氨HCHHNHHH酸OHOHOH2HO2N2ONHH+NH2NHON2ONHN3HCCHC3H乙CCCCHHH2H酸HOHHH3排代323HN3出谢22HNHA体。AHHDNHH乙β+外D-CNP酸H氨或OPHNA胸胞+基3尿2H进3++AD223腺异N嘧N嘧+H入DPHHC嘧丁NC啶有+H啶3P3+啶O酸HO2H机+C2H32酸+O+2
O
O P O CH2
O
O
PRPP: 5-磷酸核糖焦磷酸
O
O
O P O P O + Gln + H2 O
OH
OH O
O
PRPP
O
O P O CH2
O
O
NH2 + ppi + Glu
OH
OH
(3)5-磷酸核糖胺+Gly+ATP → 甘氨酰胺核苷酸+ADP+Pi
NH2 + Gly + ATP RP
NH2 CH2
黄苷 黄嘌呤
鸟苷酸 鸟苷
尿酸
嘧啶碱的分解
哺乳动物U、T可先还原为对应的二氢衍生 物再破环生成β-Ala及β-氨基异丁酸。
黄嘌呤
尿酸
OONHHH2
HNH
H
H核苷磷酸化酶
H O核糖-1-磷酸 22
脱氨基酶
HO H
H O NN 2 黄嘌呤氧化酶 OO2
NN HH
蛇毒磷酸二酯酶和牛脾磷酸二脂酶属于外切酶。
生物化学第十一章

氨甲酰磷酸
嘧啶核苷酸合成途径
2.胞苷酸的合成:
3.脱氧胸腺嘧啶核苷酸的合成:
嘧啶核苷酸的补救合成途径:
补救合成途径: 由分解代谢产生的嘧啶/ 嘧啶核苷转变为嘧啶核苷酸的过程称为补 救合成途径(salvage pathway)。以 嘧啶核苷的补救合成途径较重要。
嘧啶核苷酸补救合成途径
尿嘧啶+PRPP UMP+PPi
二、嘌呤类似物和嘧啶类似物
1、嘌呤类似物主要有6-巯基嘌呤(6-MP)、2, 6-二氨基嘌呤、8-氮鸟嘌呤等。 2、嘧啶类似物主要有5-氟尿嘧啶(5-FU)和6氮尿嘧啶(6-AU)等。
6-巯基嘌呤(6-MP)的作用机理是什么?
6-MP其结构与次黄嘌呤类似(C6上巯基取代了羟 基),它可进入体内竞争性地抑制次黄嘌呤-鸟 嘌呤磷酸核糖转移酶,抑制了IMP 和GMP 的补 救合成。 6-MP还可经磷酸核糖化而转变为6-巯基嘌呤核苷 酸,从而抑制IMP 转变成AMP 和GMP。 6-巯基嘌呤核苷酸还可反馈抑制嘌呤核苷酸从头 合成的调节酶(磷酸核糖酰胺转移酶),使 PRA合成受阻,从而干扰IMP、AMP 和GMP 的合成。
限制性核酸内切酶:分为3种类型
(1)Ⅰ类:由3种不同亚基构成,兼具修饰酶活 性和依赖于ATP 的限制性内切酶活性,需要 Mg2+、S-腺苷甲硫氨酸及ATP的参与。复杂的 多功能酶,在基因工程上的应用价值不大。 (2)Ⅱ类:相对分子量较小,能识别双链DNA 上特异的核苷酸序列,底物作用的专一性强, 且识别序列与切断序列相一致,在分子生物学 中应用最广。 (3)Ⅲ类:只由一条肽链构成,仅需Mg2+,切 割DNA 特异性最强。
Recognize site
1-1.5kb
核酸的降解和核苷酸代谢

UMP(CMP) + ADP
(2)磷酸核糖转移酶途径(尿嘧啶)
尿嘧啶 + 5-PRPP
尿嘧啶磷酸核糖转移酶
UMP + PPi
精选课件
脱氧核苷酸的合成
脱氧核糖核苷酸是由相应的核糖核苷酸衍生而来的。 一、 核糖核苷酸的还原
ADP GDP CDP UDP
dADP dGDP dCDP dUDP
dUMP
dTMP 还原反应一般在核苷二磷酸(NDP)水平上进行
核苷二磷酸激酶/Mg2+
UTP + ADP
CTP合成酶
UTP + Gln(NH4+)+ ATP + H2O
CTP + Glu +ADP+ Pi
精选课件
二、 补救途径 (1) 嘧啶核苷激酶途径(重要途径)
核苷磷酸化酶
嘧啶碱 + 1-磷酸核糖
嘧啶核苷 + Pi
尿苷激酶/Mg2+
尿苷(胞苷) + ATP
核酸的降解和核苷酸代谢 核酸的降解
各种功能
核酸
核苷酸 核苷+磷酸
核糖+碱基
核苷酸的生物功能 ①合成核酸 ②是多种生物合成的活性中间物
糖原合成,UDP-Glc。磷脂合成,CDP-乙醇胺,CDP-二脂酰甘 油。
③生物能量的载体ATP、GTP ④腺苷酸是三种重要辅酶的组分 NAD、FAD、CoA ⑤信号分子cAMP、cGMP
核酸
核酸酶
核苷酸酶
核苷酸
核苷
+
核苷磷酸化酶
磷酸
碱基
+
戊糖-1-磷酸
精选课件
一、 核酸的酶促降解
第16章 核酸的降解和核苷酸代谢

核酸的基本结构单位是核苷酸。核酸代谢与核苷酸代谢密切相 关。这是一类在代谢上极为重要的物质,它们几乎参与细胞的所有 生化过程。
核酸降解产生核苷酸,核苷酸还能进一步分解。在生物体内, 核苷酸可由其他化合物所合成。某些辅酶的合成与核苷酸代谢亦有 关。
核苷酸的作用: (1)核苷酸是核酸生物合成的前体。 (2)核苷酸衍生物是许多生物合成的活性中间物。例如,UDP- 葡萄糖和CDP-二脂酰甘油分别是糖原和磷酸甘油酯合成的中间 物。 (3)ATP是生物能量代谢中通用的高能化合物。 (4)腺苷酸是三种重要辅酶(烟酰胺核苷酸、黄素腺嘌呤二核苷 酸和辅酶A)的组分。 (5)某些核苷酸是代谢的调节物质。如cAMP和cGMP是许多种激 素引起生理效应的中间介质。
(四)由嘌呤碱和核苷合成核苷酸 生物体内除能以简单前体物质“从头合成”核苷酸外,尚能由预 先形成的碱基和核苷合成核苷酸,这是对核苷酸代谢的一种“补救” 作用,以便更经济地利用已有的成分。 前已提到,核苷磷酸化酶所催化的转核糖基反应是可逆的。在特 异的核苷磷酸化酶作用下,各种碱基可与1—磷酸核糖反应生成核苷:
二、核苷酸的降解
核苷酸水解下磷酸即成为核苷。生物体内广泛存在的磷的磷酸单酯酶对一切核苷酸都能作用,无论磷酸基在 核苷的2’、3’或5’位置上都可被水解下来。某些特异性强的磷酸单酯 酶只能水解3’—核苷酸或5’—核苷酸,则分别称为3’—核苷酸酶或 5’—核苷酸酶。
(二)胸腺嘧啶核苷酸的合成
第三节 辅酶核苷酸的生物合成 生物体内尚有多种核苷酸衍生物作为辅酶而起作用。其中重要 的有:烟酰胺腺嘌呤二核苷酸、烟酰胺腺嘌呤二核苷酸磷酸、黄素 单核苷酸、黄素腺嘌呤二核苷酸及辅酶A。这几种辅酶核苷酸可在体 内自由存在。现将其生物合成途径分别叙述如下: 一、烟酰胺核苷酸的合成
生物化学下-第33章 核酸的降解与核苷酸代谢

磷酸核糖焦磷 酸激酶 转酰胺酶
次黄嘌呤核苷 酸脱氢酶
➢ 嘌呤核苷酸合成的抗代谢物
抗代谢物的概念:在化学结构上与正常代谢物(底物 或辅酶)结构相似,具有竞争性拮抗正常代谢的 物质。
机制:竞争性抑制或“以假乱真”方式干扰或阻断核 苷酸的合成代谢,进而阻止核酸及蛋白质的生物 合成。
尿囊酸酶
尿囊素酶
尿囊酸 (硬骨鱼类)
小 AMP 结
GMP
嘌呤碱的最终 代谢产物
I
H 黄嘌呤氧化酶
X
G
黄嘌呤氧化酶
OH
N
N
OH
HO
N
N H
尿 酸 (uric acid)
3、代谢产物
•排尿酸动物:灵长类、鸟类、昆虫、排尿酸爬虫类 •排尿囊素动物:哺乳动物(灵长类除外)、腹足类 •排尿囊酸动物:硬骨鱼类 •排尿素动物:大多数鱼类、两栖类 •某些低等动物能将尿素进一步分解成NH3和CO2排出。 •植物分解嘌呤的途径与动物相似,产生各种中间产物 (尿囊素、尿囊酸、尿素、NH3)。 •微生物分解嘌呤类物质,生成NH3、CO2及有机酸(甲 酸、乙酸、乳酸、等)。
Lesch-Nyhan综合症(莱-尼综合症):也称为自毁容貌 症,是由于次黄嘌呤-鸟嘌呤磷酸核糖转移酶的遗传缺陷 引起的。缺乏该酶使得次黄嘌呤和鸟嘌呤不能转换为 IMP和GMP,而是降解为尿酸,过量尿酸将导致LeschNyhan综合症。手舞足蹈,咬指咬唇强迫自残。
5、嘌呤核苷酸 生物合成的调节
(二)嘌呤核苷酸的合成
1、 从头合成的概念及部位
①定义
利用磷酸核糖、氨基酸、一碳单位及二氧化碳 等简单物质为原料,经过一系列酶促反应,合成 嘌呤核苷酸的途径。
②合成部位
生物化学笔记- 核苷酸的降解和核苷酸代谢

第十五章核苷酸的降解和核苷酸代谢第一节分解代谢一、核酸的降解核酸由磷酸二酯酶水解,有核糖核酸酶、脱氧核糖核酸酶、内切酶和外切酶之分。
蛇毒磷酸二酯酶和牛脾磷酸二酯酶都是外切酶,既可水解DNA,又可水解RNA,但蛇毒磷酸二酯酶从3’端水解,生成5’-核苷酸;牛脾磷酸二酯酶从5’端水解,生成3’-核苷酸。
细胞内还有限制性内切酶,可水解外源DNA。
二、核苷酸的降解核苷酸由磷酸单酯酶水解成核苷和磷酸,特异性强的酶只水解5’-核苷酸,称为5’-核苷酸酶,或相反。
核苷磷酸化酶将核苷分解为碱基和戊糖-1-磷酸,核苷水解酶生成碱基和戊糖。
核糖-1-磷酸可被磷酸核糖变位酶催化为核糖-5-磷酸,进入戊糖支路或合成PRPP。
三、嘌呤的分解(一)水解脱氨:腺嘌呤生成次黄嘌呤,鸟嘌呤生成黄嘌呤。
也可在核苷或核苷酸水平上脱氨。
(二)氧化:次黄嘌呤生成黄嘌呤,再氧化生成尿酸。
都由黄嘌呤氧化酶催化,生成过氧化氢。
别嘌呤醇是自杀底物,其氧化产物与酶活性中心的Mo4+紧密结合,有强烈抑制作用。
可防止尿酸钠沉积,用于治疗痛风。
(三)鸟类可将其他含氮物质转化为尿酸,而某些生物可将尿酸继续氧化分解为氨和CO2。
四、嘧啶的分解胞嘧啶先脱氨生成尿嘧啶,再还原成二氢尿嘧啶,然后开环,水解生成β-丙氨酸,可转氨参加有机酸代谢。
胸腺嘧啶与尿嘧啶相似,还原、开环、水解生成β-氨基异丁酸,可直接从尿排出,也可转氨生成甲基丙二酸半醛,最后生成琥珀酰辅酶A,进入三羧酸循环。
第二节合成代谢一、嘌呤核糖核苷酸的合成(一)从头合成途径1.嘌呤环的元素来源2.IMP的合成:其磷酸核糖部分由PRPP提供,由5-磷酸核糖与ATP在磷酸核糖焦磷酸激酶催化下生成。
IMP的合成有10步,分两个阶段,先生成咪唑环,再生成次黄嘌呤。
首先由谷氨酰胺的氨基取代焦磷酸,再连接甘氨酸、甲川基,甘氨酸的羰基生成氨基后环化,生成5-氨基咪唑核苷酸。
然后羧化,得到天冬氨酸的氨基,甲酰化,最后脱水闭环,生成IMP。
生物化学-生化知识点_第八章 核酸的降解和核苷酸的代谢

第八章核酸的降解和核苷酸的代谢下册 P3878-1 核酸和核苷酸的分解代谢核酸在核酸酶(磷酸二酯酶)作用下降解成核苷酸,核苷酸在核苷酸酶(磷酸单酯酶)作用下分解成核苷与磷酸,然后再在核苷磷酸化酶作用下可逆生成碱基(嘌呤和嘧啶)和戊糖-1-磷酸。
一一一嘌呤碱的分解代谢: P390 图33-2首先在各种脱氨酶作用下水解脱去氨基(脱氨也可以在核苷或核苷酸的水平上进行),腺嘌呤脱氨生成次黄嘌呤(I),鸟嘌呤脱氨生成黄嘌呤(X),I和X在黄嘌呤氧化酶作用下氧化生成尿酸。
人和猿及鸟类等为排尿酸动物,以尿酸作为嘌呤碱代谢最终产物;其他生物还能进一步分解尿酸形成尿囊素、尿囊酸、尿素及氨等不同代谢产物。
尿酸过多是痛风病起因,病人血尿酸 > 7mg%,为嘌呤代谢紊乱引起的疾病。
可服用别嘌呤醇,结构见P389,与次黄嘌呤相似。
别嘌呤醇在体内先被黄嘌呤氧化酶氧化成别黄嘌呤,别黄嘌呤与酶活性中心的Mo(Ⅳ)牢固结合,使Mo(Ⅳ)不易转变成Mo(Ⅵ),黄嘌呤氧化酶失活,使I和X不能生成尿酸,血尿酸含量下降。
一一一嘧啶碱的分解代谢:见P391 图33-3C:胞嘧啶先脱氨成尿嘧啶U,U再还原成二氢尿嘧啶后水解成β-丙氨酸。
T:胸腺嘧啶还原成二氢胸腺嘧啶后水解成β-氨基异丁酸。
8-2 核苷酸的生物合成一一一核糖核苷酸的生物合成一1一从头合成:从一些简单的非碱基前体物质合成核苷酸。
1.嘌呤核苷酸:从5-磷酸核糖焦磷酸(5-PRPP)开始在一系列酶催化下先合成五元环,后合成六元环,共十步生成次黄嘌呤核苷酸。
然后再生成A、G等嘌呤核苷酸。
2.嘧啶核苷酸:先合成嘧啶环(乳清酸),再与5-PRPP(含核糖、磷酸部分)反应生成乳清苷酸,失羧生成尿嘧啶核苷酸(UMP),再转变成其他嘧啶核苷酸。
一2一补救途径:利用已有的碱基、核苷合成核苷酸,更经济,可利用已有成分。
特别在从头合成受阻时(遗传缺陷或药物中毒)更为重要。
外源或降解产生的碱基和核苷可通过补救途径被生物体重新利用。
核酸的降解与核苷酸的代谢

第十章 核酸的降解与核苷酸的代谢学习要求:通过本章学习,熟悉核酸的降解过程,掌握核酸酶的分类及其作用方式;了解核苷酸分解过程及不同生物嘌呤核苷酸分解代谢的区别;了解核苷酸从头合成途径的过程,掌握合成原料及嘌呤核苷酸与嘧啶核苷酸的合成特点,重点掌握核苷酸合成途径的调节,熟悉补救合成途径的过程和意义;熟悉核苷酸代谢与氨基酸代谢及糖代谢的相互关系;了解核苷酸代谢的有关理论对医药及生产实践的指导意义。
动物、植物和微生物都能合成各种核苷酸,因此核苷酸与氨基酸不同,不属于营养必需物质。
细胞内存在多种游离的核苷酸,它们具有多种重要的生理作用:①作为合成核酸的原料。
②ATP 在生物体内能量的贮存和利用中处于中心地位,是最重要的高能化合物。
此外,GTP 在能量利用方面也有一定作用。
③参与代谢和代谢调节。
某些核苷酸或其衍生物是重要的信息物质,如 cAMP 是多种激素作用的第二信使;cGMP 也与代谢调节有关。
④组成辅酶。
腺苷酸是辅酶Ⅰ、辅酶Ⅱ、辅酶A 和FAD 四种辅酶的组成成分。
⑤活化中间代谢物。
UTP 和CTP 可使代谢物NDP (核苷二磷酸)化,成为活性代谢物直接用作合成原料,如UDP-葡萄糖称为“活性葡萄糖”,是合成糖原、糖蛋白的活性原料;CDP-甘油二酯是合成磷脂的活性原料。
ATP 使蛋氨酸腺苷化生成的S-腺苷蛋氨酸(SAM )作为甲基的直接供体,是合成肾上腺素、肌酸等物质的活性原料。
第一节 核酸的酶促降解一、核酸的降解生物组织中的核酸往往以核蛋白的形式存在,动物和异养型微生物可分泌消化酶类分解食物或体外的核蛋白和核酸。
核蛋白可分解成核酸与蛋白质,核酸由各种水解酶催化逐步水解,生成核苷酸、核苷、戊糖和碱基等,这些水解产物均可被吸收,但动物体较少利用这些外源性物质作为核酸合成的原料,进入小肠粘膜细胞的核苷酸、核苷绝大部分进一步被分解。
植物一般不能消化体外的有机物。
所有生物细胞都含有核酸代谢的酶类,能分解细胞内的各种核酸促进其更新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R1亚基
活性位点
R2亚基
P-P-CH2
O
N
P-P-CH2
核糖核苷酸的还原反应
O
N
+ H2O
核糖核苷二磷酸 ATP 、Mg2+ 核糖核苷酸还原酶 SH SH 硫氧还蛋白 还原酶 S S 谷氧还蛋白 S
OH OH
OH H
脱氧核糖核苷二磷酸
硫氧还蛋白
硫氧还蛋白
S
谷氧还蛋白
SH SH
谷氧还蛋白 还原酶
FAD
FADH2
GSSG
谷胱甘肽 还原酶
2GSH
NADPH+H+
NADP+
核苷(脱氧核苷)一磷酸 到核苷(脱氧核苷)二(或三) 磷酸的转化,是在激酶的催化下完成的。
如:
2. 脱氧胸腺嘧啶核苷酸的合成
O HN O
胸腺嘧啶核苷酸合成酶
O N dR-P
HN O N dR-P
CH3
dUMP
N5、N10—CH
2—
5-磷酸核糖焦磷酸
5-磷酸核糖胺
IMP AMP
GMP
二﹑嘧啶核苷酸的合成
(一)嘧啶核苷酸的从头合成
嘧啶环由氨甲酰磷酸和 天冬氨酸合成的 NH3 H2N-CO- P
氨甲酰磷酸
C
N3 C2 N
1
4
天冬氨酸
C5 C6
CO2
⒈ ⑴
从头合成途径 尿嘧啶核苷酸(UMP)的合成
乳清酸焦 磷酸化酶
尿苷酸激酶 二磷酸核苷激酶 CTP合成酶
Hind Ⅲ
Sal I Sma I
六核苷酸,平端切口
二、核苷酸的降解
核苷酸酶 核苷磷酸化酶
(广泛存在)
核苷酸
核苷
碱基+戊糖-1-P
核苷水解酶
磷酸
(主要存在于植物、微生物)
碱基+核糖
1. 嘌呤碱的分解代谢 腺嘌呤
H2O
NH3
腺嘌呤脱氨酶 黄嘌呤氧化酶
鸟嘌呤
H2O
NH3
鸟嘌呤脱氨酶
次黄嘌呤
黄嘌呤
黄嘌呤 氧化酶
核酸的降解和核苷酸代谢
核苷酸的生物学功能:
⒈
⒉
作为核酸合成的原料(主要功能)
体内能量的利用形式(ATP GTP 组成辅酶(NAD FAD NAD+ UTP CTP)
⒊
⒋ ⒌
参与代谢和生理调节(cAMP cGMP)
NADP+ HSCoA) SAM等) 活化中间代谢物(UDPG CDP-胆碱
第一节
核酸和核苷酸的分解代谢
核苷酸酶
腺嘌呤核苷核苷磷酸化酶 腺嘌呤
Pi R-1-P H2O -NH3
腺嘌呤 脱氨酶
H2O
3
Pi
腺嘌呤核 苷脱氨酶
H2O -NH3
次黄嘌呤核苷酸
核苷酸酶
次黄嘌呤核苷
核苷磷酸化酶
次黄嘌呤
H 2O
Pi
H2O
Pi
尿酸与痛风症的关系 血中尿酸含量升高时,尿酸盐晶体在组织中沉积, 形成痛风症。 受累组织器官:关节﹑软骨﹑肾﹑软组织 病变: 关节炎﹑肾病﹑尿路结石 病因: 高嘌呤饮食﹑核酸大量分解﹑肾病 治疗药物:别嘌呤醇
HGPRT
HGPRT
IMP + PPi
GMP + PPi
*人体内还有腺苷激酶,能使腺嘌呤核苷磷酸化,生成AMP 腺嘌呤核苷
腺苷激酶
AMP
ATP
ADP
补救合成的特点:过程简单,耗能少。 补救合成的生理意义:⒈ 减少能量和氨基酸的消耗 ⒉ 弥补某些组织(脑、骨髓)不能 从头合成嘌呤核苷酸的不足。
(三) 嘌呤核苷酸生物合成(从头合成)的调节
H2O+O2
H2O2
H2O+O2
H2O2 (人类和灵长类动物、 爬虫、鸟类)
(灵长类以外的哺乳动物) 尿酸氧化酶
尿囊素
尿酸
(植物、某些 硬骨鱼)
H2O
尿囊 素酶
CO2+H2O2
尿囊酸酶
2H2O+O2
(鱼类、两栖类)
尿囊酸
尿素
2H2O
+
乙醛酸
H2O
脲酶
4NH3 + 2CO2
(微生物)
腺嘌呤核苷酸
腺嘌呤核苷 H2O 酸脱氨酶 -NH
二氢尿嘧啶脱氢酶
β -脲基丙酸
H2O
胸腺嘧啶
二氢胸腺嘧啶
H2O
二氢嘧啶酶
NAD(P)H+H+
NAD(P)+
脲基丙酸酶
NH3+CO2+β -氨基异丁酸
β -脲基异丁酸
H2O
第二节、核苷酸的生物合成
一﹑嘌呤核苷酸的合成代谢
两条途径: 1. 从头合成途径(de novo synthesis): 不以现成的碱基为原料,而是以磷酸核糖﹑氨基酸﹑ 一碳单位﹑CO2等简单物质为原料,经过一系列酶 促反应,合成嘌呤核苷酸的过程。 (主要合成途径,肝组织进行此途径)
Pu :嘌呤
Py:嘧啶
限制性内切酶
原核生物中存在着一类能识别外源DNA双螺旋中4-8个碱基
对所组成的特异的具有二重旋转对称性的回文序列,并在
此序列的某位点水解DNA双螺旋链,产生粘性末端或平末端,
这类酶称为限制性内切酶。
常用的DNA限制性内切酶的专一性
酶 辨认的序列和切口
‥ ‥A G C T ‥‥ ‥ ‥T C G A ‥ ‥ ‥ ‥G G A T C C ‥‥ ‥ ‥C C T A G G ‥‥ ‥ ‥A G A T C T ‥‥ ‥ ‥T C T A G A ‥‥
2. 补救合成途径(salvage pathway): 利用游离的嘌呤或嘌呤核苷,经过简单的反应过程, 合成嘌呤核苷酸的过程。 (脑﹑骨髓等只能进行此途径)
(一)嘌呤核苷酸的从头合成
组织:肝﹑小肠粘膜及胸腺 细胞内定位:细胞液 嘌呤环中各 碳、氮原子的来源:
甲酸盐 甲酸盐
⒈ 合成途径 两个阶段: ⑴ 5-磷酸核糖→ → →次黄嘌呤核苷酸(IMP) ⑵ IMP → → →AMP﹑GMP ⑴ 5-磷酸核糖→ → →次黄嘌呤核苷酸(IMP)
转酰胺酶
关键酶
甲酰FH4
合成酶
⑵ IMP → → →AMP﹑GMP
6
6
2 2
(二) 嘌呤核苷酸的补救合成
两个酶:① 腺嘌呤磷酸核糖转移酶(APRT) ② 反应: 次黄嘌呤(鸟嘌呤)磷酸核糖转移酶(HGPRT)
APRT
腺嘌呤 + PRPP
AMP + PPi
次黄嘌呤 + PRPP
鸟嘌呤 + PRPP
尿苷激酶
尿苷激酶
(三)嘧啶核苷酸生物合成(从头合成)的调节
CPS-Ⅱ
天冬氨酸 氨基甲酰 转移酶
CTP 合 成酶
三、脱氧核糖核苷酸的合成
⒈ 核糖核苷酸的还原 — dADP﹑dGDP﹑dUDP﹑dCDP的生成
核糖核苷酸还原酶示意图
底物特异性 调节位点 酶 活 性 调节位点 UDP,CDP ADP,GDP (+) (-)
分解 合成
进入磷酸戊糖途径
或重新合成核酸
何处去?
一、核酸的解聚作用
核酸酶:作用于核酸的磷酸二酯酶称为核酸酶.
按其作用位置分为:
1.核酸外切酶:作用于核酸链的末端(3’端或5’端),逐 个水解下核苷酸。 脱氧核糖核酸外切酶:只作用于DNA 核糖核酸外切酶:只作用于RNA 2.核酸内切酶:从核酸分子内部切断3’,5’-磷酸二酯键。 3.限制性内切酶:在细菌细胞内存在的一类能识别并水解外 源双链DNA的核酸内切酶,可用于特异切割 DNA,常作为工具酶。
尿嘧啶核苷酸的合成代谢
⑵ CTP的合成
(dTMP)
(二) 嘧啶核苷酸的补救合成 ⒈ 嘧啶(U﹑T)+PRPP
嘧啶 磷酸核糖转移酶
嘧啶核苷酸+PPi 尿嘧啶核苷 + Pi UMP + ADP CMP + ADP
⒉ 尿嘧啶 + 1-磷酸核糖 ⒊ 尿嘧啶核苷 + ATP ⒋ 胞嘧啶核苷 + ATP
尿苷 磷酸化酶
FH4
FH2
dTMP
二氢叶酸 还原酶 Ser羟甲基 转移酶
NADP++Gly
NADPH+H++Ser
核 苷 酸 的 合 成 及 相 互 关 系
别嘌呤醇作用的机理:
别嘌呤醇: 别黄嘌呤 底物类似物经酶 作用后成为酶的 灭活物,称之为 自杀作用物。 自杀性底物 别黄嘌呤
黄嘌呤氧化酶
别嘌呤醇
2. 嘧啶碱的分解代谢
胞嘧啶
胞嘧啶脱氨酶
尿嘧啶
二氢尿嘧啶脱氢酶
二氢尿嘧啶
H2O二氢嘧
啶酶
H2O
NH3
NAD(P)H+H+
脲基丙酸酶
NAD(P)+
NH3+CO2+ β -丙氨酸
说明 四核苷酸,平端切口 六核苷酸,粘端切口 六核苷酸,粘端切口 六核苷酸,粘端切口 六核苷酸,粘端切口 六核苷酸,粘端切口
Alu I Bam H I Bgl I Eco R I
‥ ‥G A A T T C ‥‥ ‥ ‥C T T A A G ‥‥
‥ ‥A A G C T T‥‥ ‥ ‥T T C G A A ‥‥ ‥ ‥G T C G A C ‥‥ ‥ ‥C A G C T G ‥‥ ‥ ‥C C C G G G ‥‥ ‥ ‥G G G C C C ‥‥
核酸外切酶对核酸的水解位点
B
5´ p
B
B
B
p
B
B
B
B
p
p
p
p
p
p
OH 3´