人教版中考数学二轮复习专题练习上常用辅助线-构造等边三角形
中考数学几何辅助线大全及常考题型解析

中考数学几何辅助线大全及常考题型解析中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法等腰三角形:1.作底边上的高,构成两个全等的直角三角形2.作一腰上的高; 3.过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1.垂直于平行边2.垂直于下底,延长上底作一腰的平行线3.平行于两条斜边4.作两条垂直于下底的垂线5.延长两条斜边做成一个三角形菱形1.连接两对角2.做高平行四边形1.垂直于平行边2.作对角线——把一个平行四边形分成两个三角形3.做高——形内形外都要注意矩形1.对角线2.作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
备战中考数学二轮专题归纳提升真题几何模型—三角形中的旋转模型(解析版)

专题11 几何模型(1)—三角形中的旋转模型【问题引入】当题中出现等腰三角形的条件但是不好使用时,可以考虑利用旋转构造辅助线,通过构造等腰三角形得到手拉手全等,利用全等转移边角进行解题旋转三要素:旋转中心、旋转角、旋转方向旋转对象:一般是含已知条件或问题相关的边角所在三角形如何转:确定旋转三角形后,考虑由旋转三角形中的腰旋转至与另一腰重合,整个三角形进行同样的旋转旋转后的图形分析:1、从新构造的全等三角形进行分析;2、从新得到的等腰三角形进行分析【题型一:常见旋转模型之邻补模型】条件构成:有两邻边相等的四边形,且四边形对角互补,且一般等腰三角形顶角为特殊角。
∠DAB+∠DCB=180°,AD=AB常见结论:1、有角平分线;2、有线段和差的倍数关系解题方法:1、作双垂;2、构造旋转全等①90°相关结论:1、AC平分∠BCD2、BC+CD=√2AC②60°相关结论:1、AC平分∠BCD2、BC+CD=AC③120°相关结论:1、AC平分∠BCD2、BC+CD=√3AC补充说明:对角互补、邻边相等、角平分线三个条件知到其中两个就可求另外第三个,辅助线的构造与三角形全等相同,但是全等判定会有差异,需要根据具体情况判断【例】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=8,AB=AC,∠CBD=30°,BD=4√3,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.【答案】4√3+4.【解析】将△ACN绕点A逆时针旋转,得到△ABE,如图:由旋转得:∠NAE=90°,AN=AE,∠ABE=∠ACD,∠EAB=∠CAN,∵∠BAC=∠D=90°,∴∠ABD+∠ACD=360°﹣90°﹣90°=180°,∴∠ABD+∠ABE=180°,∴E,B,M三点共线,∵∠MAN=45°,∠BAC=90°,∴∠EAM=∠EAB+∠BAM=∠CAN+∠BAM=∠BAC﹣∠MAN=90°﹣45°=45°,∴∠EAM=∠MAN,在△AEM和△ANM中,{AE=AN∠EAM=∠NAMAM=AM,∴△AEM≌△ANM(SAS),∴MN=ME,∴MN=CN+BM,∵在Rt△BCD中,∠BDC=90°,∠CBD=30°,BD=4√3,CD=BD×tan∠CBD=4,∴△DMN的周长为DM+DN+MN=DM+DN+BM+CN=BD+DC=4√3+4,故答案为:4√3+4.【练1】如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.【答案】3√2【解析】解:将△OBC绕O点旋转90°,∵OB=OA∴点B落在A处,点C落在D处且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,在四边形OACB中∵∠BOA=∠BCA=90°,∴∠OBC+∠OAC=180°,∴∠OAD+∠OAC=180°∴C、A、D三点在同一条直线上,∴△OCD为等要直角三角形,根据勾股定理CD2=OC2+OD2即CD2=32+32=18解得CD=3√2即BC+AC=3√2.【练2】如图,P是等边三角形ABC内一点,将线段BP绕点B逆时针旋转60°得到线段BQ,连接AQ.若PA=4,PB=5,PC=3,则四边形APBQ的面积为_______.【答案】5√34+6【解析】解:如图,连接PQ,由旋转的性质可得,BP=BQ,又∵∠PBQ=60°,∴△BPQ是等边三角形,∴PQ=BP,在等边三角形ABC中,∠CBA=60°,AB=BC,∴∠ABQ=60°-∠ABP∠CBP=60°-∠ABP∴∠ABQ=∠CBP在△ABQ与△CBP中{BQ=BP∠ABQ=∠CBPAB=CB∴△ABQ≌△CBP(SAS),∴AQ=PC,又∵PA=4,PB=5,PC=3,∴PQ=BP=5,PC=AQ=3,在△APQ中,AQ2=9,AP2=16,PQ2=25,25=16+9,∴由勾股定理的逆定理可知△APQ是直角三角形,∴S 四边形APBQ =S △BPQ +S △APQ =√34×52+12×3×4=5√34+6, 故答案为:5√34+6【练3】如图,在△ABC 中,∠ACB =120°,BC >AC ,点E 在BC 上,点D 在AB 上,CE =CA ,连接DE ,180ACB ADE ∠+∠=︒,CH ⊥AB ,垂足为H .证明:DE AD +=.【答案】见解析【解析】证明:如图,延长BA 到点F ,使AF=DE ,连接CF 、CD ,∵∠ACB+∠ADE=180°∴∠CAD+∠CED=360°-180°=180°∵∠CAD+∠CAF=180°∴∠CAF=∠CED∵AC=EC ,AF=ED∴△AFC ≌△EDC∴CF=CD ,∠ACF=∠ECD∴∠FCD=∠ACF+∠ACD=∠ECD+∠ACD=∠ACB=120°∵CF=CD ,CH ⊥DF∴FH=DH=12DF =12(DE+AD),∠HCD=12∠FCD=60°∴tan ∠HCD=DH CH =√3∴DH=√3CH∴DE+AD=2DH=2√3CH【题型二:旋转与三角形全等的构造】【例】问题背景:如图①设P 是等边△ABC 内一点,PA =6,PB =8,PC =10,求∠APB 的度数.小君研究这个问题的思路是:将△ACP 绕点A 逆时针旋转60°得到△ABP ',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA =5,PB=3,PC=2√2,则∠BPC=°(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC=.拓展廷伸:①如图4,∠ABC=∠ADC=90°,AB=BC.求证:√2BD=AD+DC.②若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.【答案】(1)135°(2)PC=13;拓展延伸①:证明见解析②:BD=√2【解析】解:简单应用:(1)如图2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,将△ACP绕点C逆时针旋转90°得到△CBP',连接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2√2,∴∠CPP'=∠CP'P=45°,根据勾股定理得,PP'=√2CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'为斜边的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,(2)如图3,∵△ABC是等边三角形,∴∠BAC=60°,AC=AB,将△ACP绕点A逆时针旋转60°得到△ABP',连接PP',∴BP'=CP,AP'=AP=5,∠PAP'=60°,∴△APP'是等边三角形,∴PP'=AP=5,∠APP'=60°,∵∠APB=150°,∴∠BPP'=∠APB﹣∠APP'=90根据勾股定理得,BP'=√BP2+PP′2=13,∴CP=13,拓展廷伸:①如图4,在△ABC中,∠ABC=90°,AB=BC,将△ABD绕点B顺时针旋转90°得到△BCD',∴BD'=BD,CD'=AD,∠BCD'=∠BAD,∵∠ABC=∠ADC=90°,∴∠BAD+∠BCD=180°,∴∠BCD+∠BCD'=180°,∴点D'在DC的延长线上,∴DD'=CD+CD'=CD+AD,在Rt△DBD'中,DD'=√2BD,∴√2BD=CD+AD;②如图5,在△ABC中,∠ABC=90°,AB=BC,将△CBD绕点B顺时针旋转90°得到△ABD',∴BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',AB与CD的交点记作G,∵∠ADC=∠ABC=90°,∴∠DAB+∠AGD=∠BCD+∠BGC=180°,∵∠AGD=∠BGC,∴∠BAD=∠BCD,∴∠BAD=∠BAD',∴点D'在AD的延长线上,∴DD'=AD'﹣AD=CD﹣AD=2,在Rt△BDD'中,BD=√22DD'=√2.【练1】如图,在等边△ABC中,点D为△ABC内的一点,∠ADB=120°,∠ADC=90°,将△ABD绕点A逆时针旋转60°得△ACE,连接DE.(1)求证:AD=DE;(2)求∠DCE的度数;(3)若BD=1,求AD,CD的长.【答案】(1)见解析(2)90°(3)√3【解析】(1)证明:∵将△ABD绕点A逆时针旋转60°得△ACE∴△ABD≌△ACE,∠BAC=∠DAE,∴AD=AE,BD=CE,∠AEC=∠ADB=120°,∵△ABC为等边三角形∴∠BAC=60°∴∠DAE=60°∴△ADE为等边三角形,∴AD=DE,(2)∠ADC=90°,∠AEC=120°,∠DAE=60°∴∠DCE=360°﹣∠ADC﹣∠AEC﹣∠DAE=90°,(3)∵△ADE为等边三角形∴∠ADE=60°∴∠CDE=∠ADC﹣∠ADE=30°又∵∠DCE=90°∴DE=2CE=2BD=2,∴AD=DE=2在Rt△DCE中,DC=√DE2−CE2=√22−12=√3.【练2】如图,四边形ABCD中,∠ABC=∠ADC=45°,将△BCD绕点C顺时针旋转一定角度后,点B的对应点恰好与点A重合,得到△ACE.(1)请求出旋转角的度数;(2)请判断AE与BD的位置关系,并说明理由;(3)若AD=2,CD=3,试求出四边形ABCD的对角线BD的长.【答案】(1)90°(2)证明见解析(3)BD=√22【解析】解:(1)∵将△BCD绕点C顺时针旋转得到△ACE ∴△BCD'≌△ACE∴AC=BC,又∵∠ABC=45°,∴∠ABC=∠BAC=45°∴∠ACB=90°故旋转角的度数为90°(2)AE⊥BD.理由如下:在Rt△BCM中,∠BCM=90°∴∠MBC+∠BMC=90°∵△BCD'≌△ACE∴∠DBC=∠EAC即∠MBC=∠NAM又∵∠BMC=∠AMN∴∠AMN+∠CAE=90°∴∠AND=90°∴AE⊥BD(3)如图,连接DE,由旋转图形的性质可知CD=CE,BD=AE,旋转角∠DCE=90°∴∠EDC=∠CED=45°∵CD=3,∴CE=3在Rt△DCE中,∠DCE=90°∴DE=√CD2+CE2=√9+9=3√2∵∠ADC=45°∴∠ADE=∠ADC+∠EDC=90°在Rt△ADE中,∠ADE=90°∴EA=√AD2+DE2=√18+4=√22∴BD=√22【练3】如图1,已知:已知:等边△ABC,点D是边BC上一点(点D不与点B、点C重合),求证:BD+DC>AD.下面的证法供你参考:把△ACD绕点A顺时针旋转60°得到△ABE,连接ED,则有△ACD≌△ABE,DC=EB,∵AD =AE,∠DAE=60°,∴△ADE是等边三角形,∴AD=DE.在△DBE中,BD+EB>DE,即:BD+DC>AD实践探索:(1)请你仿照上面的思路,探索解决下面的问题:如图3,点D是等腰直角三角形△ABC边上的点(点D不与B、C重合).求证:BD+DC>√2AD.(2)如果点D运动到等腰直角三角形△ABC外或内时,BD、DC和AD之间又存在怎样的数量关系?直接写出结论.创新应用:(3)已知:如图4,等腰△ABC中,AB=AC,且∠BAC=α(α为钝角),D是等腰△ABC外一点,且∠BDC+∠BAC=180°,BD、DC与AD之间存在怎样的数量关系?写出你的猜想,并证明.【答案】(1)证明见解析(2)BD+DC≥√2AD;(3)猜想:BD+DC<2AD;证明见解析【解析】解:(1)证明:把△ACD绕点A顺时针旋转90°得到△ABE,连接ED则有△ACD≌△ABE,DC=EB∵AD=AE,∠DAE=90°∴△ADE是等腰直角三角形∴DE=√2AD在△DBE中,BD+EB>DE,即:BD+DC>√2AD;(2)把△ABD旋转,使AB与AC AC旋转,得到△ACD′,则BD=CD′,在△CDD′中,CD+CD′>DD′,即BD+CD>DD′,∵△ADD′是钝角三角形,则DD′>√2AD当D运动到B的位置时,DD′=BC=√2AD.∴BD+DC≥√2AD;(3)猜想1:BD+DC<2AD证明:把△ACD绕点A顺时针旋转α,得到△ABE则有△ACD≌△ABE,DC=EB,∠ACD=∠ABE∵∠BAC+∠BDC=180°∴∠ABD+∠ACD=180°∴∠ABD+∠ABE=180°即:E、B、D三点共线.∴在△ADE中,AE+AD>ED,即BD+DC<2AD.【题型三:旋转与相似三角形的构造】【例】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,给出下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABF:S四边形CDEF=2:5,其中正确的结论有()A.1个B.2个C.3个D.4个【答案】D【解析】解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∴△AEF ∽△CBF ,∴AE BC =AF CF ,∵AE =12AD =12BC ,∴AF CF =12,∴CF =2AF ,故②正确,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC ,故③正确;∵△AEF ∽△CBF ,∴EF BF =AE BC =12,∴S △AEF =12S △ABF ,S △ABF =16S 矩形ABCD ,∴S △AEF =112S 矩形ABCD ,又∵S 四边形CDEF =S △ACD ﹣S △AEF =12S 矩形ABCD ﹣112S 矩形ABCD =512S 矩形ABCD ,∴S △ABF :S 四边形CDEF =2:5,故④正确;【练1】如图,正方形ABCD 的边长为8,线段CE 绕着点C 逆时针方向旋转,且CE =3,连接BE ,以BE 为边作正方形BEFG ,M 为AB FM 的长最小时,tan ∠ECB =______.【答案】13【解析】解:连接BD ,BF ,FD ,如图,∵BD BC =BF BE =√2,∴BD BF =BC BE ,∵∠FBD+∠DBE=45°,∠EBC+∠DBE=45°,∴∠FBD=∠EBC,∴△EBC∽△FBD,∴∠FDB=∠ECB,DFCE =BDBC=√2,∴DF=√2CE=3√2,由题意知:FM、DF、DM三条线段满足FM+DF≥MD,其中DM、DF的值一定,∴当M,F,D三点一线时,FM最小,过点M作MN⊥BD,垂足为G,∵∠MBN=45°,BM=12AB=4,∴MN=BN=2√2,∵MD=√AM2+AD2=√42+82=4√5,∴DG=√MD2−MG2=√(4√5)2−(2√2)2=6√2,∴tan∠ECB=tan∠FDG=MGDG =√26√2=13,故答案为:13.【练2】如图,在△ABC中,AB=5,D为边AB上-动点,以CD为一边作正方形CDEF,当点D从点B运动到点A时,点E运动的路径长为_________.【答案】5√2【解析】解:如图,作GB⊥BC于B,取GB=BC,当点D与点B重合时,则点E与点G重合,∴∠CBG=90°,∴CG=√2BC,∠GCB=45°,∵四边形CDEF是正方形,∴CE=√2DC,∠ECD=45°,∴∠BCD+∠DCG =∠GCE+∠DCG =45°,∴∠BCD =∠GCE,且CGBC =CEDC=√2,∴△CGE∽△CBD,∴GEBD =CEDC=√2,即GE=√2BD,∵BD=5,∴点E运动的路径长为GE=√2BD=5√2.【练3】在△ABC和△ADE中,BA=BC,DA=DE,且∠ABC=∠ADE=α,点E在△ABC的内部,连接EC,EB,EA和BD,并且∠ACE+∠ABE=90°.(观察猜想)(1)如图①,当α=60°时,线段BD与CE的数量关系为__________,线段EA,EB,EC的数量关系为__________.(探究证明)(2)如图②,当α=90°时,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由;(拓展应用)(3)在(2)的条件下,当点E在线段CD上时,若BC=2√5,请直接写出△BDE的面积.【答案】(1)BD=CE,EB2+EC2=EA2;(2)不成立,理由见解析;(3)2【解析】(1)如图①中,∵BA=BC,DA=DE.且∠ABC=∠ADE=60°,∴△ABC,△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,∴△DAB≌△EAC(SAS),∴BD=EC,∠ABD=∠ACE,∵∠ACE+∠ABE=90°,∴∠ABD+∠ABE=90°,∴∠DBE=90°,∴DE2=BD2+BE2,∵EA=DE,BD=EC,∴EA2=BE2+EC2.故答案为:BD=EC,EA2=EB2+EC2.(2)结论:EA2=EC2+2BE2.理由:如图②中,∵BA =BC ,DA =DE .且∠ABC =∠ADE =90°, ∴△ABC ,△ADE 都是等腰直角三角形, ∴∠DAE =∠BAC =45°,∴∠DAB =∠EAC , ∵AD AE =√22,AB AC =√22, ∴AD AE =ABAC ,∴△DAB ∽△EAC ,∴DB EC =AB AC =√22,∠ACE =∠ABD , ∵∠ACE +∠ABE =90°,∴∠ABD +∠ABE =90°,∴∠DBE =90°,∴DE 2=BD 2+BE 2,∵EA =√2DE ,BD =√22EC , ∴12EA 2=12EC 2+BE 2,∴EA 2=EC 2+2BE 2.(3)如图③中,∵∠AED =45°,D ,E ,C 共线, ∴∠AEC =135°,∵△ADB ∽△AEC ,∴∠ADB =∠AEC =135°,∵∠ADE =∠DBE =90°,∴∠BDE =∠BED =45°,∴BD =BE ,∴DE =√2BD ,∵EC =√2BD ,∴AD =DE =EC ,设AD =DE =EC =x ,在Rt△ABC中,∵AB=BC=2√5,∴AC=2√10,在Rt△ADC中,∵AD2+DC2=AC2,∴x2+4x2=40,∴x=2√2(负根已经舍弃),∴AD=DE=2√2,∴BD=BE=2,×2×2=2.∴S△BDE=12。
中考数学第四章 三角形 重难 微专项3 全等三角形中常用的辅助线技巧

= ,
在△ACD和△AED中,ቐ ∠1 = ∠2,
= ,
∴△ACD≌△AED,
∴∠AED=∠C=90°,CD=ED.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
又AC=BC,∴∠B=45°,∴∠EDB=∠B=45°,
∴DE=BE,∴CD=BE.
∴∠DBE=60°,
1
∴BD= BE,
2
∴TF=2BD,即BF-AB=2BD.
重难·微专项3 全等三角形中常用的辅助线技巧
突破点2 旋转
运用旋转的全等变换,可以把分散的条件集中到一个三角形中.
模型1
绕定点旋转60°,构造全等三角形
如图,△ABC为等边三角形,点P在△ABC内,将△ABP绕点A逆时针旋转
明剩下的线段等于另一条短线段.
补短法:延长短线段,使其延长部分等于另一条短线段,然后证明延长
后的线段等于长线段(或延长短线段,使延长后的线段等于长线段,然
后证明延长部分等于另一条短线段).
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例1
如图,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于点D.
60°,得到△ACP',则△ABP≌△ACP',且△APP'为等边三角形.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例2
如图,在四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,则线段
AD,CD和BD之间的数量关系为 AD2+CD2=BD2 .
重难·微专项3 全等三角形中常用的辅助线技巧
∵BA=BT,∠ABT=60°,
中考数学专题复习全等三角形之辅助线补全图形法

中考数学专题复习全等三角形(辅助线补全图形法)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE∠AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.(1)线段BE与线段AD有何数量关系?并说明理由;(2)判断BEG的形状,并说明理由.2.如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于(,0) ,(0,)A aB b两点,且,a b满足2()|4|0a b a t,且0,t t>是常数,直线BD平分OBA∠,交x轴于点D.(1)若AB的中点为M,连接OM交BD于点N,求证:ON OD=;(2)如图2,过点A作AE BD⊥,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想.3.如图,在△ABC中,点D为边BC的中点,点E在△ABC内,AE平分∠BAC,CE∠AE点F在AB上,且BF=DE(1)求证:四边形BDEF是平行四边形(2)线段AB,BF,AC之间具有怎样的数量关系?证明你所得到的结论4.已知,如图ABC∆中,AB AC=,90A∠=︒,ACB∠的平分线CD交AB于点E,90BDC∠=︒,求证:2CE BD=.5.在∠ABC 中,AB=AC ,将线段AC 绕着点C 逆时针旋转得到线段CD ,旋转角为α,且0180α<<,连接AD 、BD . (1)如图1,当∠BAC=100°,60α=时,∠CBD 的大小为_________; (2)如图2,当∠BAC=100°,20α=时,求∠CBD 的大小;(3)已知∠BAC 的大小为m (60120m <<),若∠CBD 的大小与(2)中的结果相同,请直接写出α的大小.6.(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC ∠,180A C ∠+∠=︒.求证:DA DC =. 思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题; 方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种....,添加辅助线并完成证明. (2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC ∠=︒时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C ∠+∠=︒,DA DC =,过点D 作DE BC ⊥,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.参考答案:1.(1)BE =12AD ,见解析;(2)BEG 是等腰直角三角形,见解析【解析】【分析】(1)延长BE 、AC 交于点H ,先证明△BAE ∠∠HAE ,得BE =HE =12BH ,再证明△BCH ∠∠ACD ,得BH =AD ,则BE =12AD ;(2)先证明CF 垂直平分AB ,则AG =BG ,再证明∠CAB =∠CBA =45°,则∠GAB =∠GBA =22.5°,于是∠EGB =∠GAB +∠GBA =45°,可证明△BEG 是等腰直角三角形.【详解】证:(1)BE =12AD ,理由如下:如图,延长BE 、AC 交于点H ,∠BE ∠AD ,∠∠AEB =∠AEH =90°,∠AD 平分∠BAC ,∠∠BAE =∠HAE ,在△BAE 和△HAE 中,AEB AEH AE AEBAE HAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠BAE ∠∠HAE (ASA ),∠BE =HE =12BH ,∠∠ACB =90°,∠∠BCH =180°﹣∠ACB =90°=∠ACD ,∠∠CBH =90°﹣∠H =∠CAD ,在△BCH 和△ACD 中,BCH ACD BC ACCBH CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠BCH ∠∠ACD (ASA ),∠BH =AD ,∠BE =12AD . (2)△BEG 是等腰直角三角形,理由如下:∠AC =BC ,AF =BF ,∠CF ∠AB ,∠AG =BG ,∠∠GAB =∠GBA ,∠AC =BC ,∠ACB =90°,∠∠CAB =∠CBA =45°,∠∠GAB =12∠CAB =22.5°,∠∠GAB =∠GBA =22.5°, ∠∠EGB =∠GAB +∠GBA =45°,∠∠BEG =90°,∠∠EBG =∠EGB =45°,∠EG =EB ,∠∠BEG 是等腰直角三角形.【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.2.(1)见解析;(2)2BD AE =,证明见解析.【解析】【分析】(1)由已知条件可得AO BO =,进而得OBA OAB ∠=∠,由直线BD 平分OBA ∠及直角三角形斜边上中线的性质得BOM OAB ∠=∠,再由三角形的外角定理,分别求得,ODN OND ∠∠,根据角度的等量代换,即可得ODN OND ∠=∠,最后由等角对等边的性质即可得证;(2)如图,延长AE 交y 轴于点C ,先证明BCE BAE △≌△,得AE EC =,再证明DOB COA ∠≌△,即可得2BD AC AE ==.【详解】(1)2()|4|0a b a t ,4a b t ∴==,AO BO ∴=,∴OBA OAB ∠=∠,直线BD 平分OBA ∠,ABD OBD ∴∠=∠,M 为AB 的中点,∴12OM AB BM AM ===, BOM OBA ∴∠=∠,OBA OAB ∠=∠,BOM OAB ∴∠=∠,OND OBD BOM ∠=∠+∠,ODN OAB ABD ∠=∠+∠,OND ODN ∴∠=∠,ON OD ∴=. (2)2BD AE =,证明:如图,延长AE 交y 轴于点C ,直线BD 平分OBA ∠,AE BD ⊥,ABD OBD ∴∠=∠,AEB CEB ∠=∠,又BE BE =,∴BCE BAE △≌△(ASA ),∴AE CE =1=2AC , AO BC ⊥,∴DOB COA ∠=∠,即90OAC OCA OCA CBE ∠+∠=∠+∠=︒, OAC OBD ∴∠=∠,又OB OA =,∴DOB COA ∠≌△(ASA ),2BD AC AE ∴==,即2BD AE =.【点睛】本题考查了平面直角坐标系的定义,非负数之和为零,三角形角平分线的定义,三角形中线的性质,三角形外角定理,三角形全等的性质与判定,等角对等边,熟练掌握以上知识,添加辅助线是解题的关键.3.(1)见解析;(2)1()2BF AB AC =-,理由见解析 【解析】【分析】(1)延长CE交AB于点G,证明AEG∆≅AEC∆,得E为中点,通过中位线证明DE// AB,结合BF=DE,证明BDEF是平行四边形(2)通过BDEF为平行四边形,证得BF=DE=12BG,再根据AEG∆≅AEC∆,得AC=AG,用AB-AG=BG,可证1()2BF AB AC=-【详解】(1)证明:延长CE交AB于点G∠AE⊥CE∠90AEG AEC︒∠=∠=在AEG∆和AEC∆GAE CAEAE AEAEG AEC∠=∠⎧⎪=⎨⎪∠=∠⎩∠AEG∆≅AEC∆∠GE=EC∠BD=CD∠DE为CGB∆的中位线∠DE//AB∠DE=BF∠四边形BDEF是平行四边形(2)1()2BF AB AC=-理由如下:∠四边形BDEF是平行四边形∠BF=DE∠D,E分别是BC,GC的中点∠BF=DE=12BG∠AEG∆≅AEC∆∠AG=ACBF=12(AB-AG)=12(AB-AC).【点睛】本题主要考查了平行四边形的证明,中位线的性质,全等三角形的证明等综合性内容,作好适当的辅助线,是解题的关键.4.见解析.【解析】【分析】延长BD交CA的延长线于F,先证得∠ACE∠∠ABF,得出CE=BF;再证∠CBD∠∠CFD,得出BD=DF;由此得出结论即可.【详解】证明:如图,延长BD交CA的延长线于F,90BAC︒∠=90,90BAF BAC ACE AEC︒︒∴∠=∠=∠+∠=90BDC︒∠=90BDC FDC︒∴∠=∠=90ABF BED︒∴∠+∠=AEC BED∠=∠ACE ABF∴∠=∠AB AC=()ACE ABF ASA∴∆∆≌CE BF ∴=CD 平分ACB ∠ACD BCD ∴∠=∠CD CD =()CBD CFD ASA ∴∆∆≌12BD FD BF ∴== 12BD CE ∴= 2CE BD ∴=【点睛】此题考查三角形全等的判定与性质,角平分线的性质,根据已知条件,作出辅助线是解决问题的关键.5.(1)30°;(2)30°;(3)α为60︒或120m ︒-或240m ︒-.【解析】【分析】(1)由100BAC ∠=︒,AB AC =,可以确定40ABC ACB ∠=∠=︒,旋转角为α,60α=︒时ACD ∆是等边三角形,且AC AD AB CD ===,知道BAD ∠的度数,进而求得CBD ∠的大小;(2)由100BAC ∠=︒,AB AC =,可以确定40ABC ACB ∠=∠=︒,连接DF 、BF .AF FC AC ==,60FAC AFC ∠=∠=︒,20ACD ∠=︒,由20DCB ∠=︒案.依次证明DCB FCB ∆≅∆,DAB DAF ∆≅∆.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,ACD ∆是等边三角形时,CD 在ABC ∆内部时,CD 在ABC ∆外部时,求得答案.【详解】解:(1)解(1)∠AB AC =,100BAC ∠=︒,∠40ABC ∠=︒,∠AC CD =,60ACD α=∠=︒,∠ACD △为等边三角形,∠40BAD BAC DAC ∠=∠-∠=︒.又∠AD AC AB ==,∠ABD △为等腰三角形,∠180702BAD ABD ︒-∠∠==︒, ∠30CBD ABD ABC ∠=∠-∠=︒.(2)方法1:如图作等边AFC △,连接DF 、BF .AF FC AC ∴==,60FAC AFC ∠=∠=︒.100BAC ∠=︒,AB AC =,40ABC BCA ∴∠=∠=︒.20ACD ∠=︒,20DCB ∴∠=︒.20DCB FCB ∴∠=∠=︒.∠AC CD =,AC FC =,DC FC ∴=.∠ BC BC =,∠∴由∠∠∠,得DCB FCB ≅,DB BF ∴=,DBC FBC ∠=∠.100BAC ∠=︒,60FAC ∠=︒,40BAF ∴∠=︒.20ACD ∠=︒,AC CD =,80CAD ∴∠=︒.20DAF ∴∠=︒.20BAD FAD ∴∠=∠=︒.∠AB AC =,AC AF =,AB AF ∴=.∠AD AD =,∠∴由∠∠∠,得DAB DAF ≅.FD BD ∴=.FD BD FB ∴==.60DBF ∴∠=︒.30CBD ∴∠=︒.方法2 如下图所示,构造等边三角形ADE ,连接CE .∠在等腰三角形ACD 中,20ACD ∠=︒,∠80CAD CDA ∠=∠=︒,∠100BAC ∠=︒,∠20BAD ∠=︒.可证ACE DCE ≌.结合角度,可得20CAE CDE ∠=∠=︒,10ACE DCE ∠=∠=︒.在ADB △和ACE 中,20AB AC BAD CAE AD AE =⎧⎪∠=∠=︒⎨⎪=⎩,∠△≌△ADB AEC ,∠10ABD ACE ∠=∠=︒.∠40ABC ∠=︒,∠30CBD ABC ABD ∠=∠-∠=︒.方法3 如下图所示,平移CD 至AE ,连接ED ,EB ,则四边形ACDE 是平行四边形.∠AC DC =,∠四边形ACDE 是菱形,∠20AED ACD ∠=∠=︒,180EAC ACD ∠+∠=︒.∠160EAC ∠=︒,∠60EAB ∠=︒,∠ABE △是等边三角形,EBD △是等腰三角形,∠40BED ∠=︒,70EBD ∠=︒,∠10ABD ∠=︒.∠30CBD ABC ABD ∠=∠-∠=︒.(3)由(1)知道,若100BAC ∠=︒,60α=︒时,则30CBD ∠=︒;∠由(1)可知,设60α∠=︒时可得60BAD m ∠=-︒,902m ABC ACB ∠=∠=︒-, 19012022m ABD BAD ∠=︒-∠=︒-, 30CBD ABD ABC ∠=∠-∠=︒.∠由(2)可知,翻折BDC ∆到△1BD C ,则此时130CBD ∠=︒,60302m BCD ACB ∠=︒-∠=-︒, 190(30)12022m m ACB BCD ACB BCD m α∠=∠-∠=∠-∠=︒---︒=︒-, ∠以C 为圆心CD 为半径画圆弧交BD 的延长线于点2D ,连接2CD ,2303022m m CDD CBD BCD ∠=∠+∠=︒+-︒=, 221802180DCD CDD m ∠=︒-∠=︒-260240DCD m α∠=︒+∠=︒-.综上所述,α为60︒或120m ︒-或240m ︒-时,30CBD ∠=︒.【点睛】本题是一道几何结论探究题,解答这类题目的关键是要善于从探究特殊结论中归纳出一般性解题方法,并灵活运用这种方法解答一般性的问题,真正达到举一反三的目的. 6.(1)证明见解析;(2)AB BC BD +=;理由见解析;(3)2BC AB CE -=.【解析】【分析】(1)方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题; (2)延长CB 到点P ,使BP BA =,连接AP ,证明ΔΔPAC BAD ≌,可得PC BD =,即PC BP BC AB BC =+=+(3)连接BD ,过点D 作DF AC ⊥于F ,证明ΔΔDFA DEC ≌,Rt ΔRt ΔBDF BDE ≌,进而根据2BC BE CE BA AF CE BA CE =+=++=+即可得出结论.【详解】解:(1)方法1:在BC 上截BM BA =,连接DM ,如图.BD 平分ABC ∠,ABD CBD ∴∠=∠.在ΔABD 和ΔMBD 中,BD BD ABD MBD BA BM =⎧⎪∠=∠⎨⎪=⎩,ΔΔABD MBD ∴≌,A BMD ∴∠=∠,AD MD =.180BMD CMD ︒∠+∠=,180C A ︒∠+∠=.C CMD ∴∠=∠.DM DC ∴=,DA DC ∴=.方法2:延长BA 到点N ,使得BN BC =,连接DN ,如图.BD平分ABC∠,NBD CBD∴∠=∠.在ΔNBD和ΔCBD中,BD BDNBD CBDBN BC=⎧⎪∠=∠⎨⎪=⎩,ΔΔNBD CBD∴≌.BND C∴∠=∠,ND CD=.180NAD BAD︒∠+∠=,180C BAD︒∠+∠=.BND NAD∴∠=∠,DN DA∴=,DA DC∴=.(2)AB、BC、BD之间的数量关系为:AB BC BD+=.(或者:BD CB AB-=,BD AB CB-=).延长CB到点P,使BP BA=,连接AP,如图2所示.由(1)可知AD CD =,60DAC ︒∠=.ΔADC ∴为等边三角形.AC AD ∴=,60ADC ︒∠=.180BCD BAD ︒∠+∠=,36018060120ABC ︒︒︒︒∴∠=--=.18060PBA ABC ︒︒∴∠=-∠=.BP BA =,ΔABP ∴为等边三角形.60PAB ︒∴∠=,AB AP =.60DAC ︒∠=,PAB BAC DAC BAC ∴∠+∠=∠+∠,即PAC BAD ∠=∠.在ΔPAC 和ΔBAD 中,PA BA PAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩,ΔΔPAC BAD ∴≌. PC BD ∴=, PC BP BC AB BC =+=+,AB BC BD ∴+=.(3)AB ,CE ,BC 之间的数量关系为:2BC AB CE -=.(或者:2BC CE AB -=,2AB CE BC +=)解:连接BD ,过点D 作DF AC⊥于F ,如图3所示.180BAD C ︒∠+∠=,180BAD FAD ︒∠+∠=.FAD C ∴∠=∠.在ΔDFA 和ΔDEC 中,DFA DEC FAD C DA DC ∠=∠⎧⎪∠=∠⎨⎪=⎩,ΔΔDFA DEC ∴≌,DF DE ∴=,AF CE =.在Rt ΔBDF 和Rt ΔBDE 中,BD BD DF DE =⎧⎨=⎩, Rt ΔRt ΔBDF BDE ∴≌.BF BE ∴=,2BC BE CE BA AF CE BA CE ∴=+=++=+,2BC BA CE ∴-=.【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.。
中考数学-全等三角形问题中常见的8种辅助线的作法

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变D C BAED F CB A换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
2020--2021学年九年级数学中考二轮复习 专题 三角形辅助线作法攻略

《三角形辅助线作法攻略》➢考点考向1. 与角平分线有关的辅助线2. 与线段长度相关的辅助线3. 与等腰、等边三角形相关的辅助线4. 与中点相关的辅助线5. 构造一线三垂直(等角)6. 等面积法✧考点一:与角平分线有关的辅助线(1)可向两边作垂线。
(2)可构造等腰三角形(3)在角的两边截取相等的线段,构造全等三角形【例1】已知:∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM 上滑动,两直角边分别与OA、OB交于C、D,PC和PD有怎样的数量关系,请说明理由.【例2】如图,在△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于D,过C作CE ⊥BD交BD延长线于E.求证:CE=BD.【例3】如图,AC平分∠BAD,CD=CB,AB>AD,求证:∠B+∠D=180°.考点二:与线段长度有关的辅助线(1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等证明余下的等于另一条线段即可(2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等证明延长后的线段等于那一条长线段即可(3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。
【例4】如图,在△ABC中,AD平分∠BAC,∠C=2∠B,求证:AB=AC+CD.✧考点三:与等腰、等边三角形相关的辅助线(1)考虑三线合一(2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60 °【例5】如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.✧考点四:与中点有关的辅助线遇到中点,考虑中位线或等腰等边中的三线合一。
【例6】如图1,在四边形ABCD中,AB=CD,E,F分别是AD,BC的中点,连接FE并延长,分别与BA,CD的延长线交于点M,N.求证:∠BME=∠CNE;(提示:取BD的中点H,连接FH,HE作辅助线)(2)如图2,在△ABC中,F是BC边的中点,D是AC边上一点,E是AD的中点,直线FE 交BA的延长线于点G,若AB=DC=2,∠FEC=45°,求FE的长度.考点五:构造一线三垂直(等角)【例7】(1)观察猜想:如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE =90°,AD=AE,则BC、BD、CE之间的数量关系为;(2)问题解决:如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸:如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.考点六:等面积法(1)利用连线将一个大的三角形的面积切割为几个小三角形的面积和;(2)连线后得到等底等高的三角形面积相等。
初中数学中考复习几何辅助线规律总结(共102条)

初中数学几何辅助线规律线、角、相交线、平行线【规律】1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。
【规律】2平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分。
【规律】3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。
【规律】4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。
【规律】5有公共端点的n条射线所构成的交点的个数一共有n(n-1)个。
【规律】6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。
【规律】7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。
【规律】8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。
【规律】9互为邻补角的两个角平分线所成的角的度数为90°。
【规律】10平面上有n条直线相交,最多交点的个数为n(n-1)个。
【规律】11互为补角中较小角的余角等于这两个互为补角的角的差的一半。
【规律】12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。
【规律】13已知AB∥DE,如图⑴~⑹,规律如下:【规律】14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。
三角形部分【规律】15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。
注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。
【规律】16三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半。
【规律】17三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半。
中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)

中考数学总复习《构造三角形中位线模型解题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、三角形中位线的概念和性质1.连接三角形两边中点的线段叫做三角形的中位线2.三角形中位线定理:三角形的中位线平行于第三遍,且等于第三边的一半3.隐含中点的条件:等腰三角形三线合一(顶角的角平分线底边的中垂线),平行四边形对角线的交点。
例1.如图,点D、E分别为△ABC的边AB、AC的中点,点F在DE的延长线上,CF∥BA,若BC=8,则EF=( ) A.4 B.8 C.5 D.3例2.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=136°,则∠EFP的度数是( ) A.68° B.34° C.22° D.44°二、连接两点构造三角形的中位线例3.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF的最大值是.4例4.如图1,已知点E ,F ,G ,H 分别是四边形ABCD 的边AB ,BC ,CD ,DA 的中点,根据以下思路可以证明四边形EFGH 是平行四边形:如图2,将图1中的点C 移动至与点E 重合的位置,F ,G ,H 仍是BC ,CD ,DA 的中点,求证:四边形CFGH 是平行四边形.三.已知角平分线+垂直构造中位线例5.如图,AD 为ABC 中BAC ∠的外角平分线,BD AD ⊥于D ,E 为BC 中点5DE =,3AC =则AB 长为( )A .8.5B .8C .7.5D .7例6.如图,在△ABC 中,∠ABC =90°,在边AC 上截取AD =AB ,连接BD ,过点A 作AE ⊥BD 于点E ,F 是边BC 的中点,连接EF.若AB =5,BC =12,求EF 的长度.例7.如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,点E为BC的中点,求DE的长.四.倍长法构造三角形的中位线例8.如图,在△ABC中,∠ABC=90°,BA=BC,△BEF为等腰直角三角形,∠BEF=90°,M为AF的中点.求证ME=12CF.例9.如图,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于点D,CE平分∠ACB,交AB于点E,交BD于点F.求证:(1)△BEF是等腰三角形;(2)BD=12(BC+BF).五.已知一边中点,取另一边中点构造三角形的中位线例10.如图,四边形ABCD中,点E,F分别是边AB,CD的中点,且AD=6,BC=10,则线段EF的长可能为( )A.7B.8.5C.9D.10六.已知两边中点,取第三边中点构造三角形的中位线例11.如图,菱形ABCD 的对角线AC BD ,相交于点O .E ,F 分别是AD OC ,的中点,若1207BAD EF ∠=︒=,ABCD 的周长为( )A .8B .16C .3D .3例12.如图,已知四边形ABCD 中AC BD ⊥,AC=6,8BD =点E 、F 分别是边AD 、BC 的中点,连接EF ,则EF 的长是 __.强化训练题一.选择题1.如图 在△ABC 中 AB =4 BC =5 AC =8.点D E F 分别是相应边上的中点 则四边形DFEB 的周长等于( )A .8B .9C .12D .132.如图 △ABC 中 AB =AC =12 BC =10 AD 平分∠BAC 交BC 于点D 点E 为AC 的中点 连接DE 则△CDE 的周长为( )A .11B .17C .18D .163.如图 在ABC 中 45B ∠=︒ 60C ∠=︒ AD BC ⊥于点D 6BD = 若E F 分别为AB BC 的中点 则EF 的长为( )A 2B 6C 6D 34.如图 ABCD 的对角线AC BD 交于点O AE 平分BAD ∠交BC 于点E且60ADC ∠=︒ 12AB BC = 连接OE .下列结论中不成立的是( )A .30CAD ∠=︒B .ABCD S AB AC =⋅ C .OB AB =D .14OE BC =5.如图 四边形ABCD 中 ∠B =90° AB =8 BC =6 点M 是对角线AC 的中点 点N 是AD 边的中点 连结BM MN 若BM =3MN 则线段CD 的长是( )A .53B .3C .103D .56.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( )A .46.5cmB .22.5cmC .23.25cmD .以上都不对7.如图 在ABC 中 AE 平分BAC ∠ BE AE ⊥于点E 点F 是BC 的中点 若10AB = 6AC = 则EF 的长为( )A .2B .3C .4D .58.如图 在四边形ABCD 中 点E F 分别为AD DC 的中点 连接EB BF EF △EBF 的面积为 S 1 .点G 为四边形ABCD 外一点 连接AG BG EG FG 使得AG =BC ∠GAB =∠ABC △EGF 的面积为 S 2 则 S 1 与 S 2 满足的关系是( )A .S 1 = S 2B .2 S 1 =3 S 2C .3 S 1 =4 S 2D .3 S 1 =2 S 29.如图 平行四边形ABCD 中 O 为对角线交点 DP 平分ADC ∠ CP 平分BCD ∠ 7AB = 10AD = 则OP 的长为( )A .1.5B .2C .2.5D .310.如图 ▱ABCD 的顶点A D 分别在直角∠MON 的两边OM ON 上运 动(不与点O 重合) ▱ABCD 的对角线AC BD 相交于点P 连接OP 若OP=5 则▱ABCD 的周长最小值是( )A .20B .25C .10D .15二 填空题11.如图 在平行四边形ABCD 中 E 是CD 的中点 F 是AE 的中点 CF 交BE 于点G 若BE =8 则GE = .12.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cm BC =8cm 则DF 的长为 .13.如图已知三角形纸片ABC第1次折叠使点B落在BC边上的点B'处折痕AD交BC于点D;第2次折叠使点A落在点D处折痕MN交AB'于点P.若12BC=则MP与MN的和是_________.14.如图在▱ABCD中AC是对角线∠ACD=90°点E是BC的中点AF平分∠BAC CF⊥AF于点F连接EF.已知AB=5BC=13则EF的长为.15.如图在Rt△ABC中∠ACB=90°AC=BC=6 点D是AC边上的一点且AD=2 以AD为直角边作等腰直角三角形ADE连接BE并取BE的中点F连接CF则CF的长为.16.如图 EF是△ABC的中位线 O是EF上一点且满足OE=2OF.则△ABC的面积与△AOC的面积之比为.17.如图□ABCD的顶点C在等边△BEF的边BF上点E在AB的延长线上 G为DE的中点连接CG.若AD=5 AB=CF=3 则CG的长为.三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.19.如图在平行四边形ABCD中对角线AC BD、相交于点O点E是边BC中点连接OE并延长至点F使EF OE、.连接BF CF(1)求证:四边形OBFC是平行四边形;(2)求证:OF CD∥.20.如图四边形ABCD为平行四边形 E为AD上的一点连接EB并延长使BF=BE 连接EC并延长使CG=CE连接FG H为FG的中点连接DH(1)求证:四边形AFHD为平行四边形;(2)若CB=CE∠EBC=75°∠DCE=10°求∠DAB的度数.21.如图,点B为AC上一点,分别以AB,BC为边在AC同侧作等边三角形ABD和等边三角形BCE,点P,M,N分别为AC,AD,CE的中点.(1)求证:PM=PN;(2)求∠MPN的度数.22.如图,在△ABC中,AB=AC,AD⊥BC于点D,点P是AD的中点,延长BP交AC于点N,求证:AN=13AC.23.(1)如图1 在四边形ABCD中AB=CD E F分别是AD BC的中点连接FE 并延长分别与BA CD的延长线交于点M N.求证:∠BME=∠CNE;(提示:取BD的中点H连接FH HE作辅助线)(2)如图2 在△ABC中F是BC边的中点D是AC边上一点E是AD的中点直线FE交BA的延长线于点G若AB=DC=2 ∠FEC=45°求FE的长度.24.【发现与证明】如图在四边形ABCD中 E F G H是各边中点对角线AC BD相交于点O I J是AC BD的中点连接EF EH HG GF EI GI EJ FJ IJ GJ IH.结论1:四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;结论3:S四边形EFGH =12S四边形ABCD;……(1)请选择其中一个结论加以证明(只需证明一个结论).(2)【探究与应用】(★温馨提示:以下问题可以直接使用上述结论)①如图1 在四边形ABCD中 F H分别为边AB DC的中点连结HF.已知AD=6 BC=4线段HF的取值范围是 .②如图2 在四边形ABCD中点E F G H分别是AB BC CD DA的中点连接EG FH交于点O EG=8cm FH=6cm ∠EOF=60°求S四边形ABCD.答案部分:例1.A ∵点D E 分别为△ABC 的边AB AC 的中点 ∴DE 是△ABC 的中位线 ∴DE ∥BC ,DE =12BC =4.∴DF ∥BC ∵DF ∥BC ,CF ∥BA∴四边形BCFD 是平行四边形 ∴DF =BC =8,∴EF =DF -DE =4.例2.C ∵P 是BD 的中点,E 是AB 的中点 ∴PE =12AD ,同理,PF =12BC ∵AD =BC ,∴PE =PF∴∠EFP =12×(180°-∠EPF )=22°. 故选C.例3.答案 6.5解:如图,连接DN DB∵点E F 分别为DM MN 的中点 ∴EF 是△MDN 的中位线 ∴EF =12DN当N与点B重合时,DN最大,此时EF的值最大∵∠A=90°,AB=12,AD=5∴DB=√AD2+AB2=13,∴EF的最大值为6.5 故答案为6.5.例4.证明如图,连接BD∵C,H分别是AB,DA的中点∴CH是△ABD的中位线BD∴CH∥BD,CH=12BD同理,FG∥BD,FG=12∴CH∥FG,CH=FG∴四边形CFGH是平行四边形.例5.D解:延长BD CA交于点F∠的外角平分线∵AD为ABC中BAC∴FAD BAD∠=∠∵BD AD⊥∴90∠=∠=︒ADF ADB在ABD△和AFD△中FAD BAD AD ADADF ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABD AFD △≌△ ∴AB AF = BD DF = 又E 为BC 中点 5DE = ∴210CF DE == 又3AC =∴7AF CF AC AB =-==. 故选:D .例6.解: 在△ABC 中,∠ABC =90°,AB =5,BC =12 则AC =√AB 2+BC 2=√52+122=13 ∵AD =AB =5∴DC =AC -AD =13-5=8 ∵AD =AB ,AE ⊥BD ,∴BE =ED ∵BF =FC ,∴EF =12DC =4.解:如图,延长BD 交AC 于点F ,∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵BD ⊥AD ∴∠ADB =∠ADF又∵AD =AD ,∴△ADB ≌△ADF (ASA ).∴AF =AB =6,BD =FD .∵AC =10,∴CF =AC -AF =10-6=4.∵E 为BC 的中点,∴DE 是△BCF 的中位线.∴DE =12CF =12×4=2.例8.证明:如图,延长FE 至N ,使EN =EF ,连接BN ,AN ,则ME =12AN . ∵EF =EN ,∠BEF =90°,∴BE 垂直平分FN . ∴BF =BN .∴∠BNF =∠BFN . ∵△BEF 为等腰直角三角形,∠BEF =90°,∴∠BFN =45°.∴∠BNF =45°. ∴∠FBN =90°,即∠FBA +∠ABN =90°.又∠FBA +∠CBF =90° ∴∠CBF =∠ABN .在△BCF 和△BAN 中,∵BF =BN ,∠CBF =∠ABN ,BC =BA∴△BCF ≌△BAN (SAS ).∴CF =AN .∴ME =12AN =12CF .例9.(1)证明:在△ABC 中,∵AB =BC ,∠ABC =90°,∴∠ACB =45°. ∵CE 平分∠ACB ,∴∠ECB =∠ACE =22.5°.∴∠BEF =∠CFD =∠BFE =67.5°.∴BE =BF ,即△BEF 是等腰三角形. (2)解:如图,延长AB 至点M ,使得BM =AB ,连结CM .易知D 是AC 的中点∴BD ∥MC ,BD =12MC .∴∠BFE =∠MCE .由(1)得∠BEF =∠BFE ,BE =BF ,∴∠BEF =∠MCE .∴ME =MC .∵BM =AB =BC ,∴BD =12MC =12ME =12(MB +BE )=12(BC +BF ).例10.A 如图,连接BD ,取BD 的中点H ,连接HF ,HE∵点E ,H 分别是AB ,BD 的中点,∴EH 是△ABD 的中位线,∴EH =12AD =3 同理可得FH =12BC =5,∴EF ≤FH +EH =8,故选A .例11.B 解:取CD 的中点G 连接EG FG点E 为AD 的中点 点F 为OC 的中点12EG AC ∴=EG AC ∥ 12FG OD = //FG OD四边形ABCD 是菱形 120BAD ∠=︒AC BD ∴⊥ 60ADC ∠=︒ 1302ODC ADC ∠=∠=︒EG GF ∴⊥ AD DC AC ==设CD x = 则12EG x = 3FG 7EF =22213()()(7)2x ∴+= 解得4x =4CD ∴=∴菱形ABCD的周长为:44416CD=⨯=故选:B.例12解:如图取AB的中点G连接EG FG∵E F分别是边AD CB的中点∴EG BD∥且118422EG BD==⨯=FG AC且116322FG AC==⨯=∵AC BD⊥∴EG FG⊥∴2222435EF EG FG=++=.故答案为:5.强化训练题一.选择题1.如图在△ABC中AB=4 BC=5 AC=8.点D E F分别是相应边上的中点则四边形DFEB的周长等于()A.8 B.9 C.12 D.13解:∵点D F分别是AB AC的中点∴DF=BC=2.5同理EF=AB=2∴四边形DFEB的周长=EF+FD+DB+BE=9故选:B .2.解:∵AB =AC AD 平分∠BAC ∴BD =DC =BC =5 ∵点E 为AC 的中点∴CE =AC =6 DE =AB =6 ∴△CDE 的周长=CD +CE +DE =17 故选:B . 3.A 解:45B ∠=︒ AD BC ⊥ABD ∴是等腰直角三角形 6AD BD ∴=60C ∠=︒30DAC ∴∠=︒12DC AC ∴=2233AD AC DC DC AC ∴-=36AC =22AC ∴=E F 分别为AB BC 的中点1122222EF AC ∴==⨯=故选:A . 4.C解:四边形ABCD 是平行四边形60ABC ADC ∴∠=∠=︒ 120BAD ∠=︒AE 平分BAD ∠60BAE EAD ∴∠=∠=︒ABE ∴是等边三角形AE AB BE ∴==AB =12BC AE ∴=12BC90BAC ∴∠=︒30CAD ∴∠=︒ 故A 正确; AC AB ⊥∴ABCDSAB AC =⋅ 故B 正确AB =12BC OB =12BDBD BC >AB OB ∴≠ 故C 错误; CE BE = CO OA = OE ∴=12ABOE ∴=14BC 故D 正确. 故选:C . 5.【答案】C6.已知三角形三边长分别为7cm 8cm 9cm 作三条中位线组成一个新的三角形 同样方法作下去 一共做了五个新的三角形 则这五个新三角形的周长之和为( ) A .46.5cmB .22.5cmC .23.25cmD .以上都不对解:由△ABC 三边长分别为7cm 8cm 9cm 三条中位线组成一个新的三角形 可知新三角形与原三角形相似 相似比是1:2 即:后一个三角形的周长都是前一个三角形周长的∵原三角形的周长=7+8+9=24 ∴这个新三角形的周长=×24=12 ∴这个五个新三角形的周长之和=24+×24+×24+×24+×24=23.25故选:C .7.A解:延长AC BE 交于点M∵AE 平分BAC ∠ BE AE ⊥∴90AEB AEM ∠=∠=︒ CAE BAE ∠=∠∵AE AE =∴ABE AME ≌∴10AB AM == BE EM =∵6AC =∴4CM AM AC =-=∵点F 是BC 的中点 BE EM =∴EF 为BCM 中位线 ∴122EF CM ==.故选:A .8.【答案】A解:连接 AC∵∠GAB =∠ABC∴AG ∥BC .又 AG = BC可知四边形 AGBC 是平行四边形∴AC ∥BG点 E F 分别为 AD DC 的中点∴EF 是△ ADC 的中位线∴EF ∥AC∴ EF ∥BG .∴点 B 与点 G 到 EF 的距离相等△EBF 与△ EGF 是同底等高的关系∴ S △ EBF = S △ EGF 即S1=S2故选: A9.A解:如图 延长DP 交BC 于点F四边形ABCD 是平行四边形AD BC ∴∥ OD OB = 7AB CD == 10BC AD ==180ADC BCD ∴∠+∠=︒ ADF CFD ∠=∠ DP 平分ADC ∠ CP 平分BCD ∠ADF CDF ∠=∠∴ FCP DCP ∠=∠90CDP DCP ∴∠+∠=︒ CDF CFD ∠=∠7DC CF ∴== DP PF =OP ∴是DBF 的中位线()()111107 1.5222OP BF BC CF ∴==-=-= 故选:A .10.解:如图 取 AD 的中点 H ,连接 PH , OH∵四边形 ABCD 是平行四边形 ∴AP = PC又∵点 H 是 AD 中点 LAOD =90°∴PH =- AB , OH =- AD∴OH + PH ≥ OP∴AB + AD ≥2OP∴四边形 ABCD 的周长最小值为20故选: A .二.填空题11.解:取 BE 的中点 M 连接 FM , CM∵F 为AE 的中点 M 为 BE 的中点∴MF =AB , FM // AB∵四边形 ABCD 是平行四边形∴DC = AB , DC // AB∵E 为 CD 的中点∴CE =DC∴ CE = FM , CE // FM .∴四边形 EFMC 是平行四边形∴EG = GM∵BM = EM = BE =x8=4∴ EG =x4=2故答案为:212.如图 DE 为△ABC 的中位线 点F 在DE 上 且∠AFC 为直角 若AC =6cmBC =8cm则DF 的长为 1cm .解:∵DE 为△ABC 的中位线∴DE =BC =4(cm )∵∠AFC 为直角 E 为AC 的中点∴FE =AC =3(cm )∴DF =DE ﹣FE =1(cm )故答案为:1cm .13.6解:如图2 由折叠得:AM MD = MN AD ⊥ AD BC ⊥ 连接GD∴GN BC∥GN是AD的垂直平分线∴AG DG=∴GAD GDA∠=∠∵90GBD GAD GDB GDA∠+∠=︒=∠+∠∴GBD GDB∠=∠∴GB GD=∴AG BG=同理可得:AN CN=∴GN是ABC的中位线而12BC=∴162GN BC==∵PM GM=∴6 MP MN GM MN GN+=+==.故答案为:6.14.【答案】7215.解:延长AE BC交于点H∵△ADE是等腰直角三角形∴∠HAC=45°AE=AD=2∴CH=AC=BC AH=AC=6∴EH=AH﹣AE=4∵BC=CH BF=FE∴FC=EH=2故答案为:2.16.【答案】3 (或3:1)】解: EF 是△ ABC 的中位线.. EF / BC , EF = BCOE =20F: OE =BC =BC设点 A 到 BC 的距离为 h则 S △ ABC = BC · h , S △ aoc =OE · h =BC · h =BC · h:△ ABC 的面积与△ AOC 的面积之比=3:1.故选: D .17.【答案】52解答】解:∵四边形 ABCD 是平行四边形∴AD = BC , CD = AB , DC / AB∵AD =5, AB = CF =3.∴CD =3, BC =5∴BF = BC + CF =8∵△ BEF 是等边三角形 G 为 DE 的中点∴BF = BE =8, DG = EG延长 CG 交 BE 于点 H∵DC / AB∴∠CDG=∠HEG在△ DCG 和△ EHG 中∠CDG=∠HEGDG = EG∠DGC =∠ EGH∴△ DCGR △ EHG ( ASA ).∴DC = EH , CG = HG∵ CD =3, BE =8∴HE =3, BH =5∵ LCBH =60°, BC = BH =5∴△CBH 是等边三角形∴CH = BC =5∴CG = CH =52故答案为:52三.解答题18.如图△ABC的中线BE CF相交于G且AB=12 AC=16 BC=20 求GC的长.解:∵AB=12 AC=16 BC=20∴AB2+AC2=BC2∴△ABC是直角三角形∴∠A=90°∵F是AB中点∴AF=6∴CF===2∵中线BE CF相交于G∴G是△ABC重心∴CG:GF=2:1∴CG=.19.(1)证明见解析(2)证明见解析(1)证明:∵点E是边BC中点∴BE CE=又∵EF OE=∴四边形OBFC是平行四边形;(2)证明:∵四边形ABCD是平行四边形对角线AC BD、相交于点O ∴点O是BD的中点又∵点E是边BC中点∴OE是BCD△的中位线∴OE CD即OF CD∥.20.【答案】(1)证明:∵BF=BE CG=CE∴BC为△FEG的中位线FG∴BC//FG BC=12又∵H是FG的中点∴FH=1FG2∴BC=FH .又∵四边形ABCD是平行四边形∴AD//BC AD=BC∴AD//FH AD=FH∴四边形AFHD是平行四边形;(2)解:∵四边形ABCD是平行四边形∴∠DAB=∠DCB∵CE=CB∴∠BEC=∠EBC=75°∴∠BCE=180°−75°−75°=30°∴∠DCB=∠DCE+∠BCE=10°+30°=40°∴∠DAB=40° .21.解:(1)如图,连接CD,AE.由三角形中位线定理可得PM∥12CD,PN∥12AE.∵△ABD和△BCE是等边三角形,∴AB=DB,BE=BC,∠ABD=∠CBE=60°∴∠ABE=∠DBC.∴△ABE≌△DBC,∴AE=DC.∴PM=PN.(2)如图,设PM交AE于F,PN交CD于G,AE交CD于H,AE交BD于Q.由(1)知△ABE≌△DBC,∴∠BAE =∠BDC.又∵∠DQH=∠BQA,∴∠AHD=∠ABD=60°,∴∠FHG=120°.22.证明:如图,取NC的中点H,连接DH过点H作HE∥AD,交BN的延长线于E.∵AB=AC,AD⊥BC,∴D为BC的中点.∵H为NC的中点,∴DH∥BN.又∵PD∥EH,∴四边形PDHE是平行四边形.∴HE=PD.∵P为AD的中点,∴AP=PD. ∴AP=EH.又∵HE∥AD,∴∠PAN=∠EHN,∠APN=∠HEN.∴△APN≌△HEN(ASA).∴AN=NH. ∴AN=NH=HC. ∴AN=13AC.23.(1)证明:连接BD取DB的中点H连接EH FH ∵E H分别是AD BD的中点∴EH∥AB EH=AB∴∠BME=∠HEF∵F H分别是BC BD的中点∴FH∥CD FH=CD∴∠CNE=∠HFE∵AB=CD∴HE=FH∴∠HEF=∠HFE∴∠BME=∠CNE;(2)连接BD取DB的中点H连接EH FH∵E F分别是AD BC的中点∴EH=AB FH=CD FH∥AC∴∠HFE=∠FEC=45°∵AB=CD=2∴HF=HE=1∴∠HEF=∠HFE=45°∴∠EHF=180°﹣∠HFE﹣HEF=90°∴.24.【答案】(1)解:结论1:四边形EFGH是平行四边形;证明:∵在四边形ABCD中 E F G H是各边中点∴EF为∆ABD的中位线∴EF∥BD EF=12BD同理可得GH∥BD GH=12BD∴GH∥EF GH=EF∴四边形EFGH是平行四边形;结论2:四边形EJGI是平行四边形;证明:∵E J G I分别为DA DB BC AC中点∴EJ为∆ABD的中位线∴EJ∥AB EJ=12AB同理可得IG∥AB IG=12AB∴EJ∥IG EJ=IG∴四边形EJGI是平行四边形;结论3:S四边形EFGH=12S四边形ABCD;证明:由结论1证明可得 EF=12BD GH=12BD∴∆AEF的高为∆ADB高的一半∆CHG的高为∆BCD高的一半∴S�AEF=14S�ADB S�CHG=14S�CDB同理:S�DEH=14S�DAC S�BFG=14S�BCA∴S四边形EFGH=S四边形ABCD−S�AEF−S�CHG−S�DEH−S�BFG=12S四边形ABCD;(2)解:①连接AC 取AC的中点E 连接FE HE∵点E F为AC AB的中点∴EF=12BC=2同理:EH=12AD=3第 31 页 共 31 页 ∴EH-EF<FH<EF+EH即1<EH<5故答案为:1<FH<5;②如图所示 连接EFGH 由结论1可得四边形EFGH 为平行四边形如图所示 过点E 作EM ∥FH 交GH 延长线于点M 过点G 作GN ⊥EM∵EF ∥GM EM ∥FH∴四边形FHME 为平行四边形∴FH=EM=6 ∠EOF=∠GEM=60° FE=HM∴∠EGN=30°∴EN=12EG =4∴GN =√EG 2−EN 2=4√3∴S �EGM =12EM ×GN =12√3由图可得S 四边形EFGH =S �EGM =12√3由结论3可得:S 四边形ABCD =2S 四边形EFGH =24√3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PFD QCD,A APF 是等边三角形, AP PF AF , PE AC , AE EF , AP PF,AP CQ ,
PF CQ .
在 A PFD 和 AQCD 中, PFD QCD PDF QDC , PF CQ A PFD≌A(Q)CD AAS ,
CD DE 4 .
5.如图所示,在 A ABC 中, AB AC,D、 E 是 A ABC 内两点, AD 平分 BAC.EBC E 60 ,若 BE 6,DE 2 ,则 BC 的长度是__.
答案:8
解析:作出辅助线后根据等腰三角形的性质得出 BE 6,DE 2 ,进而得出 A BEM 为 等边三角形, A EFD 为等边三角形,从而得出 BN 的长,进而求出答案. 解:延长 ED 交 BC 于 M ,延长 AD 交 BC 于 N ,作 DF A BC 于 F ,
BCD BCA ACD DCE ACD ACE ,
在 A BCD 和 A ACE 中, AC BC ACE BCD CD CE
A BCD≌A(A)CE SAS , BD AE . 又ADC 30 , ADE 90 . 在 RtA ADE 中, AE 5,AD 3 , 于是 DE AE2 AD2 4 ,
间的函数关系式.
(2)由已知可列出方程组结合已知求出 EF 的长. (3)当线段 PE、FQ 相交时,根据已知得到它们与线段 EF 围成的三角形三个角都是 60 解:(1)A ABC 是等边三角形, AB 1 . A B C 60,BC CA AB 1 . 又BEP CFE FQA 90,BP x .
E B
∴ DBA 90 , BD 10 3 ,
∵ A 45 ,∴ AB 10 3 ,
∴ SABD
1 2
10
3
2
150 , SBCD
1 2 SBDE
1 1 10 10 22
3 25
3,
∴这块草地的面积为 150 25 3 平方米.
2.如图:已知 AB 10 ,点 C、D 在线段 AB 上且 AC DB 2 ; P 是线段 CD 上的动点, 分别以 AP、PB 为边在线段 AB 的同侧作等边 A AEP 和等边 A PFB ,连结 EF ,设 EF 的中 点为 G ;当点 P 从点 C 运动到点 D 时,则点 G 移动路径的长是____.
答案:10
解析:延长 ED 交 BC 于 M ,延长 AD 交 BC 于 N ,根据等腰三角形的性质得出 CE 8,DE 2 ,进而得出 ACEM 为等边三角形,从而得出 BN 的长,进而求出答
案.
解:延长 ED 交 BC 于 M ,延长 AD 交 BC 于 N ,
AB AC,AD 平分 BAC , AN BC,BN CN , ECB E 60 , ACEM 为等边三角形, CE 8,DE 2 , DM 6 , ACEM 为等边三角形,
,
ABD E , 在 A ABD 和 A AEC 中,
BAD EAC
AB
AE
,
ABD E
A ABD≌A(A)EC ASA , BD CE , CE BE BC AB BC 3 2 5 , BD 5 ,
8.如图,在 A ABC 中, AB AC,D、 E 是 A ABC 内两点, AD 平分 BAC,EBC E 60 ,若 BE 60cm,DE 2cm ,则 BC ____ cm .
.
六边形 ABCDEF 的六个角都是 120°, 六边形 ABCDEF 的每一个外角的度数都是 60°.
A PGH、A B、G、A A DHC A EFP 都是等边三角形. GC BC 12,DH CH 8 . GH 12 30 8 50,FE PE PH ED DH 50 28 8 14, AF PG PF AG 50 14 12 24 .
的三角形周长的取值范围.
答案:见解析
解析:(1)由已知等边 A ABC 中,可得每个角都是 60 ,由作 PE BC ,垂足为 E ;作 EF AC ,垂足为 F ;作 FQ AB ,垂足为 Q ,得三个直角三角形且 都有 30 的角,据此用 x 可表示出 BE,C,E CF ,相继表示出 AF,AQ ,求出 y 与 x 之
FD CD , AE EF , EF FD AE CD , AE CD DE 1 AC ,
2 AC 1 , DE 1 0.5 .
2
10.如图, A ABC 中, AB AC,AD 平分 BAC,D、 E 是 A ABC 内两点,且 ECB E 60 ,若 CE 8,DE 2 ,则 BC _____.
答案:等于
解析:延长 DC 到点 E ,使得 BC CE ,连接 BE 和 BD ,根据已知条件和所作辅 助线可得 A ABD 与 A BCE 均为等边三角形,证明 A ABC 和 A DBE 全等即可证明;
解:延长 DC 到点 E ,使得 BC CE ,连接 BE 和 BD . ∵ BCD 120 ∴ BCE 180 120 60 又 BC CE , AB AD,BAD 60 A ABD 与 A BCE 均为等边三角形 BD AB,B,E BC ABD EBC 60 ABD DBC EBC DBC ,即 ABC DBE 在 A ABC 和 A DBE 中
D C
B
D C E
B
4.如图,四边形 ABCD 中, AC,BD 是对角线, A ABC 是等边三角形. ADC 30,A,D 3 BD 5 ,则 CD 的长为____.
答案:4
解析:首先以 CD 为边作等边 ACDE ,连接 AE ,利用全等三角形的判定得出 A BCD≌A ACE ,进而求出 DE 的长即可. 解:如图,以 CD 为边作等边 ACDE ,连接 AE
6.如图,六边形 ABCDEF 中,每一个内角都是 120,A,B,,12 BC 30 CD 8 DE 28 .求这个六边 形的周长为_____.
答案:116
解析:凸六边形 ABCDEF ,并不是一规则的六边形,但六个角都是120 ,所以通过适
当的向外作延长线,可得到等边三角形,进而求解.
解:如图,分别作直线 AF、E、D BC 的延长线和反向延长线使它们交于点 G、H、 P
六边形的周长为: 24 12 30 8 28 14 BD 平分 ABC,DAC 60 ,若 AB 2,BC 3 ,则 BD 的长是_____.
答案:5
解析:在 CB 的延长线上取点 E ,使 BE AB ,连接 AE ,则可证得 A ABE 为等边 三角形,再结合条件可证明 A ABD≌A AEC ,可得 BD CE ,再利用线段的和差可求 得 CE ,则可求得 BD . 解:在 CB 的延长线上取点 E ,使 BE AB ,连接 AE ,
F G E
A CP
DB
答案:3
解析:分别延长 AE、BF 交于点 H ,易证四边形 EPFH 为平行四边形,得出 G 为PH中点,
则G的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度 即可.
解:如图,分别延长AE、BF交于点H.
∵ ∠A=∠FPB=60°, ∴ AH ∥ PF, ∵ ∠B=∠EPA=60°, ∴ BH ∥ PE, ∴ 四 边形EPFH为平行四边形, ∴ EF与HP互相平分. ∵ G为EF的中点, ∴ G正好为PH中点, 即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN. ∵ CD=10-2-2=6,∴MN=3,即G的移动路径长为3
6.构造等边三角形
1.公园里有一块形如四边形 ABCD 的草地,测得 BC CD 10 米, B C 120 , A 45 .请你求出这块草地的面积?
D
C
答案:见解析 解析:
A
B
D C
A
延长 DC、AB 交于 E ,连结 DB , ∵ ABC BCD 120 ,∴ EBC ECB 60 , ∴ EBC 是等边三角形, ∵ DC CB ,∴ CDB DBC 30 ,
ABC 120 , ABE 180﹣ABC 60 , BE AB , A ABE 为等边三角形, AE AB,BAE E 60 , DAC 60 , DAC BAE , BAD BAC DAC,EAC BAC BAE , BAD EAC , BD 平分 ABC ,
3.四边形 ABCD ,有 BC CD , B C 120 , A 45 .请你求 D ____ .
A
答案:75 解析:
A
延长 DC、AB 交于 E ,连结 DB , ∵ ABC BCD 120 ,∴ EBC ECB 60 , ∴ EBC 是等边三角形, ∵ DC CB ,∴ CDB DBC 30 , ∴ DBA 90 , ∵ A 45 ,∴ ADB 90 45 45 , ∴ ADC ADB BDC 45 30 75
答案不是整数,请化为小数)
答案:0.5
解析:过 P 作 PF A BC 交 AC 于 F ,得出等边三角形 APF ,推出 AP PF QC ,根据等腰三角形性质求出 EF AE ,证 A PFD≌AQCD ,推出 FD CD ,推出 DE 1 AC 即可.
2
解:过 P 作 PF A BC 交 AC 于 F .
EMC 60 , AN BC , DNM 90 , NDM 30 , NM 3 , CN 8﹣3 5 , BN 5, BC 2BN 10 .
故答案为:10.
11.如图,凸四边形 ABCD 满足条件: AB AD,,BAD 60 BCD 120 那么 AC ____ BC CD .(填“大于”或“小于”或“等于”)
AB BD ABC DBE , BC BE ∴ A ABC≌A DBE ∴ BD DE ∵ DE CD EC CD BC AC BC CD .
故答案为:相等