吸收实验实验报告材料

合集下载

吸收实验报告实验小结

吸收实验报告实验小结

一、实验目的本次实验旨在通过实际操作,掌握吸收实验的基本原理和操作方法,了解吸收塔的结构和工作原理,学习如何测定填料塔的体积吸收系数,并分析影响吸收效率的因素。

二、实验原理吸收实验是化工过程中常见的传质操作之一,主要用于气体和液体之间的物质传递。

本实验采用填料塔作为吸收设备,通过改变气体和液体的流量,研究其传质性能。

填料塔的体积吸收系数KYa是指单位体积填料层在单位时间内,气体和液体之间的传质速率。

其计算公式如下:KYa = (qL (C2 - C1)) / (qV (C2 - C1))其中,qL为液体流量,qV为气体流量,C1为进塔气体中溶质的摩尔分数,C2为出塔气体中溶质的摩尔分数。

三、实验内容1. 实验装置及原理实验装置主要包括填料塔、气体发生器、流量计、压力计、温度计等。

填料塔内填充有适当的填料,气体和液体在填料层内进行逆流接触,实现物质传递。

2. 实验步骤(1)准备实验装置,检查各连接处是否严密,确保实验过程中无泄漏。

(2)开启气体发生器,调整气体流量,使其达到实验要求。

(3)调整液体流量,使其达到实验要求。

(4)记录进塔气体中溶质的摩尔分数C1,出塔气体中溶质的摩尔分数C2,以及气体和液体流量。

(5)重复上述步骤,改变气体和液体流量,记录数据。

(6)根据实验数据,计算填料塔的体积吸收系数KYa。

四、实验结果与分析1. 实验结果通过实验,得到了不同气体和液体流量下填料塔的体积吸收系数KYa。

实验结果表明,填料塔的体积吸收系数KYa随着气体和液体流量的增加而增加。

2. 结果分析(1)气体和液体流量对体积吸收系数的影响:实验结果表明,填料塔的体积吸收系数KYa随着气体和液体流量的增加而增加。

这是因为气体和液体流量的增加,使得气液两相接触面积增大,传质速率提高。

(2)填料类型对体积吸收系数的影响:实验结果表明,不同填料类型对填料塔的体积吸收系数KYa有较大影响。

一般来说,填料比表面积越大,孔隙率越高,体积吸收系数KYa越大。

原子吸收测定实验报告

原子吸收测定实验报告

一、实验目的1. 熟悉原子吸收光谱法的基本原理及操作步骤。

2. 掌握原子吸收光谱仪的使用方法。

3. 学习标准曲线法在原子吸收光谱法中的应用。

4. 测定样品中特定元素的含量。

二、实验原理原子吸收光谱法(Atomic Absorption Spectrometry,AAS)是一种基于原子蒸气对特定波长光吸收进行定量分析的方法。

在原子吸收光谱法中,样品中的待测元素首先被转化为原子蒸气,然后通过特定波长的光源照射,待测元素原子蒸气对光产生吸收,吸收程度与待测元素浓度成正比。

通过测量吸光度,可以计算出样品中待测元素的含量。

三、实验仪器与试剂1. 仪器:- 原子吸收光谱仪- 空心阴极灯- 气路系统- 移液器- 容量瓶- 酒精灯- 电脑2. 试剂:- 待测元素标准溶液- 待测样品溶液- 稀释液- 洗涤液- 酸性试剂四、实验步骤1. 样品预处理- 将待测样品溶液按照实验要求进行稀释,使待测元素浓度处于仪器检测范围内。

- 使用移液器准确移取一定量的待测样品溶液,加入容量瓶中。

- 加入适量的稀释液,摇匀。

2. 标准曲线制作- 准备一系列已知浓度的待测元素标准溶液。

- 将标准溶液按照实验要求进行稀释,使待测元素浓度处于仪器检测范围内。

- 使用移液器准确移取一定量的标准溶液,加入容量瓶中。

- 加入适量的稀释液,摇匀。

- 将标准溶液和待测样品溶液依次倒入原子吸收光谱仪中,测量吸光度。

- 以标准溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

3. 待测样品测定- 将待测样品溶液按照实验要求进行稀释,使待测元素浓度处于仪器检测范围内。

- 使用移液器准确移取一定量的待测样品溶液,加入容量瓶中。

- 加入适量的稀释液,摇匀。

- 将待测样品溶液倒入原子吸收光谱仪中,测量吸光度。

- 根据标准曲线,计算出待测样品中待测元素的含量。

五、实验结果与分析1. 标准曲线绘制- 标准曲线线性良好,相关系数R²>0.99。

2. 待测样品测定- 待测样品中待测元素含量为X mg/L。

吸收实验实验报告

吸收实验实验报告

吸收实验实验报告
本次实验主要目的是研究物体对声波的吸收特性。

实验中,我们使用一套完整的声学
测量仪器,包括两个声发射器和两个声接收器以及一台声学扫描仪,可以实现对指定测试
物体声波的发射、接收和定量记录。

在实验室中,我们首先组装试验设备,将一组声发射器与一组声接收器相连接,然后
用胶布固定在一张稳定的垫板上,并使用细白实验线将它们与声学扫描仪相连接。

接下来,我们在声学扫描仪上载入按照物体的尺寸及形状设定发射、接收时机和记录次数,这样可
以避免出现额外噪音。

然后,我们将测试物体放置在声发射器和声接收器之间,通过声学扫描仪,将声发射
器和声接收器发出的声音全部合成成一种单音,用来测试物体的声波吸收率。

实验的结果表明,物体的吸收率随着声波穿过物体的距离及物体声阻抗的变化而变化,物体的吸收率相较透射率较低,这一结果与预期结果一致,表明物体上半部分吸收声波更
多一些。

总而言之,本次实验得出的结论表明,物体对声波有显著的吸收作用,且吸收率随距
离及声阻抗变化而变化。

同时,实验数据提示,物体上半部分对声波吸收率更高,上下部
分最高声波吸收率的差值也较明显。

这些结果将有助于进一步探讨物体的声波吸收特性。

吸收实验 实验报告

吸收实验 实验报告

吸收实验实验报告1. 了解吸收的概念和原理2. 掌握吸收实验的操作方法3. 研究不同材料对光的吸收能力的影响实验材料:1. 吸收实验装置(包括光源、光强计、样品台等)2. 不同材料的样品(如纸张、玻璃、塑料等)3. 实验记录表格实验步骤:1. 将实验装置搭建好,确保光源和光强计的位置合适、稳定。

2. 选择一个样品材料,将其放置在样品台上。

3. 打开光源,并调整光强计的位置和读数,使得读数在合适的范围内。

4. 记录下光强计的初始读数。

5. 将光源的光照射到待测样品上,保持一定的时间,使其充分吸收光。

6. 关闭光源,记录下光强计的最终读数。

7. 换一块不同材料的样品,重复步骤3-6,直到所有样品都被测试完毕。

实验数据记录:材料初始光强(单位:lx)最终光强(单位:lx)-纸张100 30玻璃100 90塑料100 10实验结果分析:根据实验数据,我们可以计算出每个材料对光的吸收率。

吸收率的定义为:(初始光强-最终光强)/ 初始光强。

根据此公式计算各材料的吸收率如下:纸张的吸收率= (100 - 30) / 100 = 0.7玻璃的吸收率= (100 - 90) / 100 = 0.1塑料的吸收率= (100 - 10) / 100 = 0.9通过比较各材料的吸收率,可以得出以下结论:1. 纸张对光的吸收能力较强,吸收率为0.7,说明纸张对光的吸收较高,而不容易透过光线。

2. 玻璃对光的吸收能力较弱,吸收率为0.1,说明玻璃对光的吸收较低,大部分光能透过玻璃。

3. 塑料对光的吸收能力较强,吸收率为0.9,说明塑料对光的吸收较高,不容易透过光线。

实验结论:实验结果表明,不同材料的吸收能力是不同的。

纸张对光的吸收能力较强,玻璃的吸收能力较弱,而塑料的吸收能力较强。

这与材料的物理特性有关,如纸张的纤维结构较为密集,能较好地吸收光线。

而玻璃的特性则使得大部分光线能够透过。

塑料则具有较好的光学透过性能,但也一定程度上吸收光线。

化工原理实验报告_吸收

化工原理实验报告_吸收

化工原理实验报告_吸收
实验名称:吸收实验
实验目的:
1. 掌握吸收塔的操作方法;
2. 熟悉吸收塔的工作原理;
3. 了解吸收塔在化工过程中的应用。

实验原理:
吸收是指将气体中的某种成分溶解在液体中的过程。

在工业生产中,吸收常用于气体分离和净化。

吸收塔是常用的吸收装置,常见的吸收塔有塔板吸收塔和填料吸收塔两种类型。

实验仪器及材料:
1. 塔式吸收塔;
2. 气源;
3. 转子流量计;
4. 吸收液;
5. 相应的连接管道。

实验步骤:
1. 将吸收液倒入吸收塔中,注意液位不要过高;
2. 连接气源至吸收塔的底部,控制气源流量;
3. 打开气源,调节气源流量;
4. 连接转子流量计并调节流量;
5. 观察吸收液的变化并记录实验数据。

实验数据记录和分析:
根据实验步骤所得到的数据,可以计算出气体吸收的效率和吸收塔的传质系数。

根据数据分析,可以得到吸收塔的工作效果和适用范围。

实验结果和结论:
通过实验可以得到气体吸收的效率和吸收塔的传质系数,进而评估吸收塔的性能。

根据实验结果,可以判断吸收塔是否适用于化工过程中的气体分离和净化。

根据实验结果和结论,可以调整吸收塔的操作方法和参数,进一步优化吸收塔的性能。

实验注意事项:
1. 操作吸收塔时需注意安全,避免发生意外事故;
2. 控制气源流量时需谨慎,避免发生压力过大或流量过大的情况;
3. 实验结束后,及时清洗吸收塔和相关设备。

木炭吸收甲醛实验报告

木炭吸收甲醛实验报告

木炭吸收甲醛实验报告
实验目的:
探究木炭对甲醛的吸附能力。

实验材料:
1. 甲醛溶液
2. 木炭颗粒
3. 实验容器(如试管)
4. 滴定管或移液管
实验步骤:
1. 准备实验容器,将适量的木炭颗粒放入容器中。

2. 制备一定浓度的甲醛溶液,可以通过稀释商业甲醛溶液或按照一定比例浓度配制。

3. 使用滴定管或移液管,将一定量的甲醛溶液滴于木炭颗粒上,让其充分接触。

4. 观察甲醛溶液与木炭的接触后变化情况,如颜色变化、气味变化等。

5. 记录观察结果,并作进一步分析。

实验结果与分析:
在与木炭接触后,甲醛溶液可能会出现以下变化:
1. 颜色变淡:如果甲醛溶液开始呈现深黄色或橙色,接触到木炭后颜色可能会逐渐变淡。

2. 气味减弱:甲醛有一种刺激性的刺鼻气味,与木炭接触后,甲醛气味可能会减弱或消失。

3. 悬浮物或沉淀形成:由于木炭具有吸附能力,与甲醛接触后,
可能会形成悬浮物或沉淀。

4. 外观变化:甲醛溶液在与木炭接触后,可能出现浑浊或凝结的现象。

实验结论:
木炭具有一定的吸附甲醛的能力。

通过与甲醛溶液接触,木炭能够降低甲醛含量,使甲醛溶液的颜色变淡、气味减弱以及形成悬浮物或沉淀。

这表明木炭可以作为一种吸附剂,用于甲醛的吸附和净化。

但需要进一步研究和优化,以确定最佳使用条件和吸附效果。

钙的吸收实验报告

钙的吸收实验报告

一、实验目的1. 了解钙在人体内的吸收机制及其影响因素。

2. 掌握钙吸收实验的基本操作方法。

3. 分析钙吸收的影响因素,探讨提高钙吸收的方法。

二、实验原理钙是人体必需的矿物质之一,对于骨骼和牙齿的发育、神经传导、肌肉收缩等生理功能至关重要。

钙的吸收主要通过小肠进行,受多种因素的影响,如维生素D、饮食中钙磷比例、食物成分等。

三、实验材料与仪器1. 实验材料:- 纯净钙片- 维生素D3片- 草酸钙片- 磷酸盐片- 肉鸡饲料- 肉鸡- 饲养笼- 体重秤- 水分测定仪- 烘箱2. 实验仪器:- 高压锅- 研钵- 烧杯- 移液管- 滴定管- pH计- 恒温水浴锅四、实验方法1. 实验分组:将肉鸡随机分为五组,每组10只,分别为:- 对照组:喂食正常肉鸡饲料- 钙组:在饲料中添加纯净钙片- 维生素D组:在饲料中添加维生素D3片- 草酸钙组:在饲料中添加草酸钙片- 磷酸盐组:在饲料中添加磷酸盐片2. 实验过程:(1)称量:实验开始前,称量每只肉鸡的初始体重。

(2)饲养:按照实验分组,将饲料分别喂给对应的肉鸡,饲养周期为4周。

(3)采集样品:在饲养周期结束时,从每组中随机选取2只肉鸡,进行屠宰,采集肝脏和肠道组织。

(4)测定:将采集的组织样品进行烘干、称量,测定水分含量。

然后,将烘干后的组织样品研磨成粉末,采用原子吸收光谱法测定钙含量。

五、实验结果与分析1. 钙的吸收率:表1 不同饲料中钙的吸收率| 组别 | 钙含量(%) | 吸收率(%) || ------ | -------- | -------- || 对照组 | 0.25 | 20 || 钙组 | 0.50 | 40 || 维生素D组 | 0.30 | 50 || 草酸钙组 | 0.20 | 10 || 磷酸盐组 | 0.15 | 5 |从表1可以看出,添加维生素D3的饲料组钙的吸收率最高,其次是添加纯净钙片的饲料组。

草酸钙和磷酸盐对钙的吸收有抑制作用。

吸收光线实验报告结论

吸收光线实验报告结论

通过本次实验,了解不同材料对光线的吸收特性,探究不同颜色和厚度对光线吸收的影响,并验证相关理论。

二、实验原理光线照射到物体表面时,会发生反射、透射和吸收三种现象。

其中,吸收是指物体表面吸收一部分光能,导致反射光和透射光强度的降低。

本实验通过测量不同材料在不同颜色和厚度下的吸收率,来研究光线吸收的特性。

三、实验材料与仪器1. 实验材料:白色塑料板、黑色塑料板、红色塑料板、蓝色塑料板、绿色塑料板、黄色塑料板、白色布料、黑色布料、红色布料、蓝色布料、绿色布料、黄色布料。

2. 实验仪器:紫外-可见分光光度计、光电池、光源、实验台、计时器。

四、实验方法1. 准备实验材料,将不同颜色和厚度的塑料板、布料依次放置在实验台上。

2. 调整光源,使其照射到实验材料上。

3. 利用紫外-可见分光光度计测量反射光和透射光强度。

4. 根据朗伯-比尔定律(A = εlc),计算不同材料在不同颜色和厚度下的吸收率。

5. 记录实验数据,分析实验结果。

五、实验结果与分析1. 不同颜色材料对光线的吸收率:实验结果表明,黑色材料对光线的吸收率最高,其次是深色材料,白色材料对光线的吸收率最低。

2. 不同厚度材料对光线的吸收率:实验结果表明,随着材料厚度的增加,光线的吸收率逐渐增加。

3. 不同颜色和厚度材料对光线的吸收特性:实验结果表明,黑色材料在不同厚度下对光线的吸收率较高,且随着厚度的增加,吸收率逐渐增加;红色、蓝色、绿色、黄色等颜色材料在不同厚度下对光线的吸收率较低,且随着厚度的增加,吸收率逐渐增加。

1. 黑色材料对光线的吸收率最高,其次是深色材料,白色材料对光线的吸收率最低。

2. 随着材料厚度的增加,光线的吸收率逐渐增加。

3. 不同颜色和厚度的材料对光线的吸收特性存在差异,黑色材料在不同厚度下对光线的吸收率较高。

4. 本实验验证了朗伯-比尔定律,即光线的吸收率与物质的浓度、厚度和光的波长有关。

5. 本实验为实际应用中材料的选择和设计提供了理论依据,有助于提高材料的光学性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 实验名称:吸收实验二、实验目的:1.学习填料塔的操作;2. 测定填料塔体积吸收系数K Y a .三、实验原理:对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。

但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。

(一)、空塔气速与填料层压降关系气体通过填料层压降△P 与填料特性及气、液流量大小等有关,常通过实验测定。

若以空塔气速o u [m/s]为横坐标,单位填料层压降ZP ∆[mmH 20/m]为纵坐标,在双对数坐标纸上标绘如图2-2-7-1所示。

当液体喷淋量L 0=0时,可知Z P ∆~o u 关系为一直线,其斜率约1.0—2,当喷淋量为L 1时,ZP ∆~o u 为一折线,若喷淋量越大,折线位置越向左移动,图中L 2>L 1。

每条折线分为三个区段,Z P ∆值较小时为恒持液区,Z P ∆~o u 关系曲线斜率与干塔的相同。

Z P ∆值为中间时叫截液区,ZP ∆~o u 曲线斜率大于2,持液区与截液区之间的转折点叫截点A 。

Z P ∆值较大时叫液泛区,ZP ∆~o u 曲线斜率大于10,截液区与液泛区之间的转折点叫泛点B 。

在液泛区塔已无法操作。

塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。

吸收实验图2-2-7-1 填料塔层的ZP ∆~o u 关系图图2-2-7-2 吸收塔物料衡算(二)、吸收系数与吸收效率本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。

若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收平均推动力可用对数平均浓度差法进行计算。

其吸收速率方程可用下式表示:m Ya A Y H K N ∆⋅⋅Ω⋅= (1) 式中:N A ——被吸收的氨量[kmolNH 3/h];Ω——塔的截面积[m 2]H ——填料层高度[m]∆Y m ——气相对数平均推动力K Y a ——气相体积吸收系数[kmolNH 3/m 3·h]被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2):)()(2121X X L Y Y V N A -=-= (2)式中:V ——空气的流量[kmol 空气/h]L ——吸收剂(水)的流量[kmolH 20/h]Y 1——塔底气相浓度[kmolNH 3/kmol 空气]Y 2——塔顶气相浓度[kmolNH 3/kmol 空气]X 1,X 2——分别为塔底、塔顶液相浓度[kmolNH 3/kmolH 20]由式(1)和式(2)联解得:mYa Y H Y Y V K ∆⋅⋅Ω-=)(21(3) 为求得K Y a 必须先求出Y 1、Y 2和∆Y m 之值。

1、Y 1值的计算:0201198.0V V Y =(4) 式中:V 01——氨气换算为标态下的流量[m 3/h]V 02——空气换算为标态下的流量[m 3/h]0.98——氨气中含纯NH 3分数对氨气:2121010200101T T P P P T V V ⋅⋅⋅=ρρ(5) 式中:V 1——氯气流量计上的读数[m 3/h]T 。

,P 。

——标准状态下氨气的温度[K]和压强[mmHg]T 1,P 1——氨气流量计上标明的温度[K]和压强[mmHg]T 2,P 2——实验所用氨气的温度[K]和压强[mmHg]0ρ——标准状态下氨气的密度(=0.769kg/m 3)02ρ——标准状态下空气的密度(=1.293kg/m 3)对空气:434300202T T P P P TV V ⋅⋅=(6)式中:V 2——空气流量计读数[m 3/h]T 。

,P 。

——标准状态下空气的温度[K]和压强[mmHg]T 3,P 3——空气流量计上标明的温度[K]和压强[mmHg]T 4,P 4——实验所用空气的温度[K]和压强[mmHg]Y 1也可用取样分析法确定(略)。

2、Y 2值分析计算在吸收瓶注入浓度为N S 的H 2SO 4V S [ml],把塔顶尾气通入吸收瓶中。

设从吸收瓶出口的空气体积为V 4[ml]时瓶H 2SO 4Vs 即被NH 3中和完毕,那么进入吸收瓶的NH 3体积V o3可用下式计算:][1.2203ml V N V S S = (7) 通过吸收瓶空气化为标准状态体积为:][5500404ml T P P T V V ⋅= (8) 式中:V 4——通过吸收瓶空气体积[ml],由湿式气量计读取T 。

,P 。

——标准状态下空气的温度[K]和压强[mmHg]T 5,P 5——通过吸收瓶后空气的温度[K]和压强[mmHg]故塔顶气相浓度为:04032V V Y = (9) 3、塔底X 1~Y*1的确定由式(2)知:2211)(X Y Y L V X +-=,若X 2=0,则得: )(211Y Y LV X -= (10) X 1值亦可从塔底取氨水分析而得。

设取氨水V N `[ml],用浓度为N S `的H 2SO 4来滴定,中和后用量为V S `[ml],则:```018.01N S S V V N X = (11) 又根据亨利定律知,与塔底X 1成平衡的气相浓度Y 1*为:11X PE Y =* (12) 式中:P ——塔底操作压强绝对大气压(atm )E ——亨利系数大气压,可查下表取得:液相浓度5%以下的E 值表2-2-7-1t E 047.131143.0⨯= (13)4、塔顶的X 2~Y 2*的确定因用水为吸收剂,故X 2=0 ,所以Y 2*=05、 吸收平均推动力ΔY m 211211ln )(Y Y Y Y Y Y Y m **---=∆ (14) 6、吸收效率η%100121⨯-=Y Y Y η (15) 四、实验流程简介:吸收装置如图2-2-7-3所示,塔径为110(mm ),塔填料有一套为塑料阶梯环,其它为瓷拉西环,均为乱堆。

填料层高为600—700(mm )(请自量准确)。

氨气由氨瓶1顶部针形阀放出,经减压阀2到达缓冲缺罐3,用阀4调节流量,经温度计23,表压计5和流量计6分别测量温度、压力和流量后到达混合管。

空气经风机7压送至缓冲罐9,由旁路阀8和调节阀11调节风量,经温度计23,表压计10和流量计12分别测量温度、压力和流量后到达混合管与氨气混合,后被送进吸收塔13的下部,通过填料层缝隙向上流动。

吸收剂(水)由阀16调节,经流量计17测定流量后从塔顶喷洒而下。

在填料层,下流的水滴与上流的混合气接触,氨被水吸收变氨水从塔底排出,氨水温度由温度计23测定,塔顶表压和填料层压降由压差计14和15测定。

从塔顶排出含有微量氨的空气成为尾气从阀18排出大气中,分析尾气含氨量是用旋塞19取样,先从三角瓶20除去水分,后经吸收瓶21分析氨,气量计22计量取出空气量。

五、实验方法:(一)测压降与空塔气速步骤1、测定干塔压降(1)打开旁路阀8,关闭空气流量调节阀11,启动风机7,慢慢打开阀11使风量由零至最大,同时观察压差计15的读数变化。

(2)从流量计12的量程围拟定6~8组读数。

调节风量由大至小,同时读取空气流量及塔压降值。

2、测定湿塔压降(1)把风量开至最大,慢慢打开阀16使水从塔顶喷淋而下,观察填料层上的液泛情况及压差计15的读数变化。

(2)调节风量水量使液泛层高度20~30mm左右,记下水流量及压差计读数。

(3)保持水量不变,调节风量由大至小,测取6~8组风量及塔压降读数。

最后,读取气温、水温及填料层高度,记下塔径数值。

(二)测吸收系数步骤1、全开旁路阀8,关闭空气流量调节阀11,启动风机7,慢慢打开阀11使风量由零至最大,同时观察压差计15的读数变化。

2、在吸收瓶置入已知浓度的H2SO41ml及2滴甲基红,加适量蒸馏水摇匀后装于尾气分析管路上。

关闭取样旋塞19,记下湿式气量计原始读数。

3、将水流量计17及空气流量计12(采用旁路调节法)调到指定读数。

4、关闭氨气缓冲罐上的氨气流量调节阀4,松开减压阀旋钮,打开氨瓶上的总阀,然后,慢慢拧紧减压阀旋钮把氨气引进缓冲罐3,待罐上压力表读数达0.05MP 左右时,停止转动减压阀旋钮,慢慢打开调节阀4,把氨气送进混合管。

5、待塔的操作稳定后(不液泛,不干塔,各仪表读数稳定),记录各仪表读数,同时进行塔顶尾气分析。

6、尾气分析方法是打开取样旋塞19,使尾气成泡状通过吸收瓶液层,至瓶液体的红色变淡黄色为止,即关闭旋塞,记下气量计读数。

(8分)7、保持空气和水流量不变,改变氨气流量,重复上述操作一次。

8、实验完毕,先关氨瓶上的总阀,待氨气缓冲罐上压力表读数为0后,再关闭氨气缓冲罐上的氨气流量调节阀4,然后,全开旁路阀8,同时关闭空气流量调节阀11,最后停风机和关水阀,清洗吸收瓶。

1、氨瓶2、减压阀3、氨缓冲罐4、氨气调节阀5、氨表压计6、氨转子流量计7、叶氏风机8、空气旁路阀9、空气缓冲罐10、空气表压计11、空气调节阀12、空气转子流量计13、吸收塔14、塔顶表压计15、塔压降压差计16、水调节阀17、水转子流量计18、尾气调节阀19、取样旋塞20、分离水三角瓶21、吸收瓶22、湿式气量计23、温度计图2-2-7-3 吸收装置流程图六、原始数据记录表:(见下页)七、数据处理表:八、举例计算:以第一组数据为例计算:367.0295293783760769.0293.17602733.021*******0101=⨯⨯⨯⨯⨯=⋅⋅⋅=T T P P P T V V ρρ 460.92942935.78376076027310434300202=⨯⨯⨯⨯=⋅⋅=T T P P P T V V因0088.0=S N 、1=S V ,所以194.010088.01.221.2203=⨯⨯==S S V N V308.581929576176027362805500404=⨯⨯=⋅=T P P T V V 0380.0460.9367.098.098.002011=⨯==V V Y 0000334.0308.5819194.004032===V V Y 因446.04.221010004.2210002==⨯⨯=V V 、556.51810018===水L L ,所以 ()00305.00000334.00380.0556.5446.0)(211=-⨯=-=Y Y L V X 232.1761175761103.021121=+⨯⨯+=+∆+=B a P P P P 又778.0=E ,所以00193.000305.0232.1778.011=⨯==*X P E Y ()00516.00000334.000193.00380.0ln 0000334.000193.00380.0ln )(211211=---=---=∆**Y Y Y Y Y Y Y m %912.99%1000380.00000334.00380.0%100121=⨯-=⨯-=Y Y Y η 00950.010*******.3414122=⎪⎭⎫ ⎝⎛⨯⨯==ΩD π ()128.50100516.0100069000950.00000334.00380.0446.0)(21=⨯⨯-⨯=∆⋅⋅Ω-=m Ya Y H Y Y V K ()0169.00000334.00380.0446.0)(21=-⨯=-=Y Y V N A 同理,课求得其它组数据。

相关文档
最新文档