等差、等比数列知识点总结
高中数学知识点总结等差数列与等比数列的项数关系

高中数学知识点总结等差数列与等比数列的项数关系等差数列和等比数列是高中数学中重要的概念,它们在各种数学问题和实际应用中具有广泛的应用。
本文将对等差数列和等比数列的项数关系进行总结。
一、等差数列的项数关系等差数列是指数列中相邻两项之差保持恒定的数列。
常用的表示方法为an = a1 + (n - 1)d,其中an为第n项,a1为首项,d为公差。
1. 等差数列的前n项求和公式等差数列的前n项求和公式是非常重要的,它可以帮助我们快速计算等差数列的前n项之和。
前n项求和公式为Sn = (a1 + an) * n / 2。
2. 等差数列的项数关系对于等差数列,我们常常需要根据已知条件求出项数n。
项数n的计算方法如下:n = (an - a1) / d + 1其中,an为第n项,a1为首项,d为公差。
根据等差数列的性质,我们可以通过已知的首项、公差和某一项的值,求解出项数n。
二、等比数列的项数关系等比数列是指数列中相邻两项之比保持恒定的数列。
常用的表示方法为an = a1 * r^(n - 1),其中an为第n项,a1为首项,r为公比。
1. 等比数列的前n项求和公式等比数列的前n项求和公式也是非常重要的,它可以帮助我们快速计算等比数列的前n项之和。
前n项求和公式为Sn = (a1 * (1 - r^n)) / (1 - r)。
2. 等比数列的项数关系对于等比数列,我们需要根据已知条件求出项数n。
项数n的计算方法如下:n = log(an / a1) / log(r) + 1其中,an为第n项,a1为首项,r为公比。
根据等比数列的性质,我们可以通过已知的首项、公比和某一项的值,求解出项数n。
三、应用举例例如,已知等差数列的首项为3,公差为2,我们需要求出第10项的值。
根据等差数列的项数关系公式,我们可以得知:n = (an - a1) / d + 1n = (a1 + (n - 1)d - a1) / d + 1n = (3 + (10 - 1)2 - 3) / 2 + 1n = 10因此,等差数列的第10项的值为 3 + (10 - 1)2 = 21。
等差数列与等比数列例题和知识点梳理

等差数列及其前n 项和 等比数列及其前n 项和等差数列及其前n 项和1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差为12d .5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 概念方法微思考1.“a ,A ,b 是等差数列”是“A =a +b2”的什么条件?提示 充要条件.2.等差数列的前n 项和S n 是项数n 的二次函数吗?提示 不一定.当公差d =0时,S n =na 1,不是关于n 的二次函数.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( )(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) 题组二 教材改编2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .343.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________.题组三 易错自纠4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( ) A .d >875B .d <325C.875<d <325D.875<d ≤3255.(多选)设{a n }是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值6.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =____时,{a n }的前n 项和最大.7.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.等差数列基本量的运算1.(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .122.(2019·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8n D .S n =12n 2-2n3.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.4.(2019·全国Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S 10S 5=________.等差数列的判定与证明例1 (2020·日照模拟)已知数列{a n },{b n }满足a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.求证:数列{b n }是等差数列,并求出数列{a n }的通项公式.跟踪训练1 在数列{a n }中,a 1=2,a n 是1与a n a n +1的等差中项.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1是等差数列,并求{}a n 的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1n 2a n 的前n 项和S n .等差数列性质的应用命题点1 等差数列项的性质例2 (2019·江西师范大学附属中学模拟)已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7等于( ) A .2 B .7 C .14 D .28命题点2 等差数列前n 项和的性质例3 (1)(2020·漳州质检)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A .35B .42C .49D .63(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 018,S 2 0192 019-S 2 0132 013=6,则S 2 020=________.跟踪训练2 (1)已知等差数列{a n }、等差数列{b n }的前n 项和分别为S n ,T n ,若S n T n =n +2n +1,则a 6b 8的值是( )A.1316B.1314C.1116D.1115(2)(2019·莆田质检)设等差数列{a n }的前n 项和为S n ,若S 13>0,S 14<0,则S n 取最大值时n 的值为( )A .6B .7C .8D .131.在等差数列{a n }中,a 1=2,a 5=3a 3,则a 3等于( ) A .-2 B .0 C .3 D .62.(2019·晋城模拟)记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( ) A .3 B .2 C .-2 D .-33.在等差数列{a n }中,已知a 1 011=1,则该数列前2 021项的和S 2 021等于( ) A .2 020 B .2 021 C .4 040 D .4 0424.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,给出下列结论:①a 10=0;②S 10最小;③S 7=S 12;④S 20=0. 其中一定正确的结论是( )A .①②B .①③④C .①③D .①②④5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A .65B .176C .183D .1846.(2019·宁夏银川一中月考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( ) A .15 B .16 C .17 D .147.(多选)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( ) A .a 10=0 B .S 10最小 C .S 7=S 12 D .S 20=08.(多选)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则( ) A .a n =-12n-1B .a n =⎩⎪⎨⎪⎧-1,n =1,1n -1-1n,n ≥2,n ∈N *C .数列⎩⎨⎧⎭⎬⎫1S n 为等差数列D.1S 1+1S 2+…+1S 100=-5 0509.(2019·全国Ⅲ)记S n 为等差数列{a n }的前n 项和.若a 3=5,a 7=13,则S 10=________.10.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S n T n =3n -12n +3,则a 10b 10=________.11.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式.12.已知等差数列{a n }的公差d >0,设{a n }的前n 项和为S n ,a 1=1,S 2S 3=36. (1)求d 及S n ;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.13.(2020·大连模拟)已知等差数列{a n }的前n 项和为S n ,b n =2n a且b 1+b 3=17,b 2+b 4=68,则S 10等于( )A .90B .100C .110D .12014.已知数列{a n }与⎩⎨⎧⎭⎬⎫a 2n n 均为等差数列(n ∈N *),且a 1=2,则a 20=________.15.(2020·黑龙江省哈尔滨市第三中学模拟)已知x 2+y 2=4,在这两个实数x ,y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为( ) A .210 B.1210 C.10 D.321016.记m =d 1a 1+d 2a 2+…+d n a nn ,若{}d n 是等差数列,则称m 为数列{a n }的“d n 等差均值”;若{}d n 是等比数列,则称m 为数列{a n }的“d n 等比均值”.已知数列{a n }的“2n -1等差均值”为2,数列{b n }的“3n-1等比均值”为3.记c n =2a n+k log 3b n ,数列{}c n 的前n 项和为S n ,若对任意的正整数n 都有S n ≤S 6,求实数k 的取值范围.等比数列及其前n 项和1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项⇒a ,G ,b 成等比数列⇒G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1(q =1),a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1).3.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k. (3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n},⎩⎨⎧⎭⎬⎫a n bn (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .4.在等比数列{a n }中,若S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外). 概念方法微思考1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?提示 仍然是一个等比数列,这两个数列的公比互为倒数.2.任意两个实数都有等比中项吗?提示 不是.只有同号的两个非零实数才有等比中项. 3.“b 2=ac ”是“a ,b ,c ”成等比数列的什么条件?提示 必要不充分条件.因为b 2=ac 时不一定有a ,b ,c 成等比数列,比如a =0,b =0,c =1.但a ,b ,c 成等比数列一定有b 2=ac .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 题组二 教材改编2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.3.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8 B .9 C .10 D .11题组三 易错自纠4.(多选)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( )A.⎩⎨⎧⎭⎬⎫1a n B .log 2a 2nC .{a n +a n +1}D .{a n +a n +1+a n +2}5.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为________.6.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.7.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB =210 MB)等比数列基本量的运算1.(2020·晋城模拟)设正项等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则公比q 等于( )A .5B .4C .3D .22.(2019·全国Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .23.(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.4.(2018·全国Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .等比数列的判定与证明例1 (2019·四川省名校联盟模拟)已知数列{a n }的前n 项和为S n ,且满足2S n =-a n +n (n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n -12为等比数列;(2)求数列{a n -1}的前n 项和T n .跟踪训练1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.等比数列性质的应用例2 (1)(2019·黑龙江省大庆第一中学模拟)在各项不为零的等差数列{a n }中,2a 2 019-a 22 020+2a 2 021=0,数列{b n }是等比数列,且b 2 020=a 2 020,则log 2(b 2 019·b 2 021)的值为( ) A .1 B .2 C .4 D .8(2)(2020·长春质检)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.跟踪训练2 (1)(2019·安徽省江淮十校月考)已知等比数列{a n }的公比q =-12,该数列前9项的乘积为1,则a 1等于( ) A .8 B .16 C .32 D .64(2)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N *).对于数列通项公式的求解,除了我们已经学习的方法以外,根据所给递推公式的特点,还有以下几种构造方式.构造法1 形如a n +1=ca n +d (c ≠0,其中a 1=a )型 (1)若c =1,数列{a n }为等差数列; (2)若d =0,数列{a n }为等比数列;(3)若c ≠1且d ≠0,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.例1 在数列{a n }中,若a 1=1,a n +1=3a n +2,则通项a n =________.构造法2 形如 a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)型a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)的求解方法是两端同时除以p n +1,即得a n +1pn +1-a n p n =q ,则数列⎩⎨⎧⎭⎬⎫a n p n 为等差数列. 例2 (1)已知正项数列{a n }满足a 1=4,a n +1=2a n +2n +1,则a n 等于( ) A .n ·2n -1 B .(n +1)·2n C .n ·2n +1 D .(n -1)·2n(2)(2019·武汉市二中月考)已知正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项a n 等于( ) A .-3×2n -1 B .3×2n -1 C .5n +3×2n -1 D .5n -3×2n -1构造法3 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1,其中a 1=a ,a 2=b 型) 可化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两根. 例3 数列{a n }中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列{a n }的通项公式.构造法4 倒数为特殊数列(形如a n =pa n -1ra n -1+s 型)例4 已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.1.(2020·韶关模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 23=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .242.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( ) A.13 B .-13 C.19 D .-193.(2019·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于( )A .93B .189 C.18916 D .3785.(2020·永州模拟)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列6.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-162 C .2 D .1627.(多选)在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8 D .-128.(多选)在等比数列{a n }中,公比为q ,其前n 项积为T n ,并且满足a 1>1,a 99·a 100-1>0,a 99-1a 100-1<0,下列选项中,结论正确的是( ) A .0<q <1 B .a 99·a 101-1<0C .T 100的值是T n 中最大的D .使T n >1成立的最大自然数n 等于1989.已知等比数列{a n }的前n 项和为S n ,且a 1=2 020,a 2+a 4=-2a 3,则S 2 021=________.10.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.11.(2018·全国Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.12.(2019·淄博模拟)已知数列{a n }的前n 项和为S n ,a 1=34,S n =S n -1+a n -1+12(n ∈N *且n ≥2),数列{b n }满足:b 1=-374,且3b n -b n -1=n +1(n ∈N *且n ≥2).(1)求数列{a n }的通项公式; (2)求证:数列{b n -a n }为等比数列.13.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1 成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.14.已知在等比数列{a n }中,a n >0,a 22+a 24=900-2a 1a 5,a 5=9a 3,则a 2 020的个位数字是____.15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2,….设第n 次“扩展”后得到的数列为1,x 1,x 2,…,x t ,2,并记a n =log 2(1·x 1·x 2·…·x t ·2),其中t =2n -1,n ∈N *,求数列{a n }的通项公式.16.已知数列{a n }的前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是首项为3,公差为2的等差数列,若b n =2n a ,数列{b n }的前n 项和为T n ,求使得S n +T n ≥268成立的n 的最小值.。
数列知识点总结(经典)

数列基础知识点和方法归纳
1.等差数列的定义与性质
定义: ( 为常数),
等差中项: 成等差数列
前n 项和()()11122
n n a a n n n S na d +-==+ 性质: 是等差数列
(1)若 , 则
(2)数列 仍为等差数列, 仍为等差数列, 公差为 ;
(3)若三个成等差数列, 可设为
(4)若 是等差数列, 且前 项和分别为 , 则
(5) 为等差数列 ( 为常数, 是关于 的常数项为0的二次函数) 的最值可求二次函数 的最值;或者求出 中的正、负分界项,
2.等比数列的定义与性质
定义: ( 为常数, ), .
等比中项: 成等比数列 , 或 .
前 项和: (要注意! )
性质: 是等比数列
(1)若 , 则
(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q .
注意: 由 求 时应注意什么?
时, ;
时, .
4.求数列前n 项和的常用方法
(1) 裂项法
(2)错位相减法
如: ①
()23412341n n n x S x x x x n x nx -=+++++-+·……
② ①—②()21
11n n n x S x x x nx --=++++-……
时, , 时,。
数列的等差与等比性质知识点总结

数列的等差与等比性质知识点总结数列是由一系列数字按照一定规律排列组成的序列,而等差与等比性质是数列中常见的两种规律。
在数学中,掌握数列的等差与等比性质对于解题和推导数学公式都具有重要意义。
本文将对数列的等差与等比性质进行详细总结。
一、等差数列1. 定义:若数列中相邻两项之差保持不变,则称该数列为等差数列。
2. 通项公式:设等差数列的首项为a1,公差为d,则第n项的通项公式为an = a1 + (n-1)d。
3. 性质:a) 任意一项与它的前一项的差等于公差,即an - an-1 = d。
b) 等差数列的前n项和为Sn = (a1 + an) * n / 2。
c) 等差数列的任意一项可以表示为前一项与公差之和,即an = an-1 + d。
d) 若等差数列的前两项之和等于第三项,即a1 + a2 = a3,则该等差数列为等差数列。
二、等比数列1. 定义:若数列中相邻两项之比保持不变,则称该数列为等比数列。
2. 通项公式:设等比数列的首项为a1,公比为r,则第n项的通项公式为an = a1 * (r^(n-1))。
3. 性质:a) 任意一项与它的前一项的比等于公比,即an / an-1 = r。
b) 等比数列的前n项和为Sn = (a1 * (1 - r^n)) / (1 - r)。
c) 等比数列的任意一项可以表示为前一项与公比之积,即an = an-1 * r。
d) 若等比数列的前两项之积等于第三项,即a1 * a2 = a3,则该等比数列为等比数列。
三、等差与等比的联系与区别1. 联系:等差与等比数列都是按照一定规律排列的数列,且都有其通项公式和前n项和的公式。
2. 区别:a) 等差数列的相邻项之差相等,等比数列的相邻项之比相等。
b) 等差数列的公差为常数d,等比数列的公比为常数r。
c) 等差数列的通项公式为an = a1 + (n-1)d,等比数列的通项公式为an = a1 * (r^(n-1))。
等差(比)数列知识点梳理

等差数列知识点梳理1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=a1+(n-1)d.3.等差中项如果A=a+b2,那么A叫做a与b的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).(3)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md等差数列.(4)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)a n.(6)若n为偶数,则S偶-S奇=nd2;若n为奇数,则S奇-S偶=a中(中间项).5.等差数列的前n项和公式若已知首项a1和末项a n,则S n=n a1+a n2,或等差数列{a n}的首项是a1,公差是d,则其前n项和公式为S n=na1+n n-12d.6.等差数列的前n项和公式与函数的关系S n=d2n2+⎝⎛⎭⎫a1-d2n,数列{a n}是等差数列的充要条件是S n=An2+Bn(A,B为常数).7.最值问题在等差数列{a n}中,a1>0,d<0,则S n存在最大值,若a1<0,d>0,则S n存在最小值.8.一个推导利用倒序相加法推导等差数列的前n项和公式:S n=a1+a2+a3+…+a n,①S n=a n+a n-1+…+a1,②①+②得:S n=n a1+a n2.9.两个技巧已知三个或四个数组成等差数列的一类问题,要善于设元.(1)若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,….(2)若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.10.四种方法等差数列的判断方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数;(2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立;(3)通项公式法:验证a n =pn +q ;(4)前n 项和公式法:验证S n =An 2+Bn .注 后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列.等比数列知识点梳理1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示.2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1. 3.等比中项若G 2=a ·b (ab ≠0),那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1 1-q n 1-q =a 1-a n q 1-q. 6.一个推导利用错位相减法推导等比数列的前n 项和:S n =a 1+a 1q +a 1q 2+…+a 1q n -1, 同乘q 得:qS n =a 1q +a 1q 2+a 1q 3+…+a 1q n ,两式相减得(1-q )S n =a 1-a 1q n,∴S n =a 1 1-q n 1-q (q ≠1).7.两个防范(1)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.8.三种方法等比数列的判断方法有:(1)定义法:若a n +1a n=q (q 为非零常数)或a n a n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列. (2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n (c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列. 注:前两种方法也可用来证明一个数列为等比数列.。
(完整版)等差等比数列知识点总结

1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等差数列与等比数列的应用知识点总结

等差数列与等比数列的应用知识点总结等差数列和等比数列是高中数学中常见的两种数列。
它们具有很多重要的应用,在不同的数学问题中发挥着重要的作用。
本文将对等差数列与等比数列的应用进行知识点总结,并探讨它们在实际生活和其他学科中的具体应用。
一、等差数列的应用等差数列是指一个数列中,从第二项起每一项与前一项之差都相等的数列。
其常用的应用有:1. 数列求和公式对于等差数列的前n项和Sn,有求和公式Sn = (n/2)(a1 + an),其中a1为首项,an为末项,n为项数。
这个公式的应用非常广泛,可以用于求解各种数学问题,比如求等差数列的和、计算时间、距离、速度等问题。
2. 平均数的应用对于等差数列,它的各项的平均数与首末两项的平均数是相等的。
这个特性可以用来解决一些平均数相关的问题,比如求取某一连续数列的平均值等。
3. 等差数列的推广等差数列可以推广到高阶等差数列,即每一项与前一项之差的差值也相等。
这种推广常用于解决一些复杂的数学问题,比如等差数列的前n项和Sm,可以通过差分公式Sm = (m/2)(2a1 + (m-1)d)来求解。
4. 几何问题等差数列在几何问题中也有重要应用,比如解决一些等边三角形、等腰梯形等形状相关的问题时,常常需要利用等差数列的性质进行计算。
二、等比数列的应用等比数列是指一个数列中,从第二项起每一项与前一项的比值都相等的数列。
其常用的应用有:1. 数列求和公式对于等比数列的前n项和Sn,有求和公式Sn = a1(1-q^n)/(1-q),其中a1为首项,q为公比,n为项数。
这个公式的应用也非常广泛,可以用于求解各种数学问题,比如计算财务中的复利问题、人口增长问题等。
2. 指数问题等比数列可以与指数问题进行关联。
比如在计算家庭用电量、金融中的复利计算、物理中的指数增长问题等方面,常常需要利用等比数列的特性进行计算。
3. 几何问题等比数列在几何问题中同样有重要应用,比如解决一些等比序列相关的问题,如等比数列构造的等边五角星等。
(典型题)高考数学二轮复习 知识点总结 等差数列、等比数列

等差数列、等比数列【高考考情解读】 高考对本讲知识的考查主要是以下两种形式:1.以选择题、填空题的形式考查,主要利用等差、等比数列的通项公式、前n 项和公式及其性质解决与项、和有关的计算问题,属于基础题;2.以解答题的形式考查,主要是等差、等比数列的定义、通项公式、前n 项和公式及其性质等知识交汇综合命题,考查用数列知识分析问题、解决问题的能力,属低、中档题.1. a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2. 等差数列和等比数列S n =n a 1+a n2=na 1+n n -2d(1)q ≠1,S n =a 1-qn1-q=a 1-a n q1-q(2)q =1,S n =na 1考点一 与等差数列有关的问题例1 在等差数列{a n }中,满足3a 5=5a 8,S n 是数列{a n }的前n 项和.(1)若a 1>0,当S n 取得最大值时,求n 的值; (2)若a 1=-46,记b n =S n -a nn,求b n 的最小值. 解 (1)设{a n }的公差为d ,则由3a 5=5a 8,得3(a 1+4d )=5(a 1+7d ),∴d =-223a 1.∴S n =na 1+n n -12×⎝ ⎛⎭⎪⎫-223a 1=-123a 1n 2+2423a 1n=-123a 1(n -12)2+14423a 1.∵a 1>0,∴当n =12时,S n 取得最大值. (2)由(1)及a 1=-46,得d =-223×(-46)=4,∴a n =-46+(n -1)×4=4n -50,S n =-46n +n n -12×4=2n 2-48n .∴b n =S n -a n n =2n 2-52n +50n=2n +50n-52≥22n ×50n-52=-32,当且仅当2n =50n,即n =5时,等号成立.故b n 的最小值为-32.(1)在等差数列问题中其最基本的量是首项和公差,只要根据已知条件求出这两个量,其他问题就可随之而解,这就是解决等差数列问题的基本方法,其中蕴含着方程思想的运用. (2)等差数列的性质①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ⇔d =a m -a n m -n(m ,n ∈N *); ④a n b n =A 2n -1B 2n -1(A 2n -1,B 2n -1分别为{a n },{b n }的前2n -1项的和).(3)数列{a n }是等差数列的充要条件是其前n 项和公式S n =f (n )是n 的二次函数或一次函数且不含常数项,即S n =An 2+Bn (A 2+B 2≠0).(1)(2012·浙江)设Sn 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列(2)(2013·课标全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6答案 (1)C (2)C解析 (1)利用函数思想,通过讨论S n =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n 的单调性判断.设{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d 2n 2+⎝⎛⎭⎪⎫a 1-d 2n .由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;因为{S n }为递增数列,则d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确. (2)a m =2,a m +1=3,故d =1, 因为S m =0,故ma 1+m m -2d =0,故a 1=-m -12,因为a m +a m +1=5, 故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5, 即m =5.考点二 与等比数列有关的问题例2 (1)(2012·课标全国)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( )A .7B .5C .-5D .-7(2)(2012·浙江)设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.答案 (1)D (2)32解析 (1)利用等比数列的性质求解.由⎩⎪⎨⎪⎧a 4+a 7=2,a 5a 6=a 4a 7=-8解得⎩⎪⎨⎪⎧a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7.(2)利用等比数列的通项公式及前n 项和公式求解.S 4=S 2+a 3+a 4=3a 2+2+a 3+a 4=3a 4+2,将a 3=a 2q ,a 4=a 2q 2代入得,3a 2+2+a 2q +a 2q 2=3a 2q 2+2,化简得2q 2-q -3=0, 解得q =32(q =-1不合题意,舍去).(1)证明数列是等比数列的两个方法:①利用定义:a n +1a n(n ∈N *)是常数,②利用等比中项a 2n =a n -1a n +1(n ≥2,n ∈N *).(2)等比数列中的五个量:a 1,a n ,q ,n ,S n 可以“知三求二”. (3){a n }为等比数列,其性质如下:①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m qn -m;③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (4)等比数列前n 项和公式S n =⎩⎪⎨⎪⎧na 1q =,a 1-q n 1-q=a 1-a n q1-q q①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.(1)(2013·课标全国Ⅰ)若数列{an }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________. 答案 (-2)n -1解析 当n =1时,a 1=1;当n ≥2时,a n =S n -S n -1=23a n -23a n -1,故a n a n -1=-2,故a n =(-2)n -1. (2)(2013·湖北)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.①求数列{a n }的通项公式;②是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 ①设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q +q +q 2=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.②由①有S n =3[1--n]1--=1-(-2)n .假设存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n≤-2 012. 当n 为偶数时,(-2)n>0.上式不成立; 当n 为奇数时,(-2)n =-2n≤-2 012, 即2n≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 考点三 等差数列、等比数列的综合应用例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n-n2. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4[1-12m]1-12=8[1-(12)m],∵(12)m随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n-n 2=-12(n 2-9n ) =-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6.等差(比)数列的综合问题的常见类型及解法(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可.已知数列{a n }满足a 1=3,a n +1-3a n =3n(n ∈N *),数列{b n }满足b n =3-na n .(1)求证:数列{b n }是等差数列;(2)设S n =a 13+a 24+a 35+…+a n n +2,求满足不等式1128<S n S 2n <14的所有正整数n 的值.(1)证明 由b n =3-na n 得a n =3nb n , 则a n +1=3n +1b n +1.代入a n +1-3a n =3n中,得3n +1b n +1-3n +1b n =3n ,即得b n +1-b n =13.所以数列{b n }是等差数列.(2)解 因为数列{b n }是首项为b 1=3-1a 1=1, 公差为13的等差数列,则b n =1+13(n -1)=n +23,则a n =3nb n =(n +2)×3n -1,从而有a nn +2=3n -1,故S n =a 13+a 24+a 35+…+a nn +2=1+3+32+…+3n -1=1-3n 1-3=3n-12, 则S n S 2n =3n -132n -1=13n +1, 由1128<S n S 2n <14,得1128<13n +1<14, 即3<3n<127,得1<n ≤4.故满足不等式1128<S n S 2n <14的所有正整数n 的值为2,3,4.1. 在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2. 等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 3. 等差、等比数列的单调性(1)等差数列的单调性d >0⇔{a n }为递增数列,S n 有最小值. d <0⇔{a n }为递减数列,S n 有最大值. d =0⇔{a n }为常数列.(2)等比数列的单调性当⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }为递增数列,当⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }为递减数列. 4. 常用结论(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S n n}仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公差为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d .5. 易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果后,看看这两种情况能否整合在一起. (2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac .1. 已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7等于( )A .1+ 2B .1- 2C .3+2 2D .3-2 2答案 C解析 记等比数列{a n }的公比为q ,其中q >0, 由题意知a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q . 因为a 1≠0,所以有q 2-2q -1=0, 由此解得q =1±2, 又q >0,所以q =1+ 2.所以a 8+a 9a 6+a 7=q 2a 6+a 7a 6+a 7=q 2=(1+2)2=3+2 2.2. 已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为 ( )A.32 B.53C.94D .不存在答案 A解析 因为a 7=a 6+2a 5,所以q 2-q -2=0,解得q =2或q =-1(舍去). 又a m a n =a 21qm +n -2=4a 1,所以m +n =6.则1m +4n =16⎝ ⎛⎭⎪⎫1m +4n (m +n ) =16⎝ ⎛⎭⎪⎫1+n m +4m n +4≥32.当且仅当n m =4mn,即n =2m 时,等号成立. 此时m =2,n =4.3. 已知等差数列{a n }的前n 项的和为S n ,等比数列{b n }的各项均为正数,公比是q ,且满足:a 1=3,b 1=1,b 2+S 2=12,S 2=b 2q . (1)求a n 与b n ;(2)设c n =3b n -λ·2a n3,若数列{c n }是递增数列,求λ的取值范围.解 (1)由已知可得⎩⎪⎨⎪⎧q +3+a 2=12,3+a 2=q 2,所以q 2+q -12=0,解得q =3或q =-4(舍), 从而a 2=6,所以a n =3n ,b n =3n -1.(2)由(1)知,c n =3b n -λ·2a n3=3n-λ·2n.由题意,得c n +1>c n 对任意的n ∈N *恒成立, 即3n +1-λ·2n +1>3n -λ·2n恒成立,亦即λ·2n <2·3n恒成立,即λ<2·⎝ ⎛⎭⎪⎫32n 恒成立.由于函数y =⎝ ⎛⎭⎪⎫32n是增函数,所以⎣⎢⎡⎦⎥⎤2·⎝ ⎛⎭⎪⎫32n min =2×32=3, 故λ<3,即λ的取值范围为(-∞,3).(推荐时间:60分钟)一、选择题1. (2013·江西)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24答案 A解析 由x,3x +3,6x +6成等比数列得,(3x +3)2=x (6x +6). 解得x =-3或x =-1(不合题意,舍去). 故数列的第四项为-24.2. (2013·课标全国Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13 B .-13C.19 D .-19答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.3. (2013·课标全国Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案 D解析 S n =a 1-q n1-q=a 1-q ·a n1-q =1-23a n13=3-2a n .故选D.4. 在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 C解析 由题意可知a 6+a 5>0,故S 10=a 1+a 102=a 5+a 62>0,而S 9=a 1+a 92=2a 5×92=9a 5<0,故选C.5. 已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2011,a 2 011),则OP →·OQ →等于 ( )A .2 011B .-2 011C .0D .1答案 A解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011.6. 数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8等于( )A .0B .3C .8D .11答案 B解析 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12--10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8, 所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…= =a 1+(-6)+(-4)+(-2)+0+2+4+6=3. 二、填空题7. (2013·广东)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10,∴3a 5+a 7=4a 1+18d =2(2a 1+9d )=20. 8. 各项均为正数的等比数列{a n }的公比q ≠1,a 2,12a 3,a 1成等差数列,则a 3a 4+a 2a 6a 2a 6+a 4a 5=________.答案5-12解析 依题意,有a 3=a 1+a 2,设公比为q ,则有q 2-q -1=0,所以q =1+52(舍去负值).a 3a 4+a 2a 6a 2a 6+a 4a 5=a 2a 4q +q 2a 2a 4q 2+q 3=1q =21+5=5-12.9. 在等差数列{a n }中,a n >0,且a 1+a 2+…+a 10=30,则a 5·a 6的最大值等于________.答案 9解析 由a 1+a 2+…+a 10=30得a 5+a 6=305=6,又a n >0,∴a 5·a 6≤⎝⎛⎭⎪⎫a 5+a 622=⎝ ⎛⎭⎪⎫622=9.10.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________. 答案 2×⎝ ⎛⎭⎪⎫32n -1⎩⎪⎨⎪⎧2 n =,⎝ ⎛⎭⎪⎫32n -2n解析 由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n=2×⎝ ⎛⎭⎪⎫32n -1,由此得a n =⎩⎪⎨⎪⎧2 n =,⎝ ⎛⎭⎪⎫32n -2n三、解答题11.已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列. (1)解 由已知,得a n =aqn -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1, 可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52.(2)证明 若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列. 若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,即a q m -q -1+a q l -q -1=2aq n -q -1,整理得q m +q l =2q n. 因此,a m +k +a l +k =aq k -1(q m+q l)=2aqn +k -1=2a n +k .所以a m +k ,a n +k ,a l +k 成等差数列.12.设数列{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .解 (1)依题意,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1++a 3+2=3a 2,解得a 2=2.设等比数列{a n }的公比为q ,由a 2=2, 可得a 1=2q,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0, 解得q 1=2,q 2=12.由题意,得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项公式是a n =2n -1.(2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n, ∴b n =ln 23n=3n ln 2, 又b n +1-b n =3ln 2, ∴数列{b n }是等差数列.∴T n =b 1+b 2+…+b n =n b 1+b n2=n+3n 2=3n n +2ln 2.13.(2013·湖北)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求m 的最小值;若不存在,说明理由.解 (1)设等比数列{a n }的公比为q ,则由已知可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10,解得⎩⎪⎨⎪⎧a 1=53,q =3或⎩⎪⎨⎪⎧a 1=-5,q =-1.故a n =53·3n -1或a n =-5·(-1)n -1.(2)若a n =53·3n -1,则1a n =35⎝ ⎛⎭⎪⎫13n -1,故数列⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列.从而∑n =1m1a n =35⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m 1-13=910·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13m <910<1.若a n =(-5)·(-1)n -1,则1a n =-15(-1)n -1,故数列⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列,从而∑n =1m1a n =⎩⎪⎨⎪⎧-15,m =2k -k ∈N +,0,m =2k k ∈N +故∑n =1m1a n<1.综上,对任何正整数m ,总有∑n =1m1a n<1.故不存在正整数m ,使得1a 1+1a 2+…+1a m≥1成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 一、任意数列的通项na与前n项和nS的关系:)2()1(11nSSnSannn 二、等差数列 1、等差数列及等差中项定义
daann1
、211nnnaaa。
2、等差数列的通项公式:dnaan)1(1、dknaakn)( 当0d时,na是关于n的一次式;当0d时,na是一个常数。
3、等差数列的前n项和公式:2)(1nnaanS dnnnaSn2)1(1 4、等差数列}{na中,若qpnm,则qpnmaaaa 5、等差数列}{na的公差为d,则任意连续m项的和构成的数列mS、mmSS2、mmSS23、……仍为等差数列。 6、BAaAdBnAnSn122,, 7、在等差数列}{na中,有关nS的最值问题 利用nS(0d时,nS是关于n的二次函数)进行配方(注意n应取正整数) 三、等比数列 1、等比数列及等比中项定义:
qaann1、112nnnaaa
2、等比数列的通项公式: 11nnqaa knknqaa 3、等比数列的前n项和公式:当1q时,1naSn
当1q时,qqaSnn1)1(1 qqaaSnn11 4、等比数列}{na中,若qpnm,则qpnmaaaa 5、等比数列}{na的公比为q,且0nS,则任意连续m项的和构成的数列mS、mmSS2、
mmSS23、……仍为等比数列 6、0BABAqSnn,则 四、求数列}{na的最大的方法:
1-1nnnnaaaa
五、求数列}{na的最小项的方法:
1-1nnnnaaaa 例:已知数列}{na的通项公式为:32922nnan,求数列}{na的最大项。
例:已知数列}{na的通项公式为:nnnna10)1(9,求数列}{na的最大项。 2
数列求和方法总结 1、公式法 (1)等差数列
(2)等比数列
2、分组求和法 类型:数列{an}的通项公式形如an=bn±cn,而{bn}是等差数列,{cn}是等比数列。
例4:计算 的值
练习:求数列的前n项和Sn: 3、裂项相消法 常见裂项技巧:
(1)(2)13(3)11111122143181223132313231323121214121412234562121,,,…,,…;,,,…,,…;,+,+,…,+++…+,….()nnnnn
11)1)1(1111qqqaaq
qa
qnaSnn
n
4)]1([...321)4(23333nnn
6)12)(1(...321)3(2222nnnn
dnnnanaaSnn2)1(211
1111+3+5++(2-1)2482nn
;111)1(1)1(nnnn;111)2(nnnn
);121121(21)12)(12(1)3(nnnn
);121121(211)12)(12(11)12)(12()2()4(2nnnnnn
n 3
例5、化简 练习 4、倒序相加法 例5、 例6、1、已知2()22xxfx,
设123()()()()nnSffffnnnn,求nS 5、错位相减法 常应用于形如{an·bn}的数列求和,其中{an}为等差数列, {bn} 为等比数列.
例7、
练习:
练习:数列}{na的前n项和为nS,11a,121nnSa(1n) (1)求数列}{na的通项公式na (2)等差数列}{nb的各项为正数,且52b,又11ba,22ba,33ba成等比数列,求nb (3)求数列}{nnba的前n项和nT
.11341231121nn
.)12()12(1751531311的值求nnSn
...332211nnnaaaaaa特点:。89sin88sin3sin2sin1sin22222
1221-328252nnnS)(
12)21(1-3)21(82152nnnS)(
;321132112111)2(n
12413410474)3(nn)( 4
数列通项公式方法总结 1、公式法 等差数列的通项公式: dnaan)1(1 dmnaamn)( 等比数列的通项公式: 11nnqaa
mnmnqaa
2、累加法
例1、 例2、 例3、
3、累乘法
例4、 练习:
))((1Nnnfaann类型:nnnaanaa求,,11211
nnnaanaa求,,12311nnnnaaaa求,,1311
))((1Nnnfaann类型:nnnnaaaa求,,3211
1111,,nnnnaaaan求
nnaS求、利用411 ,=1,2nnnSnaSSn
431,nnnSa例:求
))(1(31*NnaSnn练习:
.}{,,3,2,1,S311Sn}{)4(432n11n的通项公式的值及数列求,,且项和为的前、数列nnnaaaanaaa 5
5、取倒数 例6、已知数列{an}中,a1=1, an+1+3an+1an-an=0, 求数列{an}的通项公式. 6、取对数
例7、 7、构造法 主要用于形如an+1=c an+d的已知递推关系式求通项公式。 例8、a1=3,an+1=2an+3,求an
1nnnpaapqa类型:nnnnaaaaa求,、例,122511
1pnnaAa类型:nnnaaaa求,2,131
1111111,23 (2)691,nnnnnnaaaaaaaa
练习:(1),求
,求
111,32nnnnaaaaa练习:,求
1122,1,nnnnaaaa求11123,1,nnnnaaaa求
111,,42(),1(1)2,;(2),.2nnnnnnnnnnnnasnsanNabaabacc
(5)、数列中是它的前和并且满足设求证是等比数列
设求证数列是等差数列
11(6)3,2(2)..nn
nnnnnaaansassna
、已知数列的首项通项与
前项和之间满足求数列的通项公式 6
8、特征根法 形如(其中p,q为常数)型
设pq,为实数,,是方程20xpxq的两个实根,数列{}nx满足1xp,22xpq,12nnnxpxqx
(34n,,…). (1)证明:p,q;
(2)求数列{}nx的通项公式; (3)若1p,14q,求{}nx的前n项和nS.
111296,1,2,nnnnaaaaaa例、求11121044,1,2,nnnnaaaaaa例、求
121211,()nnnn
n
xxaAxBxxaABnx方法总结:若方程有两个根,则 若方程只有一个根,则+
111228,1,2,nnnnaaaaaa练习、求
111269,1,2,nnnnaaaaaa练习、求 7
1.若 ,求 11231{}1,23...(1)(2),__[1_.]__nnnnaaaaaanana
例已知数列满足
则
123123...(1)(2)nnaaaanan
1123223...(2)(3)nnaaaanan
11(1)(3)nnnaanan
1(3)nnanna
1 , 1 123, 22nnann
【例2】已知数列}{na、}{nb满足11a,32a,
)(2*1Nnbbnn,nnnaab1。
(1)求数列}{nb的通项公式;(2)求数列na的通项公式;(3)数列}{nc满足)1(log2nnac)(*Nn,
求13352121111nnnScccccc。
【解】(1))(2*1Nnbbnn,又121312baa。所以数列}{nb是首项1b2,公比2q的等比数列。故112nnnbbq。
(2)*12()nnnaanN
112211()()...()nnnnnaaaaaaaa
122121122221nnnn。
(3)nacnnnn2log)112(log)1(log222,
212111111()(21)(21)22121nnccnnnn
13352121111nnnScccccc
111111(1)23352121nn
11(1)22121n
nn。