等比数列知识点总结与典型例题 (精华版)

等比数列知识点总结与典型例题 (精华版)
等比数列知识点总结与典型例题 (精华版)

等比数列知识点总结与典型例题

1、等比数列的定义:()()*1

2,n

n a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:

()11110,0n n

n n a a a q q A B a q A B q

-==

=??≠?≠,首项:1a ;公比:q

推广:n m n m n n n m m a a a q q q a --=?=?=3、等比中项:

(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =

或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+?=? 4、等比数列的前n 项和n S 公式:

(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a q

S q

q

--=

=

-- 11''11n n n a a

q A A B A B A q q

=

-=-?=---(,,','A B A B 为常数) 5、等比数列的判定方法:

(1)用定义:对任意的n ,都有1

1(0){}n n n n n n

a a qa q q a a a ++==≠?或为常数,为等比数列

(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠?为等比数列 (3)通项公式:()0{}n n n a A B A B a =??≠?为等比数列 6、等比数列的证明方法:

依据定义:若

()()*1

2,n

n a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=?为等比数列 7、等比数列的性质:

(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ?=?。特别的,当2m n k +=时,得2n m k a a a ?= 注:12132n n n a a a a a a --?=?=???

等差和等比数列比较:

经典例题透析

类型一:等比数列的通项公式

例1.等比数列{}n a 中,1964a a ?=, 3720a a +=,求11a .

思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937+=+,可以利用性质可求出3a 、7a ,再求11a .

解析:

法一:设此数列公比为q ,则8

191126

371164

(1)20

(2)

a a a a q a a a q a q ??=?=??+=+=??

由(2)得:241(1)20a q q +=..........(3) ∴10a >.

由(1)得:421()64a q = , ∴418a q = (4)

(3)÷(4)得:42

1205

82

q q +==,

∴422520q q -+=,解得22q =或2

12

q =

当22q =时,12a =,1011164a a q =?=;

当2

12

q =时,132a =,101111a a q =?=.

法二:∵193764a a a a ?=?=,又3720a a +=,

∴3a 、7a 为方程2

20640x x -+=的两实数根, ∴??

?==41673a a 或 ???==16

4

73a a

∵2

3117a a a ?=, ∴27113

1a a a ==或1164a =.

总结升华:

①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;

②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).

举一反三:

【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。 【答案】±96

法一:设公比为q ,则768=a 1q 8,q 8

=256,∴q=±2,∴a 6=±96;

法二:a 52

=a 1a 9?a 5=±48?q=±2,∴a 6=±96。

【变式2】{a n }为等比数列,a n >0,且a 1a 89=16,求a 44a 45a 46的值。 【答案】64;

∵2

1894516a a a ==,又a n >0,∴a 45=4 ∴34445464564a a a a ==。

【变式3】已知等比数列{}n a ,若1237a a a ++=,1238a a a =,求n a 。 【答案】12n n a -=或32n n a -=;

法一:∵2132a a a =,∴312328a a a a ==,∴22a =

从而13135

,4

a a a a +=??

=?解之得11a =,34a =或14a =,31a = 当11a =时,2q =;当14a =时,1

2

q =。 故12n n a -=或32n n a -=。

法二:由等比数列的定义知21a a q =,231a a q =

代入已知得2

1112

1117

8

a a q a q a a q a q ?++=????=??

2

1331(1)7,

8

a q q a q ?++=???=??211(1)7,(1)2(2)a q q a q ?++=??=?

将12

a q

=

代入(1)得22520q q -+=, 解得2q =或12

q =

由(2)得112a q =??=?或1

4

12

a q =???=

?? ,以下同方法一。

类型二:等比数列的前n 项和公式

例2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q. 解析:若q=1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.

因a 1≠0,得S 3+S 6≠2S 9,显然q=1与题设矛盾,故q ≠1.

由3692S S S +=得,369111(1)(1)2(1)

111a q a q a q q q q

---+=

---, 整理得q 3

(2q 6

-q 3

-1)=0,

由q ≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3

-1)=0,

因q 3

≠1,故3

12q =-

,所以2

q =-。

举一反三:

【变式1】求等比数列11

1,,,39

的前6项和。

【答案】

364

243

; ∵11a =,1

3q =,6n =

∴66

6111331364112324313

S ?????-?? ???????????==?-=?? ???????-。 【变式2】已知:{a n }为等比数列,a 1a 2a 3=27,S 3=13,求S 5. 【答案】121

1219

; ∵32

2273a a =?=,31(1)1

13313

a q q q q -=?==-或,则a 1=1或a 1=9

∴5555191131213121S 113913

S ??? ?-??==--或==

-.

【变式3】在等比数列{}n a 中,166n a a +=,21128n a a -?=,126n S =,求n 和q 。 【答案】1

2

q =

或2,6n =; ∵211n n a a a a -?=?,∴1128n a a =

解方程组11128

66n n

a a a a =??+=?,得1642n a a =??=? 或1264n a a =??=?

①将1642

n a a =??

=?代入11n n a a q S q -=-,得1

2q =,

由11n n a a q -=,解得6n =;

②将1264n

a a =??=?代入11n n a a q

S q -=-,得2q =,

由11n n a a q -=,解得6n =。 ∴1

2

q =

或2,6n =。 类型三:等比数列的性质

例3. 等比数列{}n a 中,若569a a ?=,求3132310log log ...log a a a +++. 解析:

∵{}n a 是等比数列,∴110293847569a a a a a a a a a a ?=?=?=?=?= ∴1032313log log log a a a +++ 553123103563log ()log ()log 910a a a a a a =??=?==

举一反三:

【变式1】正项等比数列{}n a 中,若a 1·a 100=100; 则lga 1+lga 2+……+lga 100=_____________. 【答案】100;

∵lga 1+lga 2+lga 3+……+lga 100=lg(a 1·a 2·a 3·……·a 100) 而a 1·a 100=a 2·a 99=a 3·a 98=……=a 50·a 51

∴原式=lg(a 1·a 100)50=50lg(a 1·a 100)=50×lg100=100。 【变式2】在

83和272

之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________。 【答案】216;

法一:设这个等比数列为{}n a ,其公比为q , ∵183

a =

,445127823a a q q ===?,∴48116q =,29

4q = ∴2

3

362341111

a a a a q a q a q a q ??=??=?3

3

389621634??

??

=?== ?

???

??

。 法二:设这个等比数列为{}n a ,公比为q ,则183

a =

,5272a =,

加入的三项分别为2a ,3a ,4a , 由题意1a ,3a ,5a 也成等比数列,∴2

3827

3632

a =

?=,故36a =, ∴23

234333216a a a a a a ??=?==。

类型四:等比数列前n 项和公式的性质

例4.在等比数列{}n a 中,已知48n S =,260n S =,求3n S 。

思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k 项和,第2个k 项和,第3个k 项和,……,第n 个k 项和仍然成等比数列。

解析:

法一:令b 1=S n =48, b 2=S 2n -S n =60-48=12,b 3=S 3n -S 2n 观察b 1=a 1+a 2+……+a n ,

b 2=a n+1+a n+2+……+a 2n =q n

(a 1+a 2+……+a n ),

b 3=a 2n+1+a 2n+2+……+a 3n =q 2n

(a 1+a 2+……+a n )

易知b 1,b 2,b 3成等比数列,∴22

23112348

b b b ===,

∴S 3n =b 3+S 2n =3+60=63.

法二:∵22n n S S ≠,∴1q ≠,

由已知得121(1)

481(1)601n n

a q q a q q

?-=?-?

?-?=?-?①② ②÷①得514n q +=,即14

n

q = ③

③代入①得

1

641a q

=-, ∴3133(1)1

64(1)6314

n n a q S q -==-=-。

法三:∵{}n a 为等比数列,∴n S ,2n n S S -,32n n S S -也成等比数列, ∴2232()()n n n n n S S S S S -=-,

∴22

232()(6048)606348

n n n n n S S S S S --=+=+=。

举一反三:

【变式1】等比数列{}n a 中,公比q=2, S 4=1,则S 8=___________.

【答案】17;

S 8=S 4+a 5+a 6+a 7+a 8=S 4+a 1q 4+a 2q 4+a 3q 4+a 4q 4=S 4+q 4(a 1+a 2+a 3+a 4)=S 4+q 4S 4=S 4(1+q 4)=1×(1+24

)=17 【变式2】已知等比数列{}n a 的前n 项和为S n , 且S 10=10, S 20=40,求:S 30=?

【答案】130;

法一:S 10,S 20-S 10,S 30-S 20构成等比数列,∴(S 20-S 10)2

=S 10·(S 30-S 20)

即302

=10(S 30-40),∴S 30=130. 法二:∵2S 10≠S 20,∴1q ≠,

∵101)1(10110=--=q

q a S ,20120(1)

401a q S q -=

=-, ∴1020

11,14

q q -=-∴10

3q =,∴511-=-q a ∴ 130)31)(5(1)

1(330130=--=--=q

q a S .

【变式3】等比数列{}n a 的项都是正数,若S n =80, S 2n =6560,前n 项中最大的一项为54,求n.

【答案】∵ 6560802=n n S S ,∴1q ≠(否则21

2=n n S S )

∴1(1)

1n n a q S q -=-=80 (1)

212(1)

1n n a q S q

-=

-=6560.........(2), (2)÷(1)得:1+q n

=82,∴q n

=81......(3) ∵该数列各项为正数,∴由(3)知q>1 ∴{a n }为递增数列,∴a n 为最大项54.

∴a n =a 1q n-1=54,∴a 1q n

=54q, ∴81a 1=54q..........(4) ∴1542813a q q =

=代入(1)得2

(181)80(1)3

q q -=-, ∴q=3,∴n=4.

【变式4】等比数列{}n a 中,若a 1+a 2=324, a 3+a 4=36, 则a 5+a 6=_____________. 【答案】4;

令b 1=a 1+a 2=a 1(1+q),b 2=a 3+a 4=a 1q 2(1+q),b 3=a 5+a 6=a 1q 4

(1+q),

易知:b 1, b 2, b 3成等比数列,∴b 3=122b b =324

362

=4,即a 5+a 6=4.

【变式5】等比数列{}n a 中,若a 1+a 2+a 3=7,a 4+a 5+a 6=56, 求a 7+a 8+a 9的值。

【答案】448;

∵{a n }是等比数列,∴(a 4+a 5+a 6)=(a 1+a 2+a 3)q 3,∴q 3=8,

∴a 7+a 8+a 9=(a 4+a 5+a 6)q 3

=56×8=448. 类型五:等差等比数列的综合应用

例5.已知三个数成等比数列,若前两项不变,第三项减去32,则成等差数列.若再将此等差数列的第二项减去4,则又成等比数列.求原来的三个数.

思路点拨:恰当地设元是顺利解方程组的前提.考虑到有三个数,应尽量设较少的未知数,并将其设为整式形式.

解析:

法一:设成等差数列的三数为a-d, a,a+d.

则a-d, a, a+d+32成等比数列,a-d, a-4, a+d 成等比数列.

∴?????+-=-++-=)2.().........

)(()4()1.().........32)((2

2d a d a a d a d a a

由(2)得a=8

16

2+d (3)

由(1)得32a=d 2

+32d ..........(4) (3)代(4)消a ,解得8

3

d =或d=8. ∴当83d =

时,269

a =;当d=8时,a=10 ∴原来三个数为92,926,9

338

或2,10,50.

法二:设原来三个数为a, aq, aq 2

,则a, aq,aq 2

-32成等差数列,a, aq-4, aq 2

-32成等比数列

∴?????-=--+=)2)......(

32()4()1........(3222

22

aq a aq aq a aq 由(2)得2

4

a q =-,代入(1)解得q=5或q=13

当q=5时a=2;当q=13时2

9

a =.

∴原来三个数为2,10,50或92,926,9

338

.

总结升华:选择适当的设法可使方程简单易解。一般地,三数成等差数列,可设此三数为a-d, a, a+d ;若三数成等比数列,可设此三数为

y

x

,x, xy 。但还要就问题而言,这里解法二中采用首项a ,公比q 来解决问题反而简便。

举一反三:

【变式1】一个等比数列有三项,如果把第二项加上4,,那么所得的三项就成为等差数列,如果再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列.

【答案】为2,6,18或

21050,,999

-; 设所求的等比数列为a ,aq ,aq 2

; 则 2(aq+4)=a+aq 2,且(aq+4)2=a(aq 2

+32);

解得a=2,q=3或2

9

a =

,q=-5; 故所求的等比数列为2,6,18或21050

,,999

-.

【变式2】已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数。

【答案】1、3、9或―1、3、―9或9、3、1或―9、3、―1 设这三个数分别为

,,a

a aq q

, 由已知得22222

27

91a

a aq q a a a q q

???=??

??++=??22

231(1)91a a q q =????++=?? 得4298290q q -+=,所以2

9q =或219

q =,

即3q =±或13

q =±

故所求三个数为:1、3、9或―1、3、―9或9、3、1或―9、3、―1。

【变式3】有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求这四个数.

【答案】0,4,8,16或15,9,3,1; 设四个数分别是x,y,12-y,16-x

∴???-=--+=)2).......(

16()12()1.......(

1222

x y y y x y 由(1)得x=3y-12,代入(2)得144-24y+y 2

=y(16-3y+12)

∴144-24y+y 2=-3y 2+28y, ∴4y 2

-52y+144=0, ∴y 2

-13y+36=0, ∴ y=4或9, ∴ x=0或15,

∴四个数为0,4,8,16或15,9,3,1. 类型六:等比数列的判断与证明

例6.已知数列{a n }的前n 项和S n 满足:log 5(S n +1)=n(n ∈N +),求出数列{a n }的通项公式,并判断{a n }是何种数列?

思路点拨:由数列{a n }的前n 项和S n 可求数列的通项公式,通过通项公式判断{a n }类型.

解析:∵log 5(S n +1)=n,∴S n +1=5n ,∴S n =5n

-1 (n ∈N +),

∴a 1=S 1=51

-1=4,

当n ≥2时,a n =S n -S n-1=(5n -1)-(5n-1-1)=5n -5n-1=5n-1(5-1)=4×5n-1

而n=1时,4×5n-1=4×51-1

=4=a 1,

∴n ∈N +时,a n =4×5n-1

由上述通项公式,可知{a n }为首项为4,公比为5的等比数列. 举一反三:

【变式1】已知数列{C n },其中C n =2n +3n

,且数列{C n+1-pC n }为等比数列,求常数p 。 【答案】p=2或p=3; ∵{C n+1-pC n }是等比数列,

∴对任意n ∈N 且n ≥2,有(C n+1-pC n )2

=(C n+2-pC n+1)(C n -pC n-1)

∵C n =2n +3n ,∴[(2n+1+3n+1)-p(2n +3n )]2=[(2n+2+3n+2)-p(2n+1+3n+1)]·[(2n +3n )-p(2n-1+3n-1

)]

即[(2-p)·2n +(3-p)·3n ]2=[(2-p)·2n+1+(3-p)·3n+1]·[(2-p)·2n-1+(3-p)·3n-1

]

整理得:

1

(2)(3)2306

n n p p --??=,解得:p=2或p=3, 显然C n+1-pC n ≠0,故p=2或p=3为所求.

【变式2】设{a n }、{b n }是公比不相等的两个等比数列,C n =a n +b n ,证明数列{C n }不是等比数列. 【证明】设数列{a n }、{b n }的公比分别为p, q ,且p ≠q

为证{C n }不是等比数列,只需证2

132C C C ?≠.

∵222222

2111111()2C a p b q a p b q a b pq =+=++,

222222221311111111()()()C C a b a p b q a p b q a b p q ?=++=+++

∴2213211()C C C a b p q ?-=-,

又∵ p ≠q, a 1≠0, b 1≠0,

∴21320C C C ?-≠即2132

C C C ?≠ ∴数列{C n }不是等比数列. 【变式3】判断正误:

(1){a n }为等比数列?a 7=a 3a 4;

(2)若b 2

=ac ,则a ,b ,c 为等比数列;

(3){a n },{b n }均为等比数列,则{a n b n }为等比数列;

(4){a n }是公比为q 的等比数列,则2

{}n a 、1n a ??

?

???

仍为等比数列; (5)若a ,b ,c 成等比,则log m a ,log m b ,log m c 成等差. 【答案】

(1)错;a 7=a 1q 6,a 3a 4=a 1q 2·a 1q 3=a 12q 5

,等比数列的下标和性质要求项数相同;

(2)错;反例:02

=0×0,不能说0,0,0成等比; (3)对;{a n b n }首项为a 1b 1,公比为q 1q 2;

(4)对;221

12

11,n n n

n

a a q a q a ++==;

(5)错;反例:-2,-4,-8成等比,但log m (-2)无意义. 类型七:S n 与a n 的关系

例7.已知正项数列{a n },其前n 项和S n 满足2

1056n n n S a a =++,且a 1,a 3,a 15成等比数列,求数列

{a n }的通项a n .

解析:∵21056n n n S a a =++, ① ∴21111056a a a =++,解之得a 1=2或a 1=3. 又21111056(2)n n n S a a n ---=++≥, ②

由①-②得221110()5()n n n n n a a a a a --=-+-,即11()(5)0n n n n a a a a --+--=

∵a n +a n-1>0,∴a n -a n-1=5(n ≥2).

当a 1=3时,a 3=13,a 15=73,a 1,a 3,a 15不成等比数列 ∴a 1≠3;

当a 1=2时,a 3=12,a 15=72,有a 32

=a 1a 15, ∴a 1=2,∴a n =5n-3.

总结升华:等比数列中通项与求和公式间有很大的联系,它们是1

1(1)(2)n n

n a n a S S n -=?=?-≥?,尤其注意

首项与其他各项的关系.

举一反三:

【变式】命题1:若数列{a n }的前n 项和S n =a n

+b(a ≠1),则数列{a n }是等比数列;命题2:若数列{a n }的前n 项和S n =na-n ,则数列{a n }既是等差数列,又是等比数列。上述两个命题中,真命题为 个.

【答案】0;

由命题1得,a 1=a+b ,当n ≥2时,a n =S n -S n-1=(a-1)·a n-1

.

若{a n }是等比数列,则

2

1

a a a =,即

(1)a a a a b -=+, 所以只有当b=-1且a ≠0时,此数列才是等比数列.

由命题2得,a 1=a-1,当n ≥2时,a n =S n -S n-1=a-1,

显然{a n}是一个常数列,即公差为0的等差数列,

因此只有当a-1≠0,即a≠1时数列{a n}才又是等比数列.

初中三角形有关知识点总结及习题大全-带答案

. A一、三角形内角和定理 一、选择题 40°120°BCD1.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90° 2.将一副三角板按图中的方式叠放,则角等于()A.75B.60C.45D.30 3.如图,直线m∥n,∠1=55,∠2=45,则∠3的度数为() A.80B.90C.100D.110 【解析】选C.如图,由三角形的外角性质得 000 4125545100, 由m∥n,得34 0 100 5.(2009·新疆中考)如图,将三角尺的直角顶点放在直尺的一边上,130°,250°, 则3的度数等于() A.50°B.30°C.20°D.15° 【解析】选C在原图上标注角4,所以∠4=∠2,因为∠2=50°,所以∠4=50°,又因为∠1=30°, 所以∠3=20°; 6.(2009·朝阳中考)如图,已知AB∥CD,若∠A=20°,∠E=35°,则∠C等于(). A.20° B.35° C.45° D.55° 【解析】选D因为∠A=20°,∠E=35°,所以∠EFB=55o,又因为AB∥CD,所以∠C=∠EFB=55o; 7.(2009·呼和浩特中考)已知△ABC的一个外角为50°,则△ABC一定是() A.锐角三角形B.钝角三角形 C.直角三角形D.钝角三角形或锐角三角形 .

. 【解析】选B因为△ABC的一个外角为50°,所以与△ABC的此外角相邻的内角等于130°,所以此三角形为钝角三角形. 4.(2008·聊城中考)如图,1100,2145,那么3() 6 A.55°B.65°C.75°D.85° 答案:选B 二、填空题 oo 5.(2009·常德中考)如图,已知AE//BD,∠1=130,∠2=30,则∠C=. 【解析】由AE//BD得∠AEC=∠2=30o,∴∠C=180°-∠1-∠AEC=180°-130 o,∴∠C=180°-∠1- ∠AEC=180°-130 o- 30o=20o o答案: 20 6.(2009·邵阳中考)如图,AB//CD,直线EF与AB、CD分别相交于E、F两点,EP平分∠AEF,过点F作FP⊥EP,垂足为P,若∠PEF=30 0, 则∠PFC=__________。 0 【解析】由EP平分 ∠AEF,∠PEF=30 0 得∠AEF=60 0 ,由AB//CD得∠EFC=120 0 ,由FP⊥EP得 ∠P=90 , ∴∠PFE=180 0-900-300=600,∴∠PFC=1200-600=600. 答案:60° 7.(2008·长沙中考)△ABC中,∠A=55,∠B=25,则∠C=. 答案:100° 8.(2008·赤峰中考)如图,是一块三角形木板的残余部分,量得A100,B40,这块三角形木板另外一个角是度.

高中数学-等比数列练习题(含答案)

等比数列练习(含答案) 一、选择题 1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n Λ则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S Θ 5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞U C.[)3,+∞ D.(][),13,-∞-+∞U 答案 D 6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .111 22 - 答案 B 11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且 310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(浙江)已知{}n a 是等比数列,4 1 252= =a a ,,则13221++++n n a a a a a a Λ=( ) A.16(n --41) B.6(n --21) ,,a b c ,,c a b

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中物理磁场知识点总结+例题

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B ;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A m)=1kg/(A s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 + N S 地球磁场 条形磁铁 蹄形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增大、减小还是不变)。水平面对磁铁的摩擦力大小为______。 解:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中下方的虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩 擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中上方的虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。 例2.电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转 解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈 靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。 F 2

复习专题一般将来时-知识点归纳与练习

复习专题一般将来时-知识点归纳与练习 一、初中英语一般将来时 1.—Tom wants to know if you ________ a picnic next Sunday. —Yes. But if it ________, we'll visit the museum instead. A. will have; will rain B. have; rains C. have; will rain D. will have; rains 【答案】D 【解析】【分析】句意:汤姆想知道下周日你们是否去野炊。是的,但是如果下雨的话,我们将改去参观博物馆。if引导宾语从句时,意为“是否”,句子时态根据句意选用,if 作为“假如”时,引导的是条件状语从句,主句用一般将来时,从句用一般现在时表示将来,故选D 【点评】此考点也是中考最喜欢出现的考点,if除了可以引导条件状语从句外,还可以引导宾语从句,翻译成“是否”。引导宾语从句时没有“主将从现”的说法。除了if外,还有when, as soon as也一样要注意“主将从现”。 2.— Excuse me. Could you tell me ? — It will leave at 4:00 p.m. A. how will you go to Shanghai B. how you will go to Shanghai C. when the bus would leave for Shanghai D. when the bus will leave for Shanghai 【答案】 D 【解析】【分析】这是一道根据回答写出问句所缺成分的题目,阅题时要仔细分析回答的句子。 句意:打扰一下,你能告诉我这辆公交车什么时候动身前往上海吗?它将会在下午4点的时候离开。据回答知问句问的是时间,故排除A和B。由题知,句子是一般将来时,故问句中也要用一般将来时态。故选D。 【点评】本题需要考生根据回答反推问题,在阅题时要仔细审题。 3.Susan and her sister ________ some photos in the park the day after tomorrow. A. take B. took C. will take 【答案】 C 【解析】【分析】句意:Susan和她的妹妹后天会在公园照一些照片。根据时间状语the day after tomorrow,可知句子时态是一般将来时,一般将来时结构will+do,故选C。 【点评】此题考查一般将来时。根据时间状语确定句子时态。 4.In the near future, there ________ self-driving cars in our city. A. is B. was C. are D. will be

等比数列例题解析

等比数列·例题解析 【例1】已知S n是数列{a n}的前n项和,S n=p n(p∈R,n∈N*),那么数列{a n}. [ ] A.是等比数列 B.当p≠0时是等比数列 C.当p≠0,p≠1时是等比数列 D.不是等比数列 分析由S n=p n(n∈N*),有a1=S1=p,并且当n≥2时, a n=S n-S n-1=p n-p n-1=(p-1)p n-1 但满足此条件的实数p是不存在的,故本题应选D. 说明数列{a n}成等比数列的必要条件是a n≠0(n∈N*),还要注 【例2】已知等比数列1,x1,x2,…,x2n,2,求x1·x2·x3·…·x2n.解∵1,x1,x2,…,x2n,2成等比数列,公比q ∴2=1·q2n+1 x1x2x3...x2n=q.q2.q3...q2n=q1+2+3+ (2) 式;(2)已知a3·a4·a5=8,求a2a3a4a5a6的值. ∴a4=2 【例4】已知a>0,b>0且a≠b,在a,b之间插入n个正数x1,x2,…,x n,使得a,x1,x2,…,x n,b成等比数列,求 证明设这n+2个数所成数列的公比为q,则b=aq n+1 【例5】设a、b、c、d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2. 证法一∵a、b、c、d成等比数列 ∴b2=ac,c2=bd,ad=bc

∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2 =2(b2-ac)+2(c2-bd)+(a2-2bc+d2) =a2-2ad+d2 =(a-d)2=右边 证毕. 证法二∵a、b、c、d成等比数列,设其公比为q,则: b=aq,c=aq2,d=aq3 ∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2 =a2-2a2q3+a2q6 =(a-aq3)2 =(a-d)2=右边 证毕. 说明这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b、c的特点,走的是利用等比的条件消去左边式中的b、c的路子.证法二则是把a、b、c、d统一化成等比数列的基本元素a、q去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性. 【例6】求数列的通项公式: (1){a n}中,a1=2,a n+1=3a n+2 (2){a n}中,a1=2,a2=5,且a n+2-3a n+1+2a n=0 思路:转化为等比数列. ∴{a n+1}是等比数列 ∴a n+1=3·3n-1∴a n=3n-1 ∴{a n+1-a n}是等比数列,即 a n+1-a n=(a2-a1)·2n-1=3·2n-1 再注意到a2-a1=3,a3-a2=3·21,a4-a3=3·22,…,a n-a n-1=3·2n-2,

高中数学-等差等比数列经典例题以及详细答案

等差等比数列综合应用 【典型例题】 [例1] 一个等比数列共有三项,如果把第二项加上4所得三个数成等差数列,如果再把这个等差数列的第3项加上32所得三个数成等比数列,求原来的三个数。 解:等差数列为d a a d a +-,, ∴ ?????=++--=+?-2 2 )32)(()4()()(a d a d a a d a d a ∴ ?????=-+-+-=-) 2()(32)()1(168222222a d a d a a a d a ∴ 2 23232168a d a a =-++- 0432=-+d a 代入(1) 16)24(3 1 82+-?-=-d d 0643232=+-d d 0)8)(83(=--d d ① 8=d 10=a ② 38=d 9 26=a ∴ 此三数为2、16、18或92、910-、9 50 [例2] 等差数列}{n a 中,3931-=a ,76832-=+a a ,}{n b 是等比数列,)1,0(∈q ,21=b ,}{n b 所有项和为20,求: (1)求n n b a , (2)解不等式 2211601 b m a a m m -≤++++Λ 解:(1)∵ 768321-=+d a ∴ 6=d ∴ 3996-=n a n 2011=-q b 10 9 =q ∴ 1 )10 9( 2-?=n n b 不等式10 921601) (21 21??-≤++?+m a a m m m

)1(1816)399123936(2 1 +??-≤-+-? m m m m 0)1(181639692≤+??+-m m m 032122≤+-m m 0)8)(4(≤--m m }8,7,6,5,4{∈m [例3] }{n a 等差,}{n b 等比,011>=b a ,022>=b a ,21a a ≠,求证:)3(≥ ),1(+∞∈q 01>-q 01>-n q ∴ 0*> ∴ N n ∈ 3≥n 时,n n a b > [例4] (1)求n T ;(2)n n T T T S +++=Λ21,求n S 。 解:???=-=????=+++-=+++221 04811598 7654d a a a a a a a a Λ n T 中共12-n 个数,依次成等差数列 11~-n T T 共有数1222112-=+++--n n Λ项 ∴ n T 的第一个为2)12(211 21?-+-=--n n a ∴ 2)12()2(2 1 )232(2 111 ?-?+-?=---n n n n n T 122112222232-----+?-=n n n n 2222323+-?-?=n n

磁场知识点总结

(第三章)磁场 知识点1.了解磁现象和磁场:能说出电流的磁效应;能描述磁场和地磁场;知道我国古代在磁现象方面的研究成果及其对人类文明的影响;能举例说明磁现象在生产和生活中的应用. 用罗盘指引航向,探索航道,将船舶航向的变动与指南针指向变动的对应关系总结出来,画出的航线在古代称作“针路”或“针径”。利用“针路”,船能够靠指南针导航。 1.磁场的产生:磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,本质上讲磁场是由于电荷运动所产生的。变化的电场空间也产生磁场。 2.磁场的基本特性:磁场对处于其中的磁极、电流和运动电荷有力的作用;磁极与磁极、磁极与电流、电流与电流之间的相互作用都是通过磁场发生的。 3.磁场的方向:规定在磁场中任意一点小磁针北极的受力方向(小磁针静止时N极的指向)为该点处磁场方向。 4.磁现象的电本质:奥斯特发现电流磁效应(电生磁)后,安培提出分子电流假说:认为在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极;从而揭示了磁铁磁性的起源:磁铁的磁场和电流的磁场一样都是由电荷运动产生的;根据分子电流假说可以解释磁化、去磁等有关磁现象。 5地磁场(1)地球是一个巨大的磁体、地磁的N极在地理的南极附近,地磁的S极在地理的北极附近;(2)地磁场的分布和条形磁体磁场分布近似;(3)在地球赤道平面上,地磁场方向都是由北向南且方向水平(平行于地面);(4)近代物理研究表明地磁场相对于地球是在缓慢的运动和变化的;地磁场对于地球上的生命活动有着重要意义。 知识点2.理解磁感应强度:知道磁感应强度的概念,会运用磁感应强度的概念描述磁场. 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的安培力F跟电流I和导线长度L之乘积IL的比值叫做磁感应强度,定义式为B=F/IL。 2.对定义式的理解: (1)式中反映的F、B、I方向关系为:B⊥I,F⊥B,F⊥I,则F垂直于B和I所构成的平面。 (2)式子可用来量度磁场中某处磁感应强度,不决定该处磁场的强弱,该处磁感应强度大小由磁场自身性质来决定。 (3)磁感应强度是矢量,其矢量方向是小磁针在该处的北极受力方向,与安培力方向是垂直的。 (4)如果空间某处磁场是由几个磁场共同激发的,则该点处合磁场(实际磁场)是几个分磁场的矢量和;某处合磁场可以依据问题求解的需要分解为两个分磁场;磁场的分解与合成必须遵循矢量运算法则。 (5)在国际单位制中,磁感应强度的单位是特斯拉(T) 1T=1N/(A·m) 知识点3.能说出磁感线特点;识别几种常见磁场的磁感线分布;会用安培定则判断通电直导线和通电线圈周围磁场方向;会计算磁通量. 地磁场

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题 2、通项公式: 4、等比数列的前n 项和S n 公式: (1)当 q 1 时,S n na i n ⑵当q 1时,5罟 5、等比数列的判定方法: 等比数列 等比中项:a n 2 a n 1a n 1 (a n 1a n 1 0) {a n }为等比数列 通项公式:a n A B n A B 0 {a n }为等比数列 1、等比数列的定义: a n 1 a n 2,且n N * , q 称为公比 n 1 a n ag a i B n a i 0,A B 0,首项:a 1;公比:q 推广:a n a m q a n a m a n m — \ a m 3、等比中项: (1)如果a, A, b 成等比数 那么A 叫做a 与b 的等差中项,即: A 2 ab 或 A ab 注意:同号的两个数才有等比中并且它们的等比中项有两个( (2)数列a n 是等比数列 2 a n a n 1 a q q A'B n A' ( A, B,A',B'为常数) (1) 用定义:对任意的 都有a n 1 qa n 或旦口 q (q 为常数,a n 0) {a n }为 a n

6、等比数列的证明方法: 依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 1 7、等比数列的性质: (2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。 (3) 若m n s t(m,n,s,t N*),则a. a m a s a t。特别的,当m n 2k 时,得 2 a n a m a k注:3] a n a2 a n 1 a3a n 2 等差和等比数列比较: 经典例题透析 类型一:等比数列的通项公式

(完整版)高中选修磁场知识点总结(很详细)

第三章磁场知识点 1、磁场 ★★★磁场和电场一样,是客观存在的一种物质。 磁体周围空间存在磁场; 电流周围空间也存在磁场。电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场 与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。 如图所示为证明通电导线周围有磁场存在一一奥斯特实验,以及磁场对电流有力的作用实验。 ★★★地磁场 地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的S极在地球北极附近,地磁的N极在地球的南极附近。地磁场与条形磁铁周围的磁场分布情况相似。但实际上地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。 二、磁场的方向 规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。 确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N极的指向即为该点的磁场方向。 磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线 在磁场中画出有方向的曲线表示磁感线,在这些曲线上,每一点的切线方向都跟该点的磁场方向相同。 ★★★磁感线特点a.磁感线的疏密反映磁场的强弱,磁感线越密的地方表示磁场越强,磁感线越疏的地方表示磁场越弱。b.磁感线上每一点的切线方向就是该点的磁场方向。 c.磁场中的任何一条磁感线都是闭合曲线,在磁体外 部由N极到S极,在磁体内部由S极到N极。D.磁感线是不存在的,人们为了方便研究假想出来(电场线一样) 以下各图分别为条形磁体、蹄形磁体、直线电流、环行电流的磁场 ★★★①磁感线是为了形象地描述磁场而在磁场中假想出来的一组有方向的曲线,并不是客观存在于磁场中的真实 曲线。②磁感线与电场线类似,在空间不能相交,不能相切也不能中断。③磁感线是闭合的曲线,而电场线不闭合 四、几种常见磁场 1通电直导线周围的磁场 奥斯特实验 磁场对电流的作爲 通电直导线的隔场 安培定则通电螺线菅的隘场环形电涼的磁场

代数式的概念知识点总结及习题.

第12讲 代数式 【知识要点】 1、 代数式 代数式的概念:指用运算符号连接而不是用等号或不等号连接成的式子。 如:3 ,),(2,,),1(),1(34a t s n m ab b a x x x x +++++-+等等。 代数式的书写:(1)省略乘号,数字在前; (2)除法变分数; (3)单位前加括号; (4)带分数化成假分数。 2、代数式求值的方法步骤:(1)代入:用具体数值代替代数式中的字母; (2)计算:按照代数式指明的运算计算出结果。 【典型例题】 【例1】(用字母表示数量关系)若a ,b 表示两个数,则a 的相反数的2倍与b 的倒数的和是什么? 【例2】(用字母表示图形面积)如下图,求阴影部分面积。

【例3】下列各式中哪些是代数式?哪些不是代数式? (1)123+x ;(2)2=a ;(3)π;(4)2R S π=;(5)2 7 ;(6)5332>。 【例4】在式子15.0+xy ,x ÷2,)(21y x +,3a ,bc a 2 4 38-中,符合代数式书写 要求的有 。 【例5】某超市中水果糖价格为12元/千克,奶糖价格为22元/千克,若买a 千克水果糖和b 千克奶糖,应付多少钱? 【例6】当a=2,b=-1,c=-3时,求下列各代数式的值: (1) b 2-4ac ;(2)a 2+ b 2+ c 2+2ab+2bc+2ac ;(3)(a+b+c )2。 【课堂练习】 一、填空 三、a kg 商品售价为p 元,则6 kg 商品的售价为 元; 四、温度由30℃下降t ℃后是 ℃; 五、某长方形的长是宽的2 3 倍,且长是a cm ,则该长方形的周长是 cm ; 六、棱长是a cm 的正方体的体积是 cm 3 ; 七、产量由m kg 增长10%,就达到 kg ; 八、学校购买了一批图书,共a 箱,每箱有b 册,将这批图书的一半捐给社区,

(完整版)等比数列经典例题范文

1.(2009安徽卷文)已知为等差数列,,则等 于 A. -1 B. 1 C. 3 D.7 【解析】∵即∴同理可得∴公差∴.选B 。 【答案】B 2.(2009年广东卷文)已知等比数列的公比为正数,且·=2,=1,则= A. B. C. D.2 【答案】B 【解析】设公比为,由已知得,即,又因为等比数列的公 比为正数,所以,故,选B 3.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, , 则等于 A. 18 B. 24 C. 60 D. 90 【答案】C 【解 析】由得得,再由 得 则,所以,.故选C 4.(2009湖南卷文)设是等差数列的前n 项和,已知,,则等于( ) A .13 B .35 C .49 D . 63 【解析】故选C. 135105a a a ++=33105a =335a =433a =432d a a =-=-204(204)1a a d =+-?=}{n a 3a 9a 2 5a 2a 1a 2 1 222q ( )2 2 8 41112a q a q a q ?=2 2q =}{n a q = 212a a q = == {}n a n n S 4a 37a a 与832S =10S 2 437a a a =2111(3)(2)(6)a d a d a d +=++1230a d +=8156 8322 S a d =+ =1278a d +=12,3d a ==-10190 10602 S a d =+ =n S {}n a 23a =611a =7S 172677()7()7(311) 49.222 a a a a S +++= ===

新课标高考数学题型全归纳:等比数列与等差数列概念及性质对比典型例题

等比数列与等差数列概念及性质对比 1.数列的定义 顾名思义,数列就是数的序列,严格地说,按一定次序排列的一列数叫做数列. 数列的基本特征是:构成数列的这些数是有序的. 数列和数集虽然是两个不同的概念,但它们既有区别,又有联系.数列又是一类特殊的函数.2.等差数列的定义 顾名思义,等差数列就是“差相等”的数列.严格地说,从第2项起,每一项与它的前一项的差等于同一个常数的数列,叫做等差数列. 这个定义的要点有两个:一是“从第2项起”,二是“每一项与它的前一项的差等于同一个常数”.这两个要点,刻画了等差数列的本质. 3.等差数列的通项公式 等差数列的通项公式是:a n= a1+(n-1)d .① 这个通项公式既可看成是含有某些未知数的方程,又可将a n看作关于变量n的函数,这为我们利用函数和方程的思想求解问题提供了工具. 从发展的角度看,将通项公式①进行推广,可获得更加广义的通项公式及等差数列的一个简单性质,并由此揭示等差数列公差的几何意义,同时也可揭示在等差数列中,当某两项的项数和等于另两项的项数和时,这四项之间的关系. 4.等差中项 A称作a与b的等差中项是指三数a,A,b成等差数列.其数学表示是: 2b a A + =,或2 A=a+b. 显然A是a和b的算术平均值. 2 A=a+b(或 2b a A + =)是判断三数a,A,b成等差数列 的一个依据,并且,2 A=a+b(或 2b a A + =)是a,A,b成等差数列的充要条件.由此得,等差数列中从第2项起,每一项(有穷等差数列末项除外)都是它的前一项与后一项的等差中项. 值得指出的是,虽然用2A=a+b(或 2b a A + =)可同时判定A是a与b的等差中项及A是b 与a的等差中项,但两者的意义是不一样的,因为等差数列a,A,b与等差数列b,A,a不是同一个数列. 5.等差数列前n项的和

三角形有关知识点总结及习题大全打印

一 、三角形内角和 定 理 一、 选择题 1.如图,在△ABC 中,D 是BC 延长线上一点, ∠B?=?40°,∠ACD?=?120°,则∠A 等于( ) A .60° B .70° C .80° D .90° 2.将一副三角板按图中的方式叠放,则角α等于( )A .75o B .60o C .45o D .30o 3.如图,直线m n ∥,?∠1=55,?∠2=45, 则∠3的度数为( ) A .80? B .90? C .100? D .110? 5.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°, 则3∠的度数等于( ) A .50° B .30° C .20° D .15° 6.已知△ABC 的一个外角为50°,则△ABC 一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .钝角三角形或锐角三角形 8.如图,11002145∠=∠=o o ,,那么3∠=( ) A .55° B .65° C .75° D .85° 二、 解答题 15.(2009·淄博中考)如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37o ,求∠D 的度数. 16.在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小. 二、特殊三角形 1.△ABC 中,∠A :∠B :∠C=4:5:9,则△ABC 是( ) A . 直角三角形,且∠A=90° B . 直角三角形,且∠B=90° C . 直角三角形,且∠C=90° D . 锐角三角形 2.在等腰△ABC 中,如果AB 的长是BC 的2倍,且周长为40,那么AB 等于( ) A . 20 B . 16 C . 20或16 D . 以上都不对 3.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 考点: 三角形内角和定理;角平分线的定义。 5.如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为 6.如图,AD 是等腰三角形ABC 的底边BC 上的高,DE ∥AB ,交AC 于点E ,判断△ADE 是不是等腰三角形,并说明理由. 三:三角形全等的判定及其应用 一、 选择题 1.如图,已知AB AD = , 那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( ) A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠ D .90B D ==?∠∠ 3.如图,ACB A CB ''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A.20° B.30° C.35° D.40° 6.如图所示,90E F ∠=∠=o ,B C ∠=∠,AE AF =,结论:①EM FN =; ②CD DN = ;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( ) A B C D 40° 120° A E F B C D M N

等比数列的前n项和例题详细解法

等比数列的前n项和例题详细解法?例题解析 【例1】设等比数列的首项为a(a>0),公比为q(q>0),前n项和为80,其中 最大的一项为54,又它的前2n项和为6560,求a和q. 解:由S n=80,S2n=6560,故q≠1 ∵a>0,q>1,等比数列为递增数列,故前n项中最大项为an. ∴a n=aq n-1=54 ④ 将③代入①化简得a=q-1 ⑤ 由⑤,⑥联立方程组解得a=2,q=3 证∵Sn=a1+a1q+a1q2+...+a1q n-1 S2n=S n+(a1q n+a1q n+1+...+a1q2n-1)

=S n+q n(a1+a1q+...+a1q n-1)=S n+q n S n=S n(1+q n) 类似地,可得S3n=S n(1+q n+q2n) 说明本题直接运用前n项和公式去解,也很容易.上边的解法,灵活地处理了S2n、S3n与S n的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 【例2】一个有穷的等比数列的首项为1,项数为偶数,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数. 分析设等比数列为{a n},公比为q,取其奇数项或偶数项所成的数列仍然是等比数列,公比为q2,首项分别为a1,a1q. 解设项数为2n(n∈N*),因为a1=1,由已知可得q≠1. 即公比为2,项数为8. 说明运用等比数列前n项和公式进行运算、推理时,对公比q要分情况讨论.有关等比数列的问题所列出的方程(组)往往有高次与指数方程,可采用两式相除的方法达到降次的目的.

相关文档
最新文档