盘点研究物理的常用方法
物理研究方法有哪些

物理研究方法有哪些物理研究方法是指在物理学领域中,科学家们用来研究物质和能量运动规律的一系列科学方法和技术。
在物理研究中,科学家们需要通过实验、观察、推理等手段来揭示自然界的规律,因此研究方法的选择和运用对于科学研究的成果具有至关重要的作用。
下面我们将介绍一些常见的物理研究方法。
首先,实验方法是物理研究中最常用的方法之一。
科学家们通过设计实验装置,进行实验操作,观察实验现象,从而获取数据和信息,验证或推翻假设,揭示物理规律。
例如,著名的托马斯·杨双缝实验就是通过实验方法验证了光的波动性质。
实验方法的优点是可以直接获取数据,但也存在着实验条件的控制和误差的影响等问题。
其次,观察方法也是物理研究中常用的方法之一。
科学家们通过观察自然界中的现象和规律,收集和整理数据,从而进行归纳和总结。
例如,伽利略通过望远镜观察天体运动,发现了地球绕太阳运动的规律。
观察方法的优点是可以获取大量真实的数据,但也存在着主观性和客观性的问题。
另外,数学方法在物理研究中也占据着重要的地位。
物理学是一门以数学为工具的科学,科学家们通过建立数学模型,进行数学推导和计算,从而揭示物理规律。
例如,牛顿通过建立微积分学理论,推导出了万有引力定律和运动定律。
数学方法的优点是可以精确描述物理规律,但也需要科学家具备扎实的数学功底。
此外,推理方法也是物理研究中常用的方法之一。
科学家们通过逻辑推理和思维实验,从已知的事实和规律中推断出新的结论。
例如,爱因斯坦通过思维实验,提出了相对论的理论。
推理方法的优点是可以从已知推导出未知,但也需要科学家具备良好的逻辑思维能力。
最后,模拟方法也是物理研究中的一种重要方法。
科学家们通过建立物理模型,利用计算机技术进行数值模拟,从而研究物理现象和规律。
例如,天体物理学家通过数值模拟,研究宇宙的演化和结构。
模拟方法的优点是可以模拟复杂的物理现象,但也需要科学家具备较强的计算机技术和编程能力。
总之,物理研究方法的选择和运用对于科学研究的成果具有至关重要的作用。
初中物理研究方法有哪几种

初中物理研究方法有哪几种1.实验法:实验法是物理研究中最常用的方法之一、通过实际操作和观察,收集数据,进行测量和计算,验证理论模型。
实验法有助于验证物理理论,揭示物理规律。
实验方法也可以帮助学生培养动手能力和观察分析能力。
2.观察法:观察法是物理研究中应用广泛的方法之一、通过对自然现象、实验现象或物理系统的观察,获得数据和信息,从而加深对物理现象和规律的理解。
观察法常用于研究天体现象、材料特性等。
3.数学模型方法:数学模型方法是物理研究中一种重要的方法。
通过运用数学工具、公式和方程,对物理系统进行建模和描述。
数学模型能够辅助物理学家进行预测、模拟和分析物理现象,从而使得研究更加精确和系统。
4.计算机模拟方法:计算机模拟方法是近年来发展起来的一种物理研究方法。
通过在计算机上构建物理系统的数学模型,应用数值计算方法对其进行模拟和仿真。
计算机模拟的优势在于可以模拟复杂的物理系统,进行大规模计算和参数优化,并且具有较高的准确度。
5.统计方法:统计方法是物理研究中用来处理和分析大量数据的方法。
通过对实验数据或观测数据进行统计分析,得出总体特征和规律。
统计学方法可以帮助物理学家从大量数据中提取关键信息,判断实验结果的可靠性,验证统计规律。
6.比较研究方法:比较研究方法是通过对不同物理现象、物理系统或实验条件的比较,研究其差异和共性,以发现规律和原理。
比较研究方法常用于研究不同材料的性质、不同条件下的物理过程等。
7.理论推理方法:理论推理方法是物理研究中的重要方法之一、通过假设、逻辑推理和数学推演,推导出物理规律、理论模型和物理公式。
理论推理方法在物理研究中起到了理论引导和预测的作用。
综上所述,初中物理研究方法多种多样,每种方法都有其独特的优势和适用范围。
在实际研究中,经常会采用多种方法相结合的方式,以从不同角度深入研究物理现象和规律。
实验物理方法有哪些方法

实验物理方法有哪些方法
实验物理方法主要有以下一些方法:
1. 光学方法:包括干涉、衍射、偏振、透射、反射等光学技术,用于研究光的性质和相互作用。
2. 磁学方法:包括磁场测量、磁性材料的磁性测量,以及研究磁场对物质的影响等。
3. 电学方法:包括电流的测量、电压的测量,电阻、电容、电感等元件的测量,以及研究电场、磁场对物质的影响等。
4. 声学方法:包括声波的传播、反射、折射、干涉等现象的研究,以及研究声场对物质的影响等。
5. 核物理方法:包括核反应的观测与测量,核辐射的测量、分析和探测器的设计等。
6. 材料分析方法:包括X射线衍射、电子显微镜、红外光谱、质谱等方法,用于研究材料的结构、成分和性质等。
7. 粒子物理方法:包括加速器、探测器等设备的设计与运用,用于研究微观粒
子的性质和相互作用等。
8. 热学方法:包括温度的测量、热量的测量,热传导、热辐射等现象的研究,以及研究温度对物质的影响等。
这些方法可以单独使用或结合使用,以研究物质的特性、相互作用和性质等。
物理研究方法有哪些

物理研究方法有哪些物理研究方法是指在物理领域进行科学研究时所采用的一系列方法和技术。
以下是常用的物理研究方法:1. 实验法:物理实验是物理研究的基础,通过设计和进行实验来观察和测量现象,并得到准确的数据。
实验法可以提供直接的观测和量测结果,验证理论和模型,发现新的现象和规律。
2. 理论分析方法:物理学家通过建立数学模型、探究物理问题并进行分析,来理解和解释物理现象。
理论分析方法基于数学方程和物理原理,通过推导和计算得出结论。
3. 模拟方法:利用计算机模拟物理系统的运行和现象。
通过编写计算机程序,对物理系统进行模拟,以获得数值结果和模拟图像,从而预测和验证物理现象。
4. 数值计算方法:以数字计算为基础进行研究。
通过建立物理模型和方程,利用计算机进行数值计算,得到数值结果来预测物理现象和解决物理问题。
5. 系统观察方法:对物理现象进行长时间的观察和记录,以了解物理系统的行为和变化规律。
系统观察方法适用于一些具有较长时间尺度和多变量的物理现象,例如气候变化和行星运动等。
6. 数据分析方法:通过对实验数据或模拟数据进行统计学和数学分析,找出变量之间的关系和规律。
数据分析方法可以帮助物理学家发现隐藏在数据中的信号和模式,从而得出结论和提出假设。
7. 归纳和演绎法:通过观察和实验的结果,归纳总结物理现象的规律和原理。
基于这些总结,进行演绎推理,得出关于其他相关问题的结论。
8. 比较研究方法:将不同物理系统或现象进行比较,以找出它们之间的相似之处和差异之处。
比较研究方法可以帮助物理学家理解共性和特殊性,从而得出更广泛的结论。
上述方法并非孤立存在,常常需要综合运用,根据具体研究问题的特点灵活选择和结合使用。
初中物理研究方法有哪些

初中物理研究方法有哪些
初中物理常用的研究方法主要有以下几种:
1. 实验法:通过实验设计和操作,直接观察物理现象或数据,理解物理概念和规律。
2. 模型法:通过建立物理模型,将复杂的问题简单化、抽象化,便于理解和分析。
3. 控制变量法:在多因素问题中,通过控制某些因素不变,只改变其中一个因素,观察物理现象的变化,从而得出结论。
4. 理想实验法:通过想象和推理,设计理想状态下的实验,得出结论或推导规律。
5. 归纳法:通过对多个具体事例的分析和归纳,得出一般性的物理规律或结论。
6. 演绎法:根据已知的物理规律或定理,推导出具体的结论或解释特定的现象。
7. 类比法:通过比较类似的事物或现象,找出它们之间的相似性和差异性,便于理解和记忆。
8. 比较法:通过对不同事物或现象的比较,找出它们的相同点和不同点,便于理解、记忆和区别。
这些研究方法在初中物理学习中都有广泛的应用,对于提高学生的物理思维能力和解决问题的能力有很大的帮助。
物理常用研究方法

物理常用研究方法
在物理研究中,常用的研究方法包括以下几种:
1. 实验方法:通过设计和进行实验来观察和测量物理现象,收集数据并进行定量分析。
实验方法常用于验证理论模型、探究物理规律和发现新现象。
2. 数值模拟方法:使用计算机模拟物理系统的行为。
通过数值计算和模拟,可以研究复杂的物理现象和系统,预测实验结果,并揭示与实验难以观测的细节。
3. 理论分析方法:通过推导和计算,从物理理论出发探究物理现象和问题。
通过建立数学模型,运用物理原理和数学工具进行分析,揭示物理规律和解释实验观测。
4. 数理统计方法:通过数学和统计学的方法,对实验数据进行处理和分析,提取相关信息和规律。
数理统计方法可用于验证实验结论的可靠性,揭示潜在的物理规律。
5. 纵向研究方法:通过对物理系统在不同时间点的观测和测量,研究物理过程的变化和演化。
纵向研究方法可用于分析物理系统在时间尺度上的动态特性。
6. 横向研究方法:通过对不同物理系统或者现象的比较和对比研究,揭示它们之间的联系和共性。
横向研究方法可用于发现物理规律、分析物理现象的本质和
机制。
以上是常用的物理研究方法,每种方法都有其优势和适用范围,研究者通常会根据具体问题和可行性选择合适的方法进行研究。
物理常用的实验方法
物理常用的实验方法一、控制变量法1.1 这控制变量法啊,就像是在一场复杂的游戏里,咱们得把那些捣乱的因素都给管住喽。
比如说研究影响滑动摩擦力大小的因素,咱们就不能让其他因素瞎掺和。
压力、接触面粗糙程度这些因素就像一群调皮的小鬼,咱们得一个一个来研究。
先把接触面粗糙程度给定住了,就像把一个小鬼绑在柱子上,然后去看压力大小对滑动摩擦力的影响。
然后再把压力给定住,去研究接触面粗糙程度的影响。
这就好比在一个乱哄哄的屋子里,每次只让一个东西动,其他都保持安静,这样才能看清到底是哪个在起作用。
这方法在物理实验里那可是相当常用的,就像咱们吃饭离不开筷子一样。
1.2 再看探究电流与电压、电阻的关系实验。
这电压、电阻和电流之间的关系就像一个三角关系似的。
咱们得把电阻给定住,这就像抓住了三角关系里的一个角,然后去改变电压,看看电流怎么变。
然后再把电压给定住,改变电阻,再看电流的变化。
这要是不控制变量,那就乱套了,就像一群没头的苍蝇到处乱撞,根本不知道到底是哪个因素在主导电流的变化。
二、转换法2.1 转换法可有意思了。
有时候咱们要研究的东西不容易直接观察或者测量,那咋办呢?就得想个巧妙的办法把它转化成容易观察或者测量的东西。
就像研究分子的热运动,分子那么小,咱肉眼根本看不见它们在那瞎晃悠啊。
这时候就用转换法,把分子的热运动转换为扩散现象。
像墨水在水里扩散,这就相当于把分子热运动这个看不见摸不着的东西,转化成了咱们能看得见的墨水扩散。
这就好比把一个隐身人变成了一个能看得见的普通人,方便咱们去研究。
2.2 还有探究压力的作用效果与哪些因素有关的时候。
压力的作用效果不容易直接测量,咱们就把它转换成比较海绵或者沙子的凹陷程度。
压力作用效果大,那海绵或者沙子就陷得深,就像被狠狠揍了一拳似的;压力作用效果小,就陷得浅。
这就把一个抽象的压力作用效果转化成了一个直观的凹陷程度,就像把一个高深的武功秘籍转化成了简单的一招一式,让咱们能轻松理解。
物理研究常用的方法七种
物理研究常用的方法七种物理学是自然科学的重要分支,负责研究物质的本质、性质和相互关系。
为了更好地理解物理学,物理学家使用了许多不同的研究方法,来探究物质的各种属性。
以下是常用的7种物理研究方法:1.分析法:这一方法在物理学中广泛使用,它主要是对现有的数据进行收集和分析。
这种方法通常会关注某些特定的问题,例如某种物质的化学成分或其在不同温度下的行为。
分析法的结果可以帮助科学家更好地解释和理解现有的物理数据,并有助于提出新的研究假设。
2.实验法:实验法是物理学研究中最常用的方法之一、通过实验,科学家可以精确地控制和操作物质,以研究某一实验条件下的物理特性。
这种方法通常适用于物理性质的测量和验证物理理论。
3.理论法:理论法是通过对数学公式和模型进行计算和研究,以得出物理现象的描述和解释。
这种方法主要用于预测和预测物理现象,以及验证和改进已有的理论模型。
4.数值模拟法:这种方法利用计算机算法和数学技术来描述和模拟物理现象。
它通常用于模拟高精度的物理过程,例如相对论、量子场论和宇宙学等领域。
数值模拟法也可以用于优化物理系统的结构和操作。
5.实地观察法:这种方法使用天文学、地质学和天气学等领域的仪器来观察自然界中的物理过程。
这项研究有助于理解许多物理现象,例如天体运动、地球板块运动和气候变化等。
6.统计分析法:统计法常用于处理大规模数据。
这种方法允许科学家将分布和变异性等特性与特定条件相关联。
例如,统计方法可以用于研究特定条件下原子核物理学中的粒子行为。
7.调查法:这种方法是通过问卷调查、实地调查等方式来收集有关物理学现象和事件的信息。
这种方法通常用于研究公众对科学问题的态度,并有助于了解公众对科学和技术的兴趣和关注度。
以上七种方法是物理学研究中常用的方法,每种方法都有其独特的优势和限制条件。
选择正确的方法对于科学家探索物理学中的各种问题至关重要。
物理研究方法有哪些
物理研究方法有哪些物理是自然科学的一门重要学科,它研究的是物质、能量和它们之间的相互作用。
而要深入研究物理现象,就需要运用科学的研究方法。
下面将介绍一些常见的物理研究方法。
首先,实验方法是物理研究中最为常见的方法之一。
通过设计实验装置,观察和测量物理现象,从而获取数据并验证理论。
例如,通过实验可以验证牛顿的运动定律,测量光速等。
实验方法可以直接观察现象,获取准确的数据,是物理研究中必不可少的方法。
其次,理论分析是物理研究中同样重要的方法。
通过建立数学模型,推导物理定律和规律,进行理论计算和分析。
例如,通过理论分析可以推导出爱因斯坦的相对论,预测新的物理现象等。
理论分析是物理研究中不可或缺的方法,它可以帮助科学家深入理解物理现象的本质。
另外,数值模拟是近年来物理研究中兴起的一种方法。
通过计算机模拟物理现象,进行数值计算和仿真实验。
例如,通过数值模拟可以模拟天体运动、材料性能等。
数值模拟可以帮助科学家在实验前进行预测和验证,节约时间和成本,是物理研究中的新兴方法。
此外,观察方法也是物理研究中常用的方法之一。
通过观察自然现象,收集数据并进行分析。
例如,通过望远镜观察天体运动,通过显微镜观察微观世界等。
观察方法可以帮助科学家直观地了解物理现象,获取第一手资料。
最后,比较研究是物理研究中的一种重要方法。
通过比较不同条件下的物理现象,找出规律和差异。
例如,比较不同材料的导电性能,比较不同环境条件下的光学现象等。
比较研究可以帮助科学家深入理解物理现象的本质和规律。
综上所述,物理研究方法包括实验方法、理论分析、数值模拟、观察方法和比较研究等。
这些方法相辅相成,相互补充,共同推动着物理学的发展。
在今后的物理研究中,科学家们可以根据具体情况灵活运用这些方法,不断深化对物理世界的认识。
物理研究方法有哪些
物理研究方法有哪些
物理研究方法有:模型法、叠加法、控制变量法、等效法、转换法、类比法、比较法、归纳法、模型法等。
模型法即将抽象的物理现象用简单易懂的具体模型表示。
如用太阳系模型代表原子结构,用简单的线条代表杠杆等。
叠加法:物理学中常常把微小的、不易测量的同一物理量叠加起来,测量后求平均值的方法俗称“叠加法”。
控制变量法:物理学中对于多因素(多变量)的问题,常常采用控制因素(变量)的方法,把多因素的问题变成多个单因素的问题。
每一次只改变其中的某一个因素,而控制其余几个因素不变,从而研究被改变的这个因素对事物的影响,分别加以研究,最后再综合解决。
等效法:等效法是常用的科学思维方法。
所谓“等效法”就是在特定的某种意义上,在保证效果相同的前提下,将陌生的、复杂的、难处理的问题转换成熟悉的、容易的、易处理的一种方法。
类比法:在认识一些物理概念时,常将它与生活中熟悉且有共同特点的现象进行类比,以帮助理解。
如认识电流大小时,用水流进行类比。
认识电压时,用水压进行类比。
模型法:为了研究问题的方便,常用线条等手段来描述各种看不见的现象。
如用光线来描述光,用磁感线来描述磁场,用力的图示描述力等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盘点研究物理的常用方法盘点研究物理的常用方法在日常生活或是工作,学习中,大家一定都或多或少地接触过一些物理知识,下面是店铺为大家收集的有关盘点研究物理的常用方法相关内容,仅供参考,希望能够帮助到大家。
盘点研究物理的常用方法研究物理的科学方法有许多,经常用到的有观察法、实验法、比较法、类比法、等效法、转换法、控制变量法、模型法、科学推理法等。
研究某些物理知识或物理规律,往往要同时用到几种研究方法。
如在研究电阻的大小与哪些因素有关时,我们同时用到了观察法(观察电流表的示数)、转换法(把电阻的大小转换成电流的大小、通过研究电流的大小来得到电阻的大小)、归纳法(将分别得出的电阻与材料、长度、横截面积、温度有关的信息归纳在一起)、和控制变量法(在研究电阻与长度有关时控制了材料、横截面积)等方法。
可见,物理的科学方法题无法细致的分类。
只能根据题意看题中强调的是哪一过程,来分析解答。
下面我们将一些重要的实验方法进行一下分析。
一、控制变量法物理学研究中常用的一种研究方法——控制变量法。
所谓控制变量法,就是在研究和解决问题的过程中,对影响事物变化规律的因素或条件加以人为控制,使其中的一些条件按照特定的要求发生变化或不发生变化,最终解决所研究的问题。
可以说任何物理实验,都要按照实验目的、原理和方法控制某些条件来研究。
如:导体中的电流与导体两端的电压以及导体的电阻都有关系,中学物理实验难以同时研究电流与导体两端的电压和导体的电阻的关系,而是在分别控制导体的电阻与导体两端的电压不变的情况下,研究导体中的电流跟这段导体两端的电压和导体的电阻的关系,分别得出实验结论。
通过学生实验,让学生在动脑与动手,理论与实践的结合上找到这“两个关系”,最终得出欧姆定律I=U/R。
为了研究导体的电阻大小与哪些因素有关,控制导体的长度和材料不变,研究导体电阻与横截面积的关系。
为了研究滑动摩擦力的大小跟哪些因素有关,保证压力相同时,研究滑动摩擦力与接触面粗糙程度的关系。
利用控制变量法研究物理问题,注重了知识的形成过程,有利于扭转重结论、轻过程的倾向,有助于培养学生的科学素养,使学生学会学习。
中学物理课本中,蒸发的快慢与哪些因素的有关;滑动摩擦力的大小与哪些因素有关;液体压强与哪些因素有关;研究浮力大小与哪些因素有关;压力的作用效果与哪些因素有关;滑轮组的机械效率与哪些因素有关;动能、重力势能大小与哪些因素有关;导体的电阻与哪些因素有关;研究电阻一定、电流与电压的关系;研究电压一定、电流和电阻的关系;研究电流做功的多少跟哪些因素有关系;电流的热效应与哪些因素有关;研究电磁铁的磁性强弱跟哪些因素有关系等均应用了这种科学方法。
二、转换法一些比较抽象的看不见、摸不着的物质的微观现象,要研究它们的运动等规律,使之转化为学生熟知的看得见、摸得着的宏观现象来认识它们。
这种方法在科学上叫做“转换法”。
如:分子的运动,电流的存在等,如:空气看不见、摸不到,我们可以根据空气流动(风)所产生的作用来认识它;分子看不见、摸不到,不好研究,可以通过研究墨水的扩散现象去认识它;电流看不见、摸不到,判断电路中是否有电流时,我们可以根据电流产生的效应来认识它;磁场看不见、摸不到,我们可以根据它产生的作用来认识它。
再如,有一些物理量不容易测得,我们可以根据定义式转换成直接测得的物理量。
在由其定义式计算出其值,如电功率(我们无法直接测出电功率只能通过P=UI利用电流表、电压表测出U、I计算得出P)、电阻、密度等。
中学物理课本中,测不规则小石块的体积我们转换成测排开水的体积;我们测曲线的长短时转换成细棉线的长度;在测量滑动摩擦力时转换成测拉力的大小;大气压强的测量(无法直接测出大气压的值,转换成求被大气压压起的水银柱的压强)测硬币的直径时转换成测刻度尺的长度;测液体压强(我们将液体的压强转换成我们能看到的液柱高度差的变化);通过电流的效应来判断电流的存在(我们无法直接看到电流);通过磁场的效应来证明磁场的存在(我们无法直接看到磁场);研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);在研究电热与电流、电阻的因素时,我们将电热的多少转换成液柱上升的高度;在我们研究电功与什么因素有关的时候,我们将电功的多少转换成砝码上升的高度;密度、功率、电功率、电阻、压强(大气压强)等物理量都是利用转换法测得的;在我们回答动能与什么因素有关时,我们回答说小球在平面上滑动的越远则动能越大,就是将动能的大小转换成了小球运动的远近。
以上列举的这些问题均应用了这种科学方法。
例题:分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象去认识它,这种方法在科学上叫做“转换法”。
下面是小明同学在学习中遇到的四个研究实例,其中采取的方法与刚才研究分子运动的方法相同的是()A.利用磁感应线去研究磁场问题B.电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定C.研究电流与电压、电阻关系时,先使电阻不变去研究电流与电压的关系:然后再让电压不变去研究电流与电阻的关系D.研究电流时,将它比做水流解析:选B.三、放大法在有些实验中,实验的现象我们是能看到的,但是不容易观察。
我们就将产生的效果进行放大再进行研究。
比如音叉的振动很不容易观察,所以我们利用小泡沫球将其现象放大。
观察压力对玻璃瓶的作用效果时我们将玻璃瓶密闭,装水,插上一个小玻璃管,将玻璃瓶的形变引起的液面变化放大成小玻璃管液面的变化。
四、积累法在测量微小量的时候,我们常常将微小的量积累成一个比较大的量、比如在测量一张纸的厚度的时候,我们先测量100张纸的厚度在将结果除以100,这样使测量的结果更接近真实的值就是采取的积累法。
要测量出一张邮票的质量、测量出心跳一下的时间,测量出导线的直径,均可用积累法来完成。
五、类比法在我们学习一些十分抽象的,看不见、摸不着的物理量时,由于不易理解我们就拿出一个大家能看见的与之很相似的量来进行对照学习。
如电流的形成、电压的作用通过以熟悉的水流的形成,水压使水管中形成了水流进行类比,从而得出电压是形成电流的原因的结论。
学生在学习电学知识时,在老师的引导下,联想到:水压迫使水沿着一定的方向流动,使水管中形成了水流;类似的,电压迫使自由电荷做定向移动使电路中形成了电流。
抽水机是提供水压的装置;类似的,电源是提供电压的装置。
水流通过涡轮时,消耗水能转化为涡轮的动能;类似的,电流通过电灯时,消耗的电能转化为内能。
我们学习分子动能的时候与物体的动能进行类比;学习功率时,将功率和速度进行类比。
例题:某同学在学习电学知识时,在老师的引导下,联想力学实验现象,进行比较并找出了一些相类似的规律,其中不准确的是()A.水压使水管中形成水流;类似地,电压使电路中形成电流B.抽水机是提供水压的装置;类似地,电源是提供电压的装置C.抽水机工作时消耗水能;类似地,电灯发光时消耗电能D.水流通过涡轮时消耗水能转化为涡轮的动能。
类似地,电流通过电灯时,消耗电能转化为内能和光能解析:选C。
通过类比,用大家熟悉的水流、水压的直观认识,使得看不见、摸不着的抽象的电流、电压等知识跃然纸面,栩栩如生。
六、理想化物理模型实际现象和过程一般都十分复杂的,涉及到众多的因素,采用模型方法对学习和研究起到了简化和纯化的作用。
但简化后的模型一定要表现出原型所反映出的特点、知识。
模型法有较大的灵活性。
每种模型有限定的运用条件和运用的范围。
中学课本中很多知识都应用了这个方法,比如有:液柱、(比如在求液体对竖直的容器底的压强的时候,我们就选了一个液柱作为研究的对象简化,简化后的模型依然保留原来的特点和知识);光线、(在我们学习光线的时候光线是一束的,而且是看不见的,我们使用一条看的见的实线来表示就是将问题简化,利用了理想化模型);液片、(在我们研究连通器的特点,求大气压时我们都在某一位置取了一个液面,研究该液面所受到的压强和压力,也是将问题简化,利用理想化模型法);光沿直线传播(在我们学习中我们知道真正的空气是各处都不均匀的,比如越往上空气越稀薄,在比如因为空气各处不均匀形成了风,而在光是沿直线传播一节中我们将问题简化,只取一个简单的模型,一条光线在均匀的介质中传播)。
匀速直线运动;(生活中很少有一个物体真正的做匀速直线运动,在我们研究问题的时候匀速直线运动只是一个模型)磁感线(磁感线是不存在的一条线,但是我们为了便于研究磁场我们人为的引入了一条线,将我们研究的问题简化。
)例题:在我们学习物理知识的过程中,运用物理模型进行研究的是()A.建立速度概念B.研究光的直线传播C.用磁感应线描述磁场D.分析物体的质量解析:B、C.七、科学推理法当你在对观察到的现象进行解释的时候就是在进行推理,或说是在做出推论,例如当你家的狗在叫的时,你可能会推想有人在你家的门外,要做出这一推论,你就需要把现象(狗的叫声)与以往的知识经验,即有陌生人来时狗会叫结合起来。
这样才能得出符合逻辑的答案如:在进行牛顿第一定律的实验时,当我们把物体在越光滑的平面运动的就越远的知识结合起来我们就推理出,如果平面绝对光滑物体将永远做匀速直线运动。
如:在做真空不能传声的实验时,当我们发现空气越少,传出的声音就越小时,我们就推理出,真空是不能传声的。
八、等效替代法比如在研究合力时,一个力与两个力使弹簧发生的形变是等效的,那么这一个力就替代了两个力所以叫等效替代法,在研究串、并联电路的总电阻时,也用到了这样的方法。
在平面镜成像的实验中我们利用两个完全相同的蜡烛,验证物与像的大小相同,因为我们无法真正的测出物与像的大小关系,所以我们利用了一个完全相同的另一根蜡烛来等效替代物体的大小。
九、归纳法是通过样本信息来推断总体信息的技术。
要做出正确的归纳,就要从总体中选出的样本,这个样本必须足够大而且具有代表性。
在我们买葡萄的时候就用了归纳法,我们往往先尝一尝,如果都很甜,就归纳出所有的葡萄都很甜的,就放心的买上一大串。
比如铜能导电,银能导电,锌能导电则归纳出金属能导电。
在实验中为了验证一个物理规律或定理,反复的通过实验来验证他的正确性然后归纳、分析整理得出正确的结论。
在阿基米德原理中,为了验证F浮=G排,我们分别利用石块和木块做了两次实验,归纳、整理均得出F浮=G排,于是我们验证了阿基米德原理的正确性,使用的正是这种方法。
在验证杠杆的平衡条件中,我们反复做了三次实验来验证F1×L1=F2×L2也是利用这种方法。
一切发声体都在振动结论的得出(在实验中对多种结论进行分析整理并得出最后结论时),都要用到这一方法。
在验证导体的电阻与什么因素有关的时候,经过多次的实验我们得出了导体的电阻与长度,材料,横截面积,温度有关,也是将实验的结论整理到一起后归纳总结得出的。