《随机事件的概率》教学设计(优质公开课一等奖)
《随机事件的概率》教学设计

《随机事件的概率》教学设计一、内容和内容解析内容:学生在初中已学过一些概率的知识:在具体情景中了解概率的意义,运用列举法会计算一些简单事件发生的概率;通过实验,获得事件发生的频率,知道大量重复实验时频率可作为事件发生概率的估计值。
本章的章始语列举了生活中一些随机事件,从直观上感知到他们发生的不确定性和一定的规律性,章始图中的天气预报和我们是密切相关的,但是是如何确定的,为什么要确定?对我们的生活是很有帮助的,从而说明学习本章内容的实际意义。
本课内容通过实例引入了三个事件的概念:必然事件、不可能事件和随机事件。
本课主要通过学生参与硬币抛掷试验,理解频数和频率的概念,从硬币抛掷试验“正面向上”事件的发生体会了频率的随机性;从计算机模拟硬币抛掷试验和历史上的数据说明随着试验次数的增多,频率表现出稳定性,由此引出了概率的概念:随机事件的发生具有随机性,随机事件的统计规律性表现在其频率的稳定性,即总在某个常数附近摆动,随着试验次数的增多,这种摆动幅度越来越小,这个常数叫做随机事件的概率。
概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。
由此可得随机事件的概率满足,必然事件的概率为1,不可能事件的概率为0。
内容解析:从学生已有的知识说明学生对本课内容有一定的知识储备,前面刚学过统计,具备实验能力。
本课通过硬币抛掷试验求“正面向上”这一事件来加深学生对频数和频率概念的理解,在此基础上推导出概率的概念,由硬币抛掷试验求“正面向上”这一事件的概率推广到求一般随机事件的概率,帮助学生解决随机事件概率打下理论基础,在这一过程中频率既有不确定性又有其稳定性,体现了教学辨证的思想。
重点:了解随机事件的不确定性和频率的稳定性,二、目标和目标解析目标:1、在具体情景中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义及频率和概率的关系;2、经历数学试验,数据的收集和处理这一过程,随机事件概率概念的形成过程;3、体验随机事件的发生既有随机性,又存在着统计的规律性这种对立统一的思想。
《随机事件的概率》公开课教案

《随机事件的概率》公开课教案精细化处理后的文本一、教学内容本节课将深入探讨随机事件的内涵,并掌握等可能事件的概率计算方法。
我们会进一步了解条件概率与独立事件的概率,这两个概念在数学领域中极为重要,它们能够帮助我们更好地理解事件之间的关系,并应用于各种实际问题中。
二、教学目标1. 深刻理解随机事件的本质,掌握等可能事件的概率计算技巧。
2. 理解并运用条件概率与独立事件的概率知识,解决生活中的数学问题。
3. 培养学生的逻辑思维与数学应用能力,提高对概率论的兴趣。
三、教学难点与重点1. 教学难点:条件概率与独立事件的概率计算,这两个概念较为抽象,需要学生能够灵活运用。
2. 教学重点:等可能事件的概率计算,以及条件概率和独立事件概率的实际应用。
四、教具与学具准备1. 教具:多媒体教学设备,黑板,粉笔。
2. 学具:教材,笔记本,彩笔,计算器。
五、教学过程1. 实践情景引入:通过抛硬币、抽签等实际例子,引导学生思考随机事件的概率。
例如,抛硬币出现正面的概率是多少?抽签抽到红色的概率是多少?2. 讲解教材内容:详细介绍随机事件的定义,等可能事件的概率计算方法,条件概率和独立事件的概率概念。
我们将通过具体的例题来讲解这些概念的应用。
3. 例题讲解:挑选具有代表性的例题,讲解解题思路和方法。
例如,甲、乙两人分别抛一枚均匀的硬币,求甲抛出正面且乙抛出正面的概率。
4. 随堂练习:让学生在课堂上完成练习题,巩固所学知识。
例如,已知事件A和事件B相互独立,且P(A)=0.3,P(B)=0.4,求P(AB)。
5. 小组讨论:分组讨论实际问题,引导学生运用概率知识解决问题。
例如,某学校举行篮球比赛,已知甲队获胜的概率为0.6,乙队获胜的概率为0.4,求甲队连续获胜两次的概率。
六、板书设计1. 随机事件的定义及其实例。
2. 等可能事件的概率计算公式及其解释。
3. 条件概率的计算公式及其应用。
4. 独立事件的概率计算公式及其应用。
《概率随机事件》教学设计(优质公开课一等奖)

《概率随机事件》教学设计(优质公开课一等奖)概率随机事件教学设计(优质公开课一等奖)目标此教学设计的目标是帮助学生理解和应用概率随机事件的概念,并能够解决实际生活中的相关问题。
通过本课,学生将能够:- 了解随机事件的定义和特征- 掌握概率的计算方法- 分析和解决包含概率随机事件的问题- 将概率应用于实际生活情境教学内容1. 引入通过举例和引发学生思考的问题,引入概率随机事件的概念。
例如,抛硬币的例子可以用来介绍随机事件以及其两个可能结果(正面和反面)。
在引入中,要引导学生思考随机事件的基本定义和特征。
2. 概率的概念和计算方法介绍概率的定义和计算方法。
解释概率的含义是某个特定事件发生的可能性大小,以及如何用数值表示概率的大小。
通过具体的例子和练,让学生学会计算概率。
3. 概率的应用将概率的概念应用于实际生活情境中的问题。
可以通过掷骰子、抽彩票、研究天气预报等实例,帮助学生理解概率在日常生活中的应用。
引导学生将概率知识应用到解决实际问题中,提高其分析和解决问题的能力。
4. 小结和评价对本课的内容进行小结,并让学生进行相关练和评价。
通过问答、练题等形式,帮助学生巩固所学概念并检验其理解程度。
教学工具- 投影仪和投影屏幕- 黑板和白板笔- 硬币、骰子、彩票等实物- 准备好的授课材料和练题教学过程1. 引入(10分钟)- 利用举例和问题引发学生对概率随机事件的思考。
- 解释随机事件的基本定义和特征。
2. 概率的概念和计算方法(20分钟)- 介绍概率的基本概念和计算方法。
- 使用具体的例子和练帮助学生学会计算概率。
3. 概率的应用(30分钟)- 使用实际生活情境的问题帮助学生理解概率的应用。
- 引导学生将概率知识应用到解决问题中。
4. 小结和评价(10分钟)- 对本节课的内容进行小结。
- 给学生一些练题并进行评价。
教学评价- 学生的参与度和积极性- 学生对概率随机事件概念的理解程度- 学生在实际问题解决中的应用能力- 学生对课程的反馈扩展活动- 教师可设计一些拓展活动,让学生运用概率知识解决更复杂的问题。
《随机数的事件概率》教学设计(优质公开课一等奖)

《随机数的事件概率》教学设计(优质公开课一等奖)随机数的事件概率教学设计(优质公开课一等奖)简介本教学设计旨在教授学生如何计算随机事件的概率。
通过理论讲解和实际案例分析,学生将了解随机数的基本概念和事件概率的计算方法。
教学目标- 理解随机数和事件概率的定义- 掌握计算事件概率的基本方法- 能够应用概率知识解决实际问题教学内容1. 随机数的定义和性质2. 事件概率的定义和计算方法3. 事件独立性与相关性4. 实际案例分析教学步骤步骤一:引入随机数通过示意图和生活中的例子引入随机数的概念,让学生了解随机数的定义和常见性质。
步骤二:讲解事件概率- 定义事件概率并解释其含义- 介绍计算事件概率的方法,包括频率法和几何法- 展示具体计算步骤和例子步骤三:讨论事件独立性与相关性通过案例和实际问题引导学生思考事件之间的独立性和相关性,并讨论它们对事件概率的影响。
步骤四:实际案例分析选择一些与学生生活相关的实际案例,让学生运用所学知识计算事件概率并解决问题。
可以使用小组讨论或个人练的形式。
步骤五:总结和评估对本节课的内容进行总结,并用简单的测试题评估学生对随机数和事件概率的掌握程度。
教学资源- 示意图和实际例子- 计算概率的公式和例题- 实际案例材料教学评估- 教师观察学生的参与情况- 学生的小组讨论和个人练表现- 测试题的成绩评估拓展阅读推荐学生阅读相关的数学书籍和网络资源,深入了解随机事件和概率的更多知识。
结束语本节课旨在培养学生对随机数和事件概率的理解和应用能力。
通过理论与实际案例的结合,学生将获得实际运用概率知识的经验,并培养他们的数学思维和问题解决能力。
《随机事件的概率》公开课教案

《随机事件的概率》公开课教案一、教学内容本节课选自人教版《普通高中数学课程标准实验教科书·数学2》(A版)第四章“概率”的第三节“随机事件的概率”。
具体内容包括:随机事件的定义,频率与概率的关系,以及如何计算简单随机事件的概率。
二、教学目标1. 理解随机事件的定义,能区分不同类型的随机事件。
2. 掌握频率与概率的关系,了解如何通过频率估计概率。
3. 学会计算简单随机事件的概率,并能运用到实际问题中。
三、教学难点与重点重点:随机事件的定义,频率与概率的关系,简单随机事件的概率计算。
难点:如何将实际问题转化为随机事件,并正确计算其概率。
四、教具与学具准备教具:PPT,黑板,粉笔。
学具:练习本,铅笔。
五、教学过程1. 实践情景引入通过一个简单的实验(抛硬币、掷骰子等),让学生观察并记录实验结果,引导学生发现实验中的随机现象,并提出问题:如何描述这些随机现象?2. 知识讲解(1)随机事件的定义:介绍随机事件的定义,让学生理解什么是随机事件。
(2)频率与概率:讲解频率与概率的关系,引导学生通过实验数据来估计概率。
(3)简单随机事件的概率计算:通过例题,讲解如何计算简单随机事件的概率。
3. 例题讲解例题1:抛一枚硬币,求出现正面的概率。
例题2:掷一个骰子,求出现偶数的概率。
4. 随堂练习练习1:投掷两个骰子,求两个骰子的点数之和为7的概率。
练习2:一个袋子里有5个红球,3个蓝球,求从中随机取出一个球,得到红球的概率。
六、板书设计1. 随机事件的定义2. 频率与概率的关系3. 简单随机事件的概率计算4. 例题与练习七、作业设计1. 作业题目(1)抛一枚硬币,求出现反面的概率。
(2)掷一个骰子,求出现奇数的概率。
2. 答案(1)出现反面的概率为0.5。
(2)出现奇数的概率为0.5。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生感受到随机事件在实际生活中的存在。
在讲解知识的过程中,注重理论与实践相结合,让学生在理解知识的同时,学会运用知识解决问题。
《随机事件的概率》教学设计3篇

《随机事件的概率》教学设计作为一名老师,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那要怎么写好教学设计呢?以下是小编为大家收集的《随机事件的概率》教学设计,欢迎大家分享。
《随机事件的概率》教学设计1教学目标知识目标:了解必然事件、不可能事件、随机事件的概念;理解和掌握概率的统计定义及其性质.能力目标:通过不断地提出问题和解决问题,培养学生猜测、验证等探究能力;情感目标:在探究过程中,鼓励学生大胆猜测,大胆尝试,培养学生勇于创新、敢于实践等良好的个性品质。
教学重点与难点重点:理解概率的统计定义及其基本性质;难点:认识频率与概率的区别和联系。
教学过程(一)设置情境、引入课题观察下列事件发生与否,各有什么特点?(教师用课件演示情境)(1)地球不停地转动; 必然发生(2)木柴燃烧,产生能量; 必然发生(3)在常温下,石头风化; 不可能发生(4)某人射击一次,中靶; 可能发生也可能不发生(5)掷一枚硬币,出现正面; 可能发生也可能不发生(6)在标准大气压下且温度低于0℃时,雪融化。
不可能发生定义:在条件S下可能发生也可能不发生的事件叫随机事件;在条件S下必然要发生的事件叫必然事件;在条件S下不可能发生的事件叫不可能事件。
确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示。
(二)探索实践、建构知识让我们来做两个实验:实验(1):把一枚硬币抛多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。
上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):的频数,然后计算各频率。
上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):然后请同学们再以小组为单位,统计好数据,完成表格。
投掷一枚硬币,出现正面可能性究竟有多大?(教师用电脑模拟演示)实验(2):把一个骰子抛掷多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。
《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标:1. 知识与能力:让学生掌握随机事件、概率的基本概念,了解概率的计算方法和应用。
2. 过程与方法:通过教学设计,引导学生使用数学的思维方式解决实际问题,培养学生的逻辑思维和数学建模能力。
3. 情感态度与价值观:培养学生对数学的兴趣,增强学生对概率的认识和应用能力。
二、教学内容:1. 随机事件的概念:介绍随机事件的定义和特征,引导学生了解随机事件的概念和分类。
2. 概率的基本概念:通过例题和实例,让学生了解概率的含义和基本性质,引导学生学会计算简单概率。
3. 概率的计算方法:介绍古典概率和几何概率的计算方法,通过实例让学生了解概率计算的基本步骤和技巧。
4. 概率的应用:通过实际问题和案例,引导学生了解概率在现实生活中的应用场景,培养学生运用概率解决问题的能力。
三、教学过程:1. 导入环节:通过引入一些有趣的概率问题,引起学生的兴趣,如投硬币的概率问题,随机抽奖的概率问题等。
5. 练习与检测:设计一些练习题和测试题,让学生熟练掌握概率计算方法,检测学生的学习效果。
6. 总结与展望:对本节课的内容进行总结,展望下一节课的内容,引导学生对概率知识进行深入学习和探索。
四、教学方法:1. 启发式教学法:通过提出问题和引导思考,启发学生对概率问题的思考和解决。
2. 实例分析法:通过具体的例题和实例,引导学生掌握概率的计算方法和应用技巧。
3. 讨论交流法:通过小组讨论和师生互动,引导学生积极参与教学活动,共同解决难题。
五、教学手段:1. 多媒体教学:利用多媒体教学手段,向学生展示生动有趣的例题和案例,提高学生的学习兴趣和参与度。
2. 实物教具:通过一些实物教具,如纸牌、硬币等,进行概率实验和展示,让学生直观地感受概率问题。
3. 教学软件:利用一些数学软件,如Geogebra、MathType等,进行概率计算和图形展示,帮助学生更好地理解概率知识。
4. 小组讨论:组织学生进行小组讨论活动,促进学生之间的思想碰撞,激发学生学习兴趣和动力。
《随机事件的概率》教学设计

《随机事件的概率》教学设计一、教学目标1. 知识与技能:学生能够掌握随机事件的概率概念和基本原理,能够利用概率公式解决简单的概率问题。
2. 过程与方法:学生能够通过观察、实验和计算,了解随机事件的规律,并能够运用数学知识解决实际问题。
3. 情感态度与价值观:培养学生对数学的兴趣,增强他们对数学的信心,使他们了解数学在日常生活中的应用。
二、教学内容1. 随机事件的概念,随机事件的分类2. 概率的基本原理和性质3. 概率的计算方法4. 概率在日常生活中的应用三、教学重点和难点重点:随机事件的概念和概率的计算方法难点:概率的计算方法的运用四、教学方法和手段1. 讲授法:通过简单清晰的语言和例题,让学生了解随机事件的概念和基本原理。
2. 实验法:通过实际的实验操作,让学生亲自感受随机事件的规律。
3. 综合法:通过案例分析和讨论,让学生了解概率在日常生活中的应用。
五、教学过程1. 创设情境教师通过介绍某次抽奖活动的中奖规则,引出随机事件概率的概念。
让学生通过猜测自己中奖的概率,引发对概率的思考。
2. 教师讲解教师通过简单明了的语言,向学生介绍随机事件的概念、概率的基本原理和性质。
3. 实验操作教师设计一些简单的实验,让学生通过实际操作,了解随机事件的规律。
比如抛硬币的实验、掷骰子的实验等。
4. 计算概率教师向学生介绍概率的计算方法,并通过例题进行讲解,让学生掌握概率的计算方法。
5. 案例分析教师通过日常生活中的一些实例,让学生了解概率在现实生活中的应用,如购彩、抽奖、比赛等。
6. 练习教师布置一些练习题,让学生巩固所学的知识,并通过批改作业的方式检查学生的学习情况。
七、教学工具1. 实验器材:硬币、骰子等2. 教学课件:包括随机事件的概念、概率的计算方法等内容3. 教学案例:购彩、抽奖等实际案例八、教学评价1. 学生的日常表现:学生在课堂上的表现及实验操作的情况2. 练习成绩:学生完成的练习题的成绩3. 教学效果:学生对概率概念和计算方法的掌握情况九、教学反思在教学过程中,要注重培养学生的实际动手操作能力,让他们通过实验和计算,探究随机事件的规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学065 高一年级 7 班教师方雄飞学生《随机事件的概率》教学设计教学目标:1、知识与技能(1)了解随机事件发生的不确定性和频率的稳定性,进一步了解频率的意义及频率与概率的区别;(2)在正确理解随机事件发生的不确定性和频率的稳定性的基础上,能辨析生活中的随机现象,澄清生活中对概率的一些错误认识,并通过做大量重复试验,用频率对某些随机事件的概率进行估计。
2、过程与方法: 通过对现实生活中“掷硬币” “游戏公平性”等问题的探究,体会随机事件发生的不确定性和频率的稳定性,理解概率的统计定义在实际生活中的作用,初步掌握利用数学知识思考和解决实际问题的方法。
3、情感、态度与价值观:通过本节的教学,引导学生用随机的观点认识世界,使学生了解偶然性与必然性的辩证统一,培养辩证唯物主义思想。
教学重点:通过实验活动丰富对频率与概率关系的认识,知道当试验次数较大时,频率稳定于理论概率。
教学难点:收集数据、分析折线图、辩证的理解频率与概率的关系。
教学方法:本节课采用交流合作法,辅之以其它教学法,在探索新知的过程中,通过抛硬币活动来组织学生进行有效的学习,调动学生的积极性,在实验的过程中实现对数据的收集、整理、观察、分析、讨论,最后通过合作交流等方式,归纳出当试验次数大很大时,事件发生的频率稳定一个常数附近。
教学手段:采用多媒体辅助教学,促进学生自主学习,丰富完善学生的认知过程,使有限的时间成为无限的空间。
事先教师准备图表、电脑、硬币等。
教学流程:1.创设情境,体会随机事件发生的不确定性生活实例1:“2016年2月28日,勇士对雷霆,库里超远三分绝杀,将比分定格为121:118”问题1:你能确定神奇的库里在下一场NBA比赛中的超远三分一定能进吗?设计意图从学生感兴趣的生活实例引入,一方面是为了激发学生的听课热情,另一方面也是让学生体会学习随机事件及概率的原因和必要性.生活实例2:“2016年奥运会张梦雪摘得中国军团首金”问题2:为什么射击比赛中每一枪都如此扣人心弦呢?设计意图:奥运会是社会热点话题,可以增强学生的国家自豪感.生活实例3:“足球比赛中我们常用抛硬币的方式决定优先权”问题3:那么能够预先确定谁获胜吗?设计意图:回到学生身边.从生活体验中归纳共性,包含了综合、概括、比较等分析过程,是形成概念的有效途径.因此在这一阶段通过创设情境唤起学生的兴趣,使他们身处现实情境中,为后续的思维活动建立起感性认识基础.2.归纳共性,形成随机事件的概念问题4:从结果能够预知的角度看,能够发现以上事件的共同点吗?设计意图有了前面的基础,此时学生能够有效的概括、抽取上述生活体验的共性.在数学上研究事件时,主要关注在相应的条件下,事件是否发生,因此在提问时明确思考的角度,让学生的思维直指概念的本质,避免不必要的发散.问题5:以上这些事件都是可能发生也可能不发生的事件.那么在自己的身边,还能找到此类的事件吗?(学生举例)问题6:有没有不属于此类的事件呢?(学生举例必然事件和不可能事件)通过以上思考,发现事件可以分为以下三类:必然事件:在一定的条件下必然要发生的事件;不可能事件:在一定的条件下不可能发生的事件;随机事件:在一定的条件下可能发生也可能不发生的事件.设计意图在形成概念之前,通过主动的思考,在自己身边举例,巩固学生对随机事件的思维基础;二是通过对比,明确事件分类的标准和概念之间的差异.例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1) “在地球上,抛出的石头会下落”;(2) “中山市明天天晴”;(3) “如果a>b,那么a-b>0”; (4) “打开电视机,正在播放新闻”;(5) “手电筒的的电池没电,灯泡发亮”;(6)“某电话机在1分钟内收到2次呼叫”;(7)“没有水份,种子能发芽”;(8) “随机选取一个实数x,得|x|≥0”.(9)“在三角形中,大边对大角”;(10) “从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;必然事件有;不可能事件有;随机事件有设计意图形成概念之后,让学生积极主动参与到课堂,认识新知,初步感受成功的喜悦.3.深入情境,体会随机事件的规律性我们看到,随机事件在生活中是广泛存在的,时刻影响着我们的生活.正因为体育比赛中充满了随机事件,而让比赛更加刺激、精彩,让观众更加紧张投入;因为每天的校园生活充满了随机事件,而让我们的校园生活兴奋而新奇;也正因为人生道路上充满了随机事件,而让我们每个人的人生各有各的不同,各有各的精彩.同时,我们身边也有一些富有悲凉色彩的随机事件,那我们是不是因此而心中时刻都充满着恐慌呢?实现自己的目标这也是个随机事件,那么我们是不是就因此而放弃了今天的努力了呢?设计意图这一段教学首先呈现了随机事件带给人们丰富多彩的生活,体现了教师对数学、对概率的喜爱和热情,传递给学生学习数学的积极态度.其次,这段教学既是对前面内容的总结,也引出了下面研究思考的方向,起到承上启下的作用,同时也就揭示了人们认识随机事件的过程,以及随机事件随机性和规律性之间的联系.第三,通过反问,使学生意识到,生活的不断体验已经使我们积累了一些对随机事件规律性的感性认识,那么接下来就是要挖掘出这些感性认识下面的理性依据,以这种方式激发学生对生活经验的反思和探究,同时帮助学生形成正确的世界观.回到最开始的三个实例中,反思其中包含着哪些对随机事件规律性的感性认识,以此为基础进行理性思考.问题7:提出问题,引发思考:(1)既然三分球的命中有随机性,为什么要选择库里来投这个决定成败的三分球而不是其他队员呢?(2)既然每个人参加奥运会获得金牌都是随机事件,为什么派张梦雪来参加奥运会而不是其他人?(3)为什么抛硬币决定球权对双方是公平的?再次抽取共性,形成抽象概念:从同学们的回答中,可以体会到,事件发生的可能性有大小之分,是可以比较的,从而抽象出可以用数量表示事件发生的可能性的大小,这就是概率的意义.设计意图借助前面的事例,减少课堂的阅读量和重复思维量,提高了课堂效率,增强了规律性与随机性的对比.并且三个问题在学生看来是很容易回答的,这恰恰说明概率的雏形在生活实践中已经产生,同时这样的问题也更有利于学生对概率概念本身的把握,抽象过程就变得顺其自然了.4.层层深入,形成概率的统计定义问题8:生活中“库里投三分球命中的概率高于其他球员”的经验是如何得到的呢?(库里三分球命中率高),那么三分球命中率是如何计算的呢?(三分球命中率=投中次数/投篮次数),实际上在数学里三分球命中率是三分球命中这个事件的频率,从而引出数学中频数与频率的概念.设计意图基于初中的学习,有些学生具备了用试验频率来估计概率的经验.但对于“为什么可以这样做”,缺乏思考,导致在分析问题、分析数据时会出现偏差.因此从学生熟悉的命中率入手,首先说明这种方法来源于生活经验,为接下来的探讨做准备.问题9:足球比赛中我们常用抛硬币的方式决定哪队先开球,这样公平吗?(公平)说明我们认为这样的情况下每一对开球的概率都是0.5,现在就让我们通过一个数学实验验证一下.[数学试验]在平整的桌面上,随机抛一枚硬币20次,统计正面向上的次数与频率.设计意图:从学生身边的事情出发,更容易引发学生的兴趣,同时,学生的亲身体验和直观观察,更有利于概念的形成,以及对规律的认同.激发学生分析随机事件规律性的主动性.问题10: 每一组试验的结果一致吗?为什么?(随机试验的随机性)问题11: 如果我们合并前两组的实验结果,相当于我们一共进行了40次试验,我们可以统计这40次试验,正面向上的频率,以此类推,我们就可以统计出我们进行60次,80次……试验,正面向上出现的频率,再形成散点图,大家观察频率值有什么规律性?( 形成概率的统计定义:一般地,在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在[0,1]中的某个常数附近摆动,随着试验次数的增加,频率逐渐稳定于这个常数,这时就把这个常数叫做随机事件A的概率,记做P(A) )设计意图这一段是本节内容的难点,需要把对数据、图表的直观印象转化为抽象的概率定义.之所以可以用大量重复试验的频率来估计概率,是因为在数、图中累积数据的频率体现出了一定的“稳定性”,即规律性,使得我们能够从图表中大致判断出事件概率的范围、具体大小.这里首先还是坚持从多组数据中抽取共性来形成概念,其次注重数与形的相互转化,把图形上的规律用数去描述,把数据上的规律用图形去验证,更为清晰的表现出频率在常数附近摆动的规律.问题12:随机事件出现的频率会随试验的不同而不同吗?(频率的随机性)问题13: 随机事件出现的概率会随试验的不同而不同吗?(概率是客观存在的确定的常数)问题14: 随机事件出现的频率与概率有什么联系吗?(概率是频率的稳定值,频率是概率的估计值) 5. 学以致用,正确理解概率的意义(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?练习1、下列事件:(1)口袋里有伍角、壹角、壹元的硬币若干枚,随机地摸出一枚是壹角。
(2)在标准大气压下,水在90℃沸腾。
(3)射击运动员射击一次命中10环。
(4)同时掷两颗骰子,出现的点数之和不超过12。
其中是随机事件的有()A、(1)B、(1)(2)C、(1)(3)D、(2)(4)练习2、抛掷一枚硬币出现正面的概率为0.5,下列说法对吗?(1)那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。
(2)连续出现5次正面向上,那么下次出现反面向上的概率大于0.5.设计意图通过对实例的归纳和辨析对新问题的特性形成陈述性的理解,继而与原有的知识结构相互联系,帮助学生体会随机事件的随机性和规律性是不矛盾的,是辨证统一的,即随机事件在一次试验中体现出随机性,在大量重复试验中体现出规律性.6.小结问题15:学习了这节课,你都有哪些收获?通过本节课的学习,其实,除了知识层面的收获之外,我想我们每一位同学都深刻体会到了,虽然很多现象貌似是偶然,个别的,但是透过现象看本质,这一个个现象背后往往隐藏着重要的规律,只是需要我们拥有一颗勇于探索与实践的心,那就离它更近一步了。
设计意图:通过本节课的学习让学生体会其中蕴含的哲学道理以及培养学生的探索与实践的精神与意识.7.作业8.板书设计。