泛函分析中的概念和命题
浅析泛函分析的基本概念

浅析泛函分析的基本概念泛函分析是现代数学中的一个重要分支, 它研究的是无限维空间上的函数集合, 以及函数与函数之间的关系, 使我们能够描述、研究和解决很多实际问题. 泛函分析独有的优点在于它能够描述和处理各种各样的无限维问题, 能够更加完美地对函数序列或函数空间上的各类性质进行分析, 而且很多经典数学中不能解决的问题, 泛函分析却能够给出解决的方案.泛函分析的基本概念主要包括:向量空间、集合、范数、内积、正交、测度、函数空间等等.以下是这些概念的具体阐述: 1. 向量空间向量空间是指一个满足一定公理的集合,其中这些公理一般包括向量运算的封闭性、加法结合律和交换律、零向量的存在、负向量的存在等等. 这些公理使得向量空间在进行加法和数乘运算时能够满足特定的条件.2. 范数范数是将向量空间中的向量映射到实数集合上的函数, 它通常定义为一个函数||·|| : V → R ,使得对于向量空间V中的任意两个向量,它们的范数都会有一定的关系,这关系通常包括非负性、齐次性和三角不等式等三个条件. 知道向量的范数, 可以想象向量在向量空间中的长度.3. 内积内积是向量空间中的两个向量进行一种数乘运算得到的数. 通常表示为(x, y) .内积可以描述两个向量在几何意义上是夹角余弦值. 从而可以定义正交和两个向量之间的距离.4. 正交在向量空间中, 如果两个向量的内积为0, 则这两个向量互相称之为正交向量. 在物理、机械等领域, 这个概念是经常用到的, 比如向量空间中的两个力相对偏轴正交等等,都是通过正交概念来进行描述的.5. 测度测度是将集合映射为其在一定空间上的数字性质.测度通常用于描述空间上的某些性质,如长度、面积、体积等,它们都是通过某种测度来进行度量的.这个概念经常用于描述概率论、拓扑学、微积分等领域中的问题.6. 函数空间函数空间是指一类函数的集合,函数空间中的元素是函数. 这些函数在某些特定的条件下,可以构成一个向量空间.通过对函数空间的研究, 可以得到很多关于函数性质的结论.总之,泛函分析中涉及的基本概念非常多,范围也很广.我们无法在短时间内全部理解, 因此需要不断地进行学习、思考、理解与探索, 才能真正掌握这门学科.。
泛函分析总结范文

泛函分析总结范文泛函分析是数学中的一个重要分支领域,主要研究无穷维空间上的函数和算子的性质及其应用。
泛函分析是分析学、线性代数和拓扑学的交叉学科,涉及了大量的数学工具和理论。
本文将对泛函分析的基本概念、主要内容和一些典型应用进行总结。
泛函分析的基本概念主要包括:线性空间、范数、完备性等。
线性空间是泛函分析的基础,它是一个向量空间,具有加法和标量乘法运算,并且满足数乘和向量加法的线性性质。
范数是用来度量线性空间中向量的大小的一种方法,它满足非负性、齐次性和三角不等式等性质。
完备性是指拓扑空间中的序列具有极限,即序列的极限点也在该空间中。
泛函分析的主要内容包括:线性算子、连续算子、紧算子、Hilbert空间、巴拿赫空间等。
线性算子是将一个线性空间映射到另一个线性空间的映射,它保持向量的线性性质。
连续算子是一种满足一些特定性质的线性算子,它能够保持拓扑性质不变。
紧算子是一种特殊的连续算子,它将有界集映射为列紧集。
Hilbert空间是一种完备的内积空间,具有内积和范数的结构,它在量子力学和信号处理等领域有广泛应用。
巴拿赫空间是一种完备的范数空间,它在泛函分析和函数论中起着重要作用。
泛函分析的典型应用主要包括:函数逼近、偏微分方程、优化问题等。
函数逼近是利用泛函分析的方法来研究函数序列的极限性质,它在信号处理和图像处理等领域有广泛应用。
偏微分方程是描述自然界中各种现象的重要数学模型,通过泛函分析的方法可以研究其解的存在性和唯一性等性质。
优化问题是在给定一定条件下寻求最优解的问题,泛函分析可以提供寻找最优解的方法和工具。
总之,泛函分析是数学中重要的分析工具和理论体系,它对于理解和解决现实问题具有重要意义。
通过研究线性空间、范数、完备性、线性算子、连续算子、紧算子、Hilbert空间、巴拿赫空间等概念,可以建立起一套完整的理论框架。
通过应用泛函分析的方法和理论,可以解决函数逼近、偏微分方程、优化问题等实际问题。
泛函分析中的概念和命题

泛函分析中的概念和命题赋范空间,算子,泛函定理:赋范线性空间是有限维的当且仅当它的单位球是列紧的;有限维赋范线性空间上的任两个范数是等价的;有限维赋范线性空间是Banach 空间.定理:M 是赋范线性空间X,|| || 的一个真闭线性子空间,则0, y X,|| y|| 1,使得:|| y x|| 1 , x M定理:设X 是赋范线性空间,f 是X 上的线性泛函,则1. f X * N f {x X | f x 0}是X的闭线性子空间2. 非零线性泛函f x 是不连续的N f 在X中稠密定理:X ,Y是赋范空间,X { }, 则Y是Banach空间 B X,Y 是Banach空间X ,Y, Z是赋范空间, A B X,Y ,B Y,Z ,则AB B X,Z ,且||AB || || A||||B || 可分B空间:L P 0,1,l p 1 p ,c,c0,C a,b 可分L 0,1,l 不可分Hahn-Banach 泛函延拓定理设X 为线性空间,p是定义在X上的实值函数,若:(1) p x y p x p y , x, y X ,则称p为次可加泛函(2) p x p x , 0, x X ,则称p为正齐性泛函(3) p x | | p x , K, x X ,则称p为对称泛函实Hahn-Banach 泛函定理: 设X 是实线性空间,p x 是定义在X 上的次可加正齐性泛函,X0是X 的线性子空间,f 0是定义在X 0上的实线性泛函且满足f0 x p x x X0 ,则必存在一个定义在X 上的实线性泛函f ,且满足:1.f0 x p x x X2. f x f0 x x X0复Hahn-Banach 泛函定理: 设X 是复线性空间,p x 是定义在X 上的次可加对称泛函,X 0 是X 的线性子空间,f0 是定义在X 0上的线性泛函且满足| f0 x | p x x X0 ,则必存在一个定义在X 上的线性泛函f ,且满足:1.| f0 x | p x x X2. f x f0 x x X0定理: 设X是线性空间,若X { },则在X上必存在非零线性泛函。
数学中的泛函分析

数学中的泛函分析泛函分析是数学领域中的一个重要分支,它研究的是函数的空间,以及这些函数之间的性质和关系。
在数学和物理学等领域中,泛函分析被广泛应用于函数的极限、连续性、收敛性以及变分法等问题的研究中。
本文将从泛函分析的基本概念和定理开始,逐步深入探讨其应用领域及重要性。
一、泛函分析的基本概念泛函分析主要研究函数的空间,它将函数看作是向量,通过构建合适的范数和内积,使这些函数构成一个完备的向量空间,称之为函数空间。
泛函分析中的基本概念包括:范数、内积、赋范空间、内积空间以及希尔伯特空间等。
1.1 范数在泛函分析中,范数是衡量向量长度的一种方式,它具有非负性、同一性以及三角不等式等性质。
泛函分析中经常用到的范数有:欧几里得范数、p-范数、无穷范数等。
1.2 内积内积是用于定义向量之间夹角和长度的一种数学工具,它具有对称性、线性性、正定性等性质。
泛函分析中的内积可以用于定义向量的正交性、投影性质以及构造正交基等。
1.3 赋范空间赋范空间是指在向量空间中引入一个范数后所得到的空间。
赋范空间具有向量空间的性质,并且可以通过范数来度量向量之间的距离。
1.4 内积空间内积空间是指在向量空间中引入一个内积后所得到的空间。
内积空间具有赋范空间的性质,并且可以通过内积来度量向量之间的夹角。
1.5 希尔伯特空间希尔伯特空间是一种特殊的内积空间,它是完备的。
在希尔伯特空间中,可以定义距离、收敛性以及正交性等概念。
二、泛函分析的定理及应用泛函分析通过引入范数和内积等工具,对函数空间中的函数进行研究,为解决各种数学问题提供了有效的方法和定理。
以下将介绍几个泛函分析中的重要定理及其应用。
2.1 巴拿赫空间及其应用巴拿赫空间是泛函分析中普遍使用的一种函数空间。
在巴拿赫空间中,可以定义极限、连续性以及收敛性等概念,并且具有良好的完备性和紧性等性质。
巴拿赫空间的重要应用之一是在函数逼近问题中,通过在巴拿赫空间中构造逼近序列,可以获得函数逼近的最优结果。
研究生泛函分析总结

研究生泛函分析总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和函数空间的理论。
它的应用涉及到许多领域,如量子力学、信号处理、图像处理等。
在研究生阶段,我们对泛函分析进行了深入学习和研究,下面是我对泛函分析的总结:一、泛函的概念和基本理论:1.泛函的定义:泛函是定义在一个函数空间上的函数,它将函数映射到实数集上。
2.泛函的性质:线性、有界、正则。
3.泛函的例子:函数的积分、导数、极大极小值等都可以视作泛函。
4.函数空间的定义:函数空间是一组满足一定性质的函数的集合。
5.多个函数空间的关系:包含关系、并集、交集等。
二、线性算子和函数空间:1.线性算子的定义:线性算子是将一个函数空间映射到另一个函数空间的线性变换。
2.线性算子的性质:线性、有界、正则。
3.压缩映射定理:压缩映射在完备度量空间上具有不动点,且不动点唯一4.单正则线性算子:定义、性质、例子。
三、Hilbert空间:1. Hilbert空间的定义:Hilbert空间是一个完备的内积空间。
2.内积的定义和性质:正定性、对称性、线性性等。
3. Hilbert空间的例子:L2空间、离散函数空间等。
4.切比雪夫不等式:内积的有界性和L2空间中的函数收敛性。
5. 基映射和完备性:基映射是将元素展开为基函数的系数,Hilbert 空间的完备性意味着可以用无限维的元素表示。
四、广义函数和分布理论:1.广义函数的定义:广义函数是泛函的推广,它是一种对一般函数进行推广的概念。
2.分布的性质:线性、有界、正则。
3. 分布的例子:Dirac函数、Heaviside函数等。
4.分布的导数和积分:广义函数的导数和积分的定义和性质。
五、Sobolev空间:1. Sobolev空间的定义:Sobolev空间是一组定义在Lp空间中,具有弱导数的函数的集合。
2. Sobolev空间的性质:线性、有界、正则。
3. Sobolev空间的例子:H1空间、H2空间等。
泛函分析的要点

泛函分析的要点泛函分析是数学中的一个重要分支,它研究的对象是函数的集合,而不是单个函数。
泛函分析在现代数学和物理学中有着广泛的应用,涉及到函数空间、算子理论、傅立叶分析等多个领域。
本文将介绍泛函分析的基本概念、重要定理以及应用领域,帮助读者更好地理解这一学科。
1. **范数空间与内积空间**在泛函分析中,最基本的概念就是范数空间和内积空间。
范数空间是一个赋范线性空间,其中定义了一个范数,用来衡量向量的大小。
常见的范数空间包括欧氏空间、无穷范数空间等。
内积空间是一个带有内积运算的向量空间,内积可以衡量向量之间的夹角和长度,常见的内积空间包括希尔伯特空间等。
2. **泛函与泛函空间**泛函是定义在向量空间上的实数或复数值函数,泛函可以看作是向量的广义化,它将向量映射到实数或复数域上。
泛函空间是所有满足一定条件的泛函构成的空间,常见的泛函空间包括连续函数空间、可积函数空间等。
3. **巴拿赫空间与希尔伯特空间**巴拿赫空间是完备的赋范线性空间,任何柯西序列在该空间中都有极限。
希尔伯特空间是一个完备的内积空间,具有良好的几何性质,是量子力学中常用的数学工具。
4. **泛函分析的重要定理**泛函分析中有一些重要的定理,如开映射定理、闭图像定理、泛函分析基本定理等,这些定理为泛函分析的发展奠定了坚实的基础,也在实际问题的求解中发挥着重要作用。
5. **泛函分析的应用**泛函分析在数学、物理、工程等领域有着广泛的应用。
在数学中,泛函分析为其他学科提供了重要的工具和方法论基础;在物理学中,泛函分析被广泛运用于量子力学、热力学等领域;在工程学中,泛函分析被用于信号处理、优化问题等方面。
总之,泛函分析作为数学的一个重要分支,具有广泛的应用前景和深远的理论意义。
通过深入学习泛函分析的基本概念和重要定理,可以更好地理解现代数学和物理学中的许多问题,为解决实际应用中的复杂难题提供有力支持。
希望本文能够帮助读者对泛函分析有一个初步的了解,激发对这一学科的兴趣与探索欲望。
泛函分析知识点总结

泛函分析一,距离空间定义1.1.1设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。
1.2设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。
1.3d(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y的数列收敛到y,则这个距离关于x,y的二元函数也收敛。
(利用三角不等式证明)2.1开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。
有界集:称A为有界集,若存在一个开球,使得A属于这个开球。
内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。
开集:称G为开集,若G中的每一个点都是它的内点。
闭集:开集的补集就是闭集。
(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。
)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。
全空间和空集即使开集也是闭集。
任意个开集的并是开集,有限个开集的交是开集。
任意个闭集的交是闭集,有限个闭集的并是闭集。
等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。
连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。
若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。
映射T是连续的等价于值域里的开集的原像仍然是开集。
接触点:点x0称为A的接触点,若存在一个x0的开球与A的交不为空集。
(点x0可以属于A,也可以不属于A)聚点:点x0称为点A的聚点,若存在点x0的任意一个开球与A\{x0}的交不为空集。
试析泛函分析的基本概念

试析泛函分析的基本概念1 空间与算子在空间y中,以距离的定义为起始。
假定输入值x∈X,就能够按照既定的模型(算子T)来计算出输出y=Tx,进一步的通过实际的测量就能够得到真实的输出通过实测得到的真实输出y*,这个过程中就涉及到一个关键点,即怎样明确的得到预测的偏差以及对模型结论的好坏的评价。
当距离设定好后,就要面对其所在的空间是否满足所需的要求。
在实空间中对一个笔的尺寸进行测量,其测量结果可以精确至无穷数。
而在数学的理念中,测试的精度是程“无限”的概念。
这就意味着在实际的过程中需要采用无理数进行表示该空间中的极限状况。
所以我们对笔尺寸的测量既有测量结果无限符合其实际尺寸,又有无法测量其真实尺寸。
从认知论出发,这是一个错误的结果,但在空间中,从元素的立场看其是非常科学的。
在实际的应用中还需要对算子的有界和连续进行掌握。
算子的有界性是指其所在的空间模型对初始的偏差和错误数据做无限处理;算子的连续性是指测量数据近似于实际值时,模型的输出数据也与实际值想接近。
在算子中,需要对于泛函分析中的“逆算子定理”需要进行了解和掌握。
“逆算子定理”时指在Banach空间X、Y上的有界的线性算子T∈L,而其逆算子T-1∈L 同样属于有界的线性算子。
在“逆算子定理”中,Banach空间中有界线性算子T 若为双射,就一定会有相应的逆算子T-1,而且算子的连续性具有一致性。
逆算子T-1的连续性在实际的应用中非常的关键,当T-1不是连续的算子时,依据设定的y值没有办法找出这种错误的因素x。
甚至可以将其视为连个不一样的输入值x1以及x2都会产生基本上一致的输出值y1和y2,这就会对最终的判断造成误导或影响。
2 算子的收敛性在算子收敛性的探析中,把分析的目标置于准确模型T*以及经验模型T中。
那在这个过程中,对于经验模型与准确模型间的差距具体的差异性,通常是以算子的收敛性进行分析和理解的。
在准确模型T*不确定的情况下,利用经验模型T 把输入值x计算Tx,通过对比就可以得出那个更接近与真实T*x,也就可以达到评价那个模型好坏的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析中的概念和命题赋范空间,算子,泛函定理:赋范线性空间是有限维的当且仅当它的单位球是列紧的;有限维赋范线性空间上的任两个范数是等价的;有限维赋范线性空间是Banach 空间.定理:M 是赋范线性空间()||||,⋅X 的一个真闭线性子空间,则,1||||,,0=∈∃>∀y X y ε使得: M x x y ∈∀->-,1||||ε定理:设X 是赋范线性空间,f 是X 上的线性泛函,则1.*X f ∈()()的闭线性子空间是X x f X x f N }0|{=∈=⇔ 2.()()中稠密在是不连续的非零线性泛函X f N x f ⇔定理:()空间是空间是则是赋范空间,Banach ,Banach },{,Y X B Y X Y X ⇔≠θ()()()||||||||||||,,,,,,,,B A AB Z X B AB Z Y B Y X B A Z Y X ≤∈∈∈且则是赋范空间,可分B 空间:()()[]可分b a C c c p l L p P ,,,,1,1,00∞<≤ ()∞∞l L ,10,不可分 Hahn-Banach 泛函延拓定理设X 为线性空间,上的实值函数是定义在X p ,若:(1)()()()()为次可加泛函则称p X y x y p x p y x p ,,,∈∀+≤+(2)()()()为正齐性泛函,则称p X x x p x p ∈∀≥∀=,0,ααα (3) ()()()为对称泛函,则称p X x x p x p ∈∀∈∀=,K ,||ααα 实Hahn-Banach 泛函定理: 设X 是实线性空间,()x p 是定义在X 上的次可加正齐性泛函,0X 是X 的线性子空间,0f 是定义在0X 上的实线性泛函且满足()()()00X x x p x f ∈∀≤,则必存在一个定义在X 上的实线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤02. ()()()00X x x f x f ∈∀=复Hahn-Banach 泛函定理: 设X 是复线性空间,()x p 是定义在X 上的次可加对称泛函,0X 是X 的线性子空间,0f 是定义在0X 上的线性泛函且满足()()()00||X x x p x f ∈∀≤,则必存在一个定义在X 上的线性泛函f ,且满足:1.()()()X x x p x f ∈∀≤||02. ()()()00X x x f x f ∈∀=定理: 设X 是线性空间, 若}{θ≠X , 则在X 上必存在非零线性泛函。
Hahn-Banach 延拓定理: 设X 是赋范线性空间, 0X 是X 的线性子空间,0f 是定义在0X 上的有界线性泛函,则必存在一个定义在X 上的有界线性泛函f ,满足:1.0||||||||0X f f =2. ()()()00X x x f x f ∈∀=定理:设X 是赋范线性空间,M 是X 的线性子空间,(),0,,00>=∈d M x X x ρ则必有 *X f ∈,满足:(1)()()1||||)3()2(,00==∈∀=f d x f M x x f ;;定理:设X 是赋范空间,()1||||||,||,},{00*0==∈∃-∈∀f x x f X f X x 使必θ定理:设X 是赋范空间,1}||||,|)(sup{|||||,*000=∈=∈∀f X f x f x X x :必有凸集分离定理极大线性子空间:一个线性空间的子空间,真包含它的线性空间是全空间超平面:它是线性空间中某个极大线性子空间对某个向量的平移,也称极大线性流形 承托超平面:的在点凸集0x E 承托超平面0x L L E L 有公共点的一侧,且与在是指 Minkowski 泛函:上作一个点的凸子集,在的含有是是线性空间,设X X M X θ 取值于],0[+∞的函数: ()()X x M xx p ∈∀∈>=},|0inf{λλ与M 对应,称函数p 为M 的Minkowski 泛函定理:L 是赋范空间X 的(闭)超平面⇔存在X 上的非零(连续)线性泛函f 及()}|{,,r x f X x H H L R r r f rf =∈==∈其中使Hahn-Banach 定理的几何形式: 设X 是赋范空间,E 是X 的具有内点的真凸子集,又设00,x E E X x 与离则必存在一个超平面分-∈定理:设X 是赋范空间,;具有内点,且的两个非空凸集,是和φ=⋂F E E X F E 0则 F E H X f s sf 和分离使得超平面及},{R *θ-∈∈∃Ascoli 定理:设X 是赋范空间,E 是X 的真闭凸子集,则R ,,*0∈∈∃-∈∀αX f E X x 适合()()()E x x f x f ∈∀<<,0α Mazur 定理:设X 是赋范空间,E 是X 的一个有内点的凸子集,F 是X 的一个线性流形,又设的一侧在,使的闭超平面则存在一个包含L E L F F E ,0φ=⋂定理:设X 是赋范空间,E 是X 的一个含有内点的闭凸集,则通过E 的每个边界点都可以作出E 的一个承托超平面 基本定理定理:()()()εθθε,1,,0,Banach ,O TB Y X B T Y X ⊃>∃∈使得是满射,则空间,是设 开映射定理:()是开映射是满射,则空间,是设T Y X B T Y X ,Banach ,∈Banach 逆算子定理:()()Y X B T Y X B T Y X ,,Banach ,1∈∈-是双射,则空间,是设 等价范数定理:设X 是线性空间,1||||•和2||||•是X 上的两个范数,若X 关于这两个范数都成为Banach 空间,而且2||||•强于1||||•,则1||||•也强于2||||•,从而1||||•和2||||•等价闭算子:是赋范空间,设Y X ,()的映射,到是Y X T D T ⊂若T 的图像()()}|,{T D x Tx x ∈是赋范线性空间Y X ⨯中的闭集,则称T 是闭映射或闭算子闭算子判别定理:设Y X ,是赋范空间,()⇔⊂是闭映射的映射,则到是T Y X T D T (),}{T D x n ⊂∀若()00000,,Tx y T D x Y y Tx X x x n n =∈∈→∈→,且则闭图像定理:空间,是设Banach ,Y X ()的线性映射到是Y X T D T ⊂,而且是闭算子,若 ()T D 是X 的闭线性子空间,则T 是连续的定理:空间,是设Banach ,Y X 的线性算子到是Y X T ,则T 连续⇔T 是闭算子 共鸣定理:空间,是设Banach X Y 是赋范空间,().,,Λ∈∈λλY X B T 如果X x ∈∀,都有 有界:则}||{||,||||sup Λ∈+∞<Λ∈λλλλT x T自反空间与共轭算子除声明外下面的Y X ,都是一般的赋范线性空间共轭空间:[]()[]()共轭,,q p p b a C l c c l l L L q p q P ,,1b ,a V ,,)(,)(,)(0*1*0***∞<≤===== 伴随算子:()()()()||||||||,,*******T T X Y B T f f T Tx f x f Y X B T =∈==∈,,,, 1.()()||||||||,,,**********T T T T X X T T X B T ==∈的延拓且是则的子空间看成若将记 2.()()1**1*)(,--=⇔∈T T T T Y X B T 有有界逆,且此时有有界逆,则3.()()的保范线性算子到是由映射***,,X Y B Y X B A A4.()()()***,,,,A B AB Z Y B B Y X B A =∈∈则若 定理:若)(11*不自反,可分。
可分,则l L X X ⇒;X 是Banach 空间,自反自反X X ⇔* 自反空间的闭线性子空间是自反空间自然嵌入映射**x x →:τ是赋范空间X 到**X 的保范的有界线性算子,即:||||||||**x x =Riesz 表示定理:设X 是局部紧空间,()()则:时,},|sup{|||||X x x f f X C f c ∈=∈ (1) 若()X C c 是ϕ上的正线性泛函,则存在X 上一个正则Borel 测度u ,使得对任()X C f c ∈都有()⎰=u f f d ϕ(2) 若()*X C c ∈ϕ,则存在X 上一个广义正则Borel 测度u ,使()⎰=u f f d ϕ(3) 若()X C c 是X 上具有紧支集的复连续函数空间,则对()X C c 上任一有界复线性泛函ϕ,存在复正则Borel 测度u ,使()⎰=u f f d ϕ弱收敛和弱列紧基本概念:弱收敛;算子列的一致收敛,强收敛,弱收敛;泛函列的*弱收敛;弱列紧;局部弱列紧;*弱列紧;局部*弱列紧定理:设()()当且仅当:强收敛于某个空间,是Y X T Y X B T Y X n ,B ,}{Banach ,∈⊂1.() ,3,2,1||||0||}{||=≤>n M T M T n n ,使有界,即有2.收敛,,使中的稠集存在}{x T D x D X n ∈∀ 定理:设当且仅当:弱收敛于某个则空间,是***}{,}{Banach X f f X f X n n ∈⊂1.有界;||}{||n f2.()收敛,,使中的稠集存在}{x f D x D X n ∈∀ 定理:设当且仅当:弱收敛于某个是赋范空间,则X x X x X n ∈⊂}{1.有界;||}{||n x2.()()x f x f D f D X n 收敛于,有,使中的稠集存在}{*∈∀定理:设,}{X x X x X n ∈⊂弱收敛于某个是赋范空间,则存在由}{n x 的凸组合构成的点列使其强收敛到x ,且||||lim ||||n n x x ∞→≤ 定理:可分赋范空间的共轭空间是局部*弱列紧的;自反空间是局部弱列紧的Hilbert Space 基本概念:除声明外下面所涉及的空间都是Real or Complex Hilbert Space X内积:一个(数域K 上)线性空间X 上的内积指的是共轭双线性泛函:K →⨯X X ,它满足正定性和共轭对称性。
内积空间:定义了内积的线性空间。
定义了内积的复(实)线性空间称为复(实)内积空间。
内积导出的范数满足平行四边形公式。
内积(按内积导出的范数)是X X ⨯上的连续函数.若由内积导出的范数是完备的,这样的内积空间称为Hilbert 空间定理:设()()⋅⋅,,X 是内积空间,||||⋅是由内积()⋅⋅,导出的范数,则||||⋅与()⋅⋅,满足如下关系:当X 是实线性空间时,()()X y x y x y x y x ∈∀--+=,,||||||||41,22当X 是复线性空间时,()()X y x iy x i iy x i y x y x y x ∈∀--++--+=,,||||||||||||||||41,2222 极化恒等式:()()()()()[]iy x iA iy x iA y x A y x A y Ax --++--+=41,,()()x Ax x A ,= 定理:为了在赋范线性空间()||||,⋅X 中引入内积()⋅⋅,,使得由()⋅⋅,导出的范数就是||||⋅,当且仅当||||⋅满足平行四边形公式:()2222||||||||2||||||||y x y x y x +=-++定理:设()()⋅⋅,,X 是内积空间,M 是X 的非空子集,()X n y y x n ∈= ,2,1,,,则1.222||||||||||||y x y x y x +=+⇒⊥ 2.()y x y y n y x n n ⊥⇒→=⊥,,2,1 3.M x M x span ⊥⇒⊥ 4.()⊥⊥⊥⊥=⊂M M M M , 5.}{θ=⇒⊥M X M 中稠在 6.()⊥⊥⊥=spanM M X M 的闭线性子空间,且是 定理:设X 是希尔伯特空间,M 是X 的非空闭凸子集,则M y X x o ∈∃∈∀唯一的,,使得()}||inf{||,||||0M y y x M x y x ∈-==-:ρ正交分解定理:设M 是希尔伯特空间X 的一个闭线性子空间,X x ∈∀,存在唯一的正交分解:⊥⊥⊕=∈∈+=M M X M x M x x x x 即:),,(,1010定理:设()()⋅⋅,,X 是希尔伯特空间,M 是X 的线性子空间,则:1.()M M =⊥⊥2. }{θ=⇔⊥M X M 中稠在定理:系中必存在完备标准正交空间}){(θ≠H H H ilb ert定理:假定}|{Λ∈=ααe S 是中的标准正交系空间H H ilb ert ,那么.H x ∈∀有Parseval 不等式:∑Λ∈≥αα2||||2||||c x定理:}|{Λ∈=ααe S 是中的完备标准正交系空间H Hilbert ,⇔.H x ∈∀有Fourier 展开式和Parseval 等式:∑Λ∈=∑Λ∈=ααααα2||||2||||,c x e c x ,其中:()()系数的称为Fourier ,x e x c Λ∈=ααα。