湘教版 学案 1.1.1 命题的概念和例子
湘教版 作业 1.1.1 命题的概念和例子

1.1命题及其关系1.1.1命题的概念和例子一、基础达标1.下列语句是命题的是()A.2012是一个大数B.若两直线平行,则这两条直线没有公共点C.对数函数是增函数吗?D.a≤15答案 B解析A、D不能判断真假,不是命题;B能够判断真假而且是陈述句,是命题;C是疑问句,不是命题.2.下列命题是真命题的是()A.{∅}是空集B.{x∈N||x-1|<3}是无限集C.π是有理数D.x2-5x=0的根是自然数答案 D解析x2-5x=0的根为x1=0,x2=5,均为自然数.3.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是正确的.如果把α、β、γ中的任意两个换成直线,在所得的命题中,真命题有() A.0个B.1个C.2个D.3个答案 C解析把α、β换成直线a、b时,则该命题可改写为“a∥b,且a⊥γ⇒b⊥γ”,由直线与平面垂直的判定定理可知,该命题是正确的;把α、γ换成直线a、b时,则该命题可改写为“a∥β,且a⊥b⇒β⊥b”,它是判断直线与平面的位置关系的,显然是错误的;把β、γ换成直线a、b,则该命题改为“a∥α,b⊥α⇒a⊥b”,显然成立.4.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 ①是真命题;②标准差除了与平均数有关,还与各数据有关,是假命题;③圆心到直线的距离等于半径,所以直线与圆相切,是真命题.5.已知a 、b 为两条不同的直线,α、β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中的假命题是________.①若a ∥b ,则α∥β ②若α⊥β,则a ⊥b③若a 、b 相交,则α、β相交 ④若α、β相交,则a 、b 相交答案 ④解析 ④中如果α、β相交,a 和b 可以相交,也可以异面.6.下列命题,是真命题的是________.①若ab =0,则a 2+b 2=0②若a >b ,则ac >bc③若M ∩N =M ,则N ⊆M④若M ⊆N ,则M ∩N =M答案 ④解析 ①中,a =0,b ≠0时,a 2+b 2=0不成立;②中,c ≤0时不成立;③中,M ∩N =M 说明M ⊆N .故①②③皆错误.7.若x ∈Z ,给出下列语句:(1)x 2-2x -3=0;(2)x 2+1<0;(3)|x |>5;(4)x ∈R .试判断它们是否为命题?若是,判断其真假,并说明理由.解对语句(1)无法判断真假,因为不给定变量x的值时,不能确定x2-2x -3的值是否为0,∴(1)不是命题;对语句(2)可以判断真假,因为对任意的整数x都有x2+1≥1成立,故x2+1<0是一个假命题;对语句(3)同(1)一样,无法判断其真假,故(3)也不是命题;由于整数一定是实数,∴可以判断(4)是正确的,即(4)是一个真命题.二、能力提升8.l1、l2、l3为空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面答案 B解析当l1⊥l2,l2⊥l3时,l1也可能与l3相交或异面,故A不正确;l1⊥l2,l2∥l3⇒l1⊥l3,故B正确;当l1∥l2∥l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体从同一顶点出发的三条棱,故D不正确.9.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中真命题的序号是()A.①②③B.①②④C.①③④D.②③④答案 B解析①中k>0,则Δ=4-4(-k)=4+4k>0,故为真命题;②由不等式的性质知,显然是真命题;③如等腰梯形对角线相等,不是矩形,故为假命题;④为真命题.10.给出下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,是真命题的是________(填序号).答案 ②④解析 命题①是假命题,“两条直线”应改为“两条相交直线”;命题②是面面垂直的判定定理,是真命题;命题③是假命题,垂直于同一直线的两条直线可能平行、异面或相交;命题④是面面垂直的性质定理的另一种说法,是真命题.11.判断下列命题的真假.(1)二次函数y =ax 2+bx +c (a ≠0)有最大值;(2)正项等差数列的公差大于零;(3)函数y =1x 的图象关于原点对称.解 (1)假命题.当a >0时,抛物线开口向上,有最小值.(2)假命题.反例:若此数列为递减数列,如正项数列20,17,14,11,8,5,2,它的公差是-3.(3)真命题.y =1x 是奇函数,所以其图象关于原点对称.12.已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得如果A 那么B 为真命题.解 若A 则B ,即“若x >1+a 5,则x >1”,由命题为真命题可知1+a 5≥1,解得a ≥4.三、探究与创新13.已知p :x 2+2mx +1=0有两个不等的负根,q :方程x 2+(m -2)x +1=0(m ∈R )无实根,求使p 为真命题且q 为真命题的m 的取值范围.解 若p 真,则⎩⎨⎧Δ=4m 2-4>0,m >0,解得m >1; 若q 为真,则Δ=(m -2)2-4<0,解得0<m <4.p 真q 真,即⎩⎨⎧ m >1,0<m <4,∴1<m <4. 故m 的取值范围是(1,4).。
1.1.1 命题 教案

【解析】逆命题:若 且 ,则 (真)
否命题:若 ,则 且 (真)
逆否命题:若 或 ,则 (假)
【例10】命题“若 ,则 ”写出它的逆命题、否命题、逆否命题,并判断它的真假
【解析】逆命题:若 ,则 (假,如 )
否命题:若 ,则 (假,如 )
判断复合命题真假的方法
①“非 ”形式的复合命题
【探究1】⑴如果 表示“ 是 的约数”,试判断非 的真假.
⑵如果 表示“ ”,那么非 表示什么?并判断其真假.
【解析】⑴中 表示的复合命题为真,而非 “ 不是 的约数”为假;
⑵中 表示的命题“ ”为假,非 表示的命题为“ ”,其显然为真。
【小结】非 复合命题判断真假的方法:当 为真时,非 为假;当 为假时,非 为真,即“非 ”形式的复合命题的真假与 的真假相反,可用下表表示:
逆否命题:若 ,则 。(真)
【例11】证明:如果 ,那么 。
① ;【答案】真,假,真;
② 是质数, 是 的约数;【答案】假,假,真;
③ ;【答案】真,真,假;
④ ;【答案】真,假,假。
【例4】分别指出下列复合命题的形式及构成它们的简单命题:
⑴ 既是 的倍数,也是 的被数;
⑵李强是篮球运动员或跳高运动员;
⑶平行线不相交。
【解析】⑴这个命题是 且 的形式,其中 是 的倍数, 是 的倍数;q且q真 Nhomakorabea真
真
真
假
假
假
真
假
假
假
假
③“ 或 ”形式的复合命题:
【探究3】如果 表示“ 是 的约数”, 表示“ 是 的约数”, 表示“ 是 的约数”,写出 或 或 或 的复合命题,并判断其真假,归纳其规律.
学案1:1.1.1 命题

1.1.1命题及其关系【课时目标】了解命题的概念,会判断一个命题的真假.1.命题的定义可以判断________、用________或________表述的语句叫作命题,其中______________的命题叫作真命题,______________的命题叫作假命题.2.命题的结构一般地,一个命题由________和________两部分组成.在数学中,通常把命题表示为“____________”的形式,其中______是条件,______是结论.一、选择题1.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤2.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数3.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数二、填空题4.下列命题:①四条边相等的四边形是正方形;②平行四边形是梯形;③若ac2>bc2,则a>b.其中真命题的序号是________.(填序号)三、解答题5.判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,b≠d,则a+b≠c+d;(2)对任意的x∈N,都有x3>x2成立;(3)若m>1,则方程x2-2x+m=0无实数根;(4)存在一个三角形没有外接圆.答案解析知识梳理1.真假文字符号判断为真判断为假2.条件结论若p则q p q作业设计1.A[④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]2.D[A中方程在实数范围内无解,故是假命题;B中若x2=1,则x=±1,故B是假命题;因空集是任何非空集合的真子集,故C是假命题;所以选D.]3.C[命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]4.③解析③是真命题,①四条边相等的四边形也可以是菱形,②平行四边形不是梯形.5.解(1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x=0时,x3>x2不成立.(3)真命题.∵m>1Δ=4-4m<0,∴方程x2-2x+m=0无实数根.(4)假命题.因为不共线的三点确定一个圆.。
2020最新湘教版高二数学选修1-1(文科)电子课本课件【全册】

第1章 常用逻辑用语
2020最新湘教版高二数学选修1-1( 文科)电子课本课件【全册】
2020最新湘教版高二数学选修11(文科)电子课本课件【全册】目
录
0002页 0004页 0006页 0008页 0010页 0012页 0014页 0016页 0018页 0020页 0022页 0024页 0026页 0028页 0030页 0032页 0034页
第1章 常用逻辑用语 1.1.1 命题的概念和例子 1.1.3 充分条件和必要条件 1.2.1 逻辑联结词“非”、“且”和“或” 第2章 圆锥曲线与方程 2.1.1 椭圆的定义与标准方程 2.2 双曲线 2.2.2 双曲线的简单几何性质 2.3.1 抛物线的定义与标准方程 2.4 圆锥曲线的应用 3.1 导数概念 3.1.2 问题探索——求作抛物线的切线 3.2 导数的运算 3.2.2 一些初等函数的导数表 3.3 导数在研究函数中的应用 3.3.2 函数的极大值和极小值 3.4 生活中的优化问题举例
2019年数学新同步湘教版必修2第1章 1.1.1 命题的概念和例子

1.1命题及其关系1.1.1命题的概念和例子[读教材·填要点]1.命题的概念可以判断成立或不成立的语句叫作命题.2.命题的分类(1)真命题:成立的命题叫作真命题.(2)假命题:不成立的命题叫作假命题.(3)猜想:暂时不知道真假的命题可以叫作猜想.[小问题·大思维]1.如果一个语句是命题,它必须具备什么条件?提示:如果一个语句是命题,那么该语句所陈述的事情必须能够判断其成立或不成立.2.数学中的定义、公理、定理、公式等是否是命题?是真命题还是假命题?提示:数学中的定义、定理、公理、公式等都是命题,且都是真命题.判断下列语句是否是命题,并说明理由.(1)求证π是无理数;(2)若x∈R,则x2+4x+5≥0;(3)一个数的算术平方根一定是负数;(4)梯形是不是平面图形呢?[自主解答](1)是祈使句,不是命题;(2)可以判断其是否成立,故为命题;(3)是命题,并且是假命题,因为一个数的算术平方根为非负数;(4)“梯形是不是平面图形呢?”是疑问句,所以它不是命题.判断一个语句是否是命题,关键是看语句的格式,也就是要看它是否符合“可以判断成立或不成立”这个条件,如果满足这个条件,该语句就是命题,否则就不是.1.判断下列语句是否为命题,并说明理由.(1)若平行四边形的边都相等,则它是菱形;(2)空集是任何非空集合的真子集;(3)对顶角相等吗?(4)x>3.解:(1)能判断其是否成立,是命题;(2)能判断其是否成立,是命题;(3)是疑问句,不是命题;(4)不能判断其是否成立,不是命题.判断下列命题的真假,并说明理由.(1)如果学好了数学,那么就会使用电脑;(2)若x=3或x=7,则(x-3)(x-7)=0;(3)正方形既是矩形又是菱形;(4)若a,b都是奇数,则ab必是奇数.[自主解答](1)是假命题,学好数学与会使用电脑不具有因果关系,因而无法推出结论,故为假命题.(2)是真命题,x=3或x=7能得到(x-3)(x-7)=0.(3)是真命题,由正方形的定义知正方形既是矩形又是菱形.(4)是真命题,令a=2k1+1,b=2k2+1(k1,k2∈Z),则ab=2(2k1k2+k1+k2)+1,显然2k1k2+k1+k2是一个整数,故ab是奇数.若将本例(4)中的“奇数”改为“无理数”,判断该命题的真假.解:当a =5,b =-5时,a ,b 都是无理数,但 5×(-5)=-5是有理数,故该命题为假命题.判断命题真假的策略(1)要判断一个命题是真命题,一般要有严格的证明或有事实依据,比如根据已学过的定义、公理、定理证明或根据已知的正确结论推证.(2)要判断一个命题是假命题,只要举一个反例即可.2.判断下列命题的真假,并说明理由. (1)形如a +6b 的数是无理数;(2)一个等比数列的公比大于1时,该数列为递增数列; (3)奇函数的图象关于原点对称; (4)能被2整除的数一定能被4整除.解:(1)假命题,反例:a 是有理数且b =0,则a +6b 是有理数.(2)假命题.若数列{a n }为等比数列,且a 1=-1,q =2,则该数列为递减数列. (3)真命题.根据奇函数的性质可知奇函数的图象一定关于原点对称. (4)假命题.反例:如2,6能被2整除,但不能被4整除.试探究命题“方程ax 2+bx +1=0有实数解”为真命题时,a ,b 满足的条件.[自主解答] 方程ax 2+bx +1=0有实数解,要考虑方程为一元一次方程和一元二次方程两种情况:当a =0时,方程ax 2+bx +1=0为bx +1=0,只有当b ≠0时,方程有实数解x =-1b ;当a ≠0时,方程ax 2+bx +1=0为一元二次方程,方程有实数解的条件为Δ=b 2-4a ≥0. 综上知,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有实数解.(1)并不是任何语句都是命题.要判断一个句子是否为命题,关键在于能否判断其成立或不成立.一般地,疑问句、祈使句、感叹句都不是命题.(2)一个命题要么是真的,要么是假的,二者必居其一.3.下面的命题中是真命题的是( ) A .y =sin 2x 的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则ca >0C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB ―→·BC ―→>0,则B 为锐角 解析:选B y =sin 2x =1-cos 2x 2,T =2π2=π,故A 为假命题;当M ⊆N 时,M ∪N =N ,故C 为假命题;在三角形ABC 中,当AB ―→·BC ―→>0时,向量AB ―→与BC ―→的夹角为锐角,B 应为钝角,故D 为假命题.故选B.解题高手 妙解题 什么是智慧,智慧就是简单、高效、不走弯路若命题“如果5x -1>a ,那么x >1”是真命题,求实数a 的取值范围.[巧思] “如果5x -1>a ,那么x >1”是真命题,则不等式5x -1>a 的解集是x >1的子集.[妙解] 由5x -1>a ,得x >15(1+a ).∵命题“如果5x -1>a 那么x >1”是真命题, ∴⎝⎛⎭⎫1+a 5,+∞⊆(1,+∞). ∴1+a5≥1,即a ≥4. 即a 的取值范围是[4,+∞).1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》,这首诗中,在当时条件下,可以作为命题的是( )A .红豆生南国B .春来发几枝C .愿君多采撷D .此物最相思解析:“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.答案:A2.下列命题中的真命题是( )A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角解析:由平面几何知识可知A、B、D三项都是错误的.答案:C3.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是()A.4 B.2C.0 D.-3解析:方程无实根时,应满足Δ=a2-4<0.故a=0时适合条件.答案:C4.设a,b,c是任意的非零平面向量,且相互不共线,则:①(a·b)c=(c·a)b;②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2中,是真命题的有________(只填序号).解析:因为a,b,c相互不共线,所以(a·b)c与(c·a)b不一定相等.又因为[(b·c)a-(c·a)b]·c=(b·c)(a·c)-(c·a)·(b·c)=0,所以①③为假命题,易证②④为真命题.答案:②④5.下列命题:①y=x2+3为偶函数;②0不是自然数;③{x∈N|0<x<12}是无限集;④如果a·b=0,那么a=0或b=0.其中是真命题的是________(写出所有真命题的序号).解析:①为真命题,②③④为假命题.答案:①6.若命题p(x):x2+2>3x为真命题,求x的取值范围.解:∵x2+2>3x,∴x2-3x+2>0.解得x>2或x<1,∴x的取值范围是(2,+∞)∪(-∞,1).一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 0°=0C.求x2-2x+1>0的解集D.作△ABC∽△EFG解析:A选项是疑问句,不是命题,C、D选项中的语句显然不是.答案:B2.已知命题“非空集合M中的元素都是集合P中的元素”是假命题,那么下列命题中真命题的个数为()①M中的元素都不是P的元素;②M中有不属于P的元素;③M中有属于P的元素;④M中的元素不都是P的元素.A.1B.2C.3 D.4解析:①③错误;②④正确.答案:B3.下列命题中,为真命题的是()A.对角线相等的四边形是矩形B.若一个球的半径变为原来的2倍,则其体积变为原来的8倍C.若两组数据的平均数相等,则它们的标准差也相等D.直线x+y+1=0与圆x2+y2=1相切解析:等腰梯形对角形相等,不是矩形,故A中命题是假命题;由球的体积公式可知B中命题为真命题;C中命题为假命题,如“3,3,3”和“2,3,4”的平均数相等,但标准差显然不相等;圆x2+y2=1的圆心(0,0)到直线x+y+1=0的距离d=22<1,故直线与圆相交,所以D中命题为假命题.答案:B4.给出下列命题:①若直线l⊥平面α,直线m⊥平面α,则l⊥m;②若a,b都是正实数,则a+b≥2ab;③若x2>x,则x>1;④函数y=x3是指数函数.其中假命题的个数为()A.1 B.2C.3 D.4解析:①中,显然l∥m或l与m重合,所以①是假命题;由基本不等式,知②是真命题;③中,由x2>x,得x<0或x>1,所以③是假命题;④中,函数y=x3是幂函数,不是指数函数,所以④是假命题.故选C.答案:C二、填空题5.下列语句:①mx2+2x-1=0是一元二次方程吗?②抛物线y=ax2+2x-1与x轴至少有一个交点;③互相包含的两个集合相等;④若m>0,a>b>0,则b+ma+m>ba.其中真命题的序号为________.解析:①不是命题;②错,可能没交点;③正确,若A⊆B,B⊆A,则A=B;④显然正确,可以证明.答案:③④6.给出下列命题:①方程x2-x+1=0有两个实根;②对于实数x,若x-2=0,则x-2≤0;③若p>0,则p2>p;④正方形不是菱形.其中真命题是________,假命题是________.解析:①假,因Δ<0;②真;③假,p=12时,p2<p;④假,正方形是菱形,也是矩形.答案:②①③④7.函数f(x)的定义域为A,若当x1,x2∈A且f(x1)=f(x2)时,总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②指数函数f(x)=2x(x∈R)是单函数;③在定义域上具有单调性的函数一定是单函数.其中的真命题是________.(填序号)解析:由x21=x22,未必有x1=x2,故①为假命题;对于f(x)=2x,当f(x1)=f(x2)时一定有x1=x2,故②为真命题;当函数在其定义域上单调时,一定有“若f(x1)=f(x2),则x1=x2”,故③为真命题.故真命题是②③.答案:②③8.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:∵ax 2-2ax -3>0不成立,∴ax 2-2ax -3≤0恒成立.当a =0时,-3≤0恒成立;当a ≠0时,则有⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0. 综上,-3≤a ≤0. 答案:[-3,0] 三、解答题9.判断下列语句是否是命题,若是,判断其真假,并说明理由. (1)一个数不是合数就是质数. (2)大角所对的边大于小角所对的边. (3)x +y 是有理数,则x ,y 也都是有理数. (4)求证x ∈R ,方程x 2+x +1=0无实根. 解:(1)是假命题,1不是合数,也不是质数. (2)是假命题,必须在同一个三角形或全等三角形中. (3)是假命题,如x =2,y =- 2. (4)祈使句,不是命题.10.判断命题:“若a +b =2,则直线x +y =0与圆(x -a )2+(y -b )2=2相切”的真假. 解:由已知a +b =2,圆心(a ,b )到直线x +y =0的距离d =|a +b |2=22=2=r , 所以直线与圆相切,即命题为真.。
K-01:1.1.1命题(步步高)

解 若一个方程是x2-x+1=0,则它有两个实数根.
反思与感悟
解析答案
跟踪训练3 解 解 解
将下列命题改写成“若p,则q”的形式,并判断其真假.
(1)正n边形(n≥3)的n个内角全相等;
若一个多边形是正n边形,则这个正n边形的n个内角全相等.是真命题. 若一个数是负数,则这个数的立方是负数.是真命题. 已知x,y为正整数,若y=x-5,则y=-3,x=2.是假命题.
答案
知识点二 思考
真命题、假命题
如何判断一个命题的真假?试举例说明.
答案
梳理
(1)对一个命题来说,判断为 真 的语句叫做真命题,判断为假 的语
句叫做假命题. (2)数学中判断一个命题是真命题,要经过严格的证明,要判断一个命题是 假命题,只需举一个反例即可. (3)我们学习过的定理、推论都是真命题.
数的图象关于原点对称.
解析答案
规律与方法
1.判断一个语句是否为命题的依据:一是陈述句;二是能判断真假.
2.把命题改写成 “ 若p ,则q”( 或“ 如果 p ,那么q”) 的形式,其中 p 为命
题的条件,q为命题的结论,要注意条件及结论的完整性,将条件写在前
面,结论写在后面.“若p,则q”是原来命题的另一种叙述形式,它的真
答案
思考2
依据上面命题的定义,判断下面说法中,哪些是命题,哪些不是
命题.
①三角形外角和为360°;
②连接A、B两点;
③计算3-2的值;
④过点A作直线l的垂线; ⑤三角形中,大边一定对的角也大吗?
答案 根据命题的定义,只有①为命题,其它语句都不是命题.
答案
梳理 (1)命题的概念:在数学中,用语言、符号或式子表达的,可以判断 ____ 真假的陈述句 ____________叫做命题. (2)命题定义中的两个要点:“ 能判断真假 ”和“ 陈述句 ”. 我 们 学 习 过的定理、推论都是命题.
2020湘教版高二数学选修1-1(文科)电子课本课件【全册】

0002页 0004页 0006页 0008页 0010页 0012页 0014页 0016页 0092页 0168页 0244页 0246页 0322页 0398页 0.1 命题的概念和例子 1.1.3 充分条件和必要条件 1.2.1 逻辑联结词“非”、“且”和“或” 第2章 圆锥曲线与方程 2.1.1 椭圆的定义与标准方程 2.2 双曲线 2.2.2 双曲线的简单几何性质 2.3.1 抛物线的定义与标准方程 2.4 圆锥曲线的应用 3.1 导数概念 3.1.2 问题探索——求作抛物线的切线 3.2 导数的运算 3.2.2 一些初等函数的导数表 3.3 导数在研究函数中的应用 3.3.2 函数的极大值和极小值 3.4 生活中的优化问题举例
第1章 常用逻辑用语
2020湘教版高二数学选修1-1(文科) 电子课本课件【全册】
高中数学 第1章 常用逻辑用语 1.1.1 命题的概念和例子 1.1.2 命题的四种形式课件 湘教

将下列命题改写成“若 p,则 q”的形式,并判断 命题的真假. (1)6 是 12 和 18 的公约数; (2)当 a>-1 时,方程 ax2+2x-1=0 有两个不等实根; (3)平行四边形的对角线互相平分; (4)已知 x,y 为非零自然数,当 y-x=2 时,y=4,x=2. 解:(1)若一个数是 6,则它是 12 和 18 的公约数,是真命题. (2)若 a>-1,则方程 ax2+2x-1=0 有两个不等实根,是假命题. (3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题. (4)已知 x,y 为非零自然数,若 y-x=2,则 y=4,x=2,是假命题.
5.命题“若 a>1,则 a>0”的逆命题是__________________, 逆否命题是________________.
答案:若 a>0,则 a>1 若 a≤0,则 a≤1
命题及其真假的判断
判断下列语句是否是命题,若是,判断其真假,并说明 理由. (1)求证 3是无理数; (2)x2+4x+4≥0; (3)你是高一的学生吗? (4)一个正整数不是质数就是合数; (5)若 x+y 和 xy 都是有理数,则 x、y 都是有理数; (6)60x+9>4; (7)若 x∈R,则 x2+4x+7>0.
①2<1;②x<1;③若 x<2,则 x<1;
④函数 f(x)=x2 是 R 上的偶函数.
A.0 个
B.1 个
C.2 个
D.3 个
解析:选 B.①③④可以判断真假,是命题;②不能判断真假, 所以不是命题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1命题的概念和例子
1.1命题及其关系
1.了解命题、真命题、假命题的概念.
2.了解命题的特点,会判断一个语句是不是命题以及命题的真假性.
1.在初中,我们已学过许多数学命题,当时是如何定义命题的,你能举出一些例子吗?
答:判断一件事情的句子叫命题.
如:有两边相等的三角形是等腰三角形.
2.怎样判断命题的真假?
答:看命题是否正确,要看它是否与客观事实相符合.
1.可以判断成立或不成立的语句叫作命题,成立的命题叫作真命题,不成立的命题叫作假命题.
2.暂时不知道真假的命题可以叫作猜想.
要点一命题的判断
例1下列语句是命题的是()
A.x-1=0B.2+3=8
C.你会说英语吗?D.这是一棵大树答案 B
解析A中x不确定,x-1=0的真假无法判断;B中2+3=8是命题,且
是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.
规律方法并不是所有的语句都是命题,只有能判断真假的陈述句才是命题,命题首先是“陈述句”,其他语句如疑问句、祈使句、感叹句等一般都不是命题;其次是“能判断真假”,不能判断真假的陈述句不是命题,如“x≥2”、“小高的个子很高”等都不能判断真假,故都不是命题.因此,判断一个语句是否为命题,关键有两点:①是否为陈述句;②能否判断真假.
跟踪演练1判断下列语句是否为命题,并说明理由.
(1)f(x)=3x(x∈R)是指数函数;
(2)x-2>0;
(3)集合{a,b,c}有3个子集;
(4)这盆花长得太好了!
解(1)“f(x)=3x(x∈R)是指数函数”是陈述句并且它是真的,因此它是命题.
(2)因为无法判断“x-2>0”的真假,所以它不是命题.
(3)“集合{a,b,c}有3个子集”是假的,所以它是命题.
(4)“这盆花长得太好了!”是感叹句,它不是命题.
要点二命题真假的判断
例2判断下列语句是不是命题,如果是命题,指出是真命题还是假命题.
(1)任何负数都大于零;
(2)△ABC与△A1B1C1是全等三角形;
(3)x2+x>0;
(4)6是方程(x-5)(x-6)=0的解;
(5)方程x2-2x+5=0无实数解.
解(1)负数都是小于零的,因此“任何负数都大于零”是不正确的,所以它能构成命题,而且这个命题是个假命题.
(2)两个三角形为全等三角形是有条件的,本题无法判定△ABC与△A1B1C1是否为全等三角形,所以它不是命题.
(3)因为x是未知数,无法判断x2+x是否大于零,所以“x2+x>0”这一语句不是命题.
(4)6确实是所给方程的解,所以它是命题,是真命题.
(5)由于给定方程x2-2x+5=0,我们就可以用其判别式来判断它是否有实数解.由Δ=4-4×5=-16<0知,“方程x2-2x+5=0无实数解”是命题,且是真命题.
规律方法要判断一个命题是真命题,一般需要经过严格的推理论证,在证明时,要有理有据,有时应综合各种情况作出正确的判断,而判断一个命题是假命题,只需举出一个反例即可.
跟踪演练2下列命题:
①若xy=1,则x、y互为倒数;
②四条边相等的四边形是正方形;
③平行四边形是梯形;
④若ac2>bc2,则a>b.
其中真命题的序号是________.
答案①④
解析①④是真命题,②四条边相等的四边形是菱形,不一定是正方形,③平行四边形不是梯形.
1.下列语句不是命题的有()
①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.
A.0个B.1个
C.2个D.3个
答案 B
解析①③④可以判断真假,是命题;②不能判断真假,所以不是命题.2.下列命题中的真命题是()
A.互余的两个角不相等
B.相等的两个角是同位角
C.若a2=b2,则|a|=|b|
D.三角形的一个外角等于和它不相邻的一个内角
答案 C
解析由平面几何知识可知A、B、D三项都是错误的.
3.语句“若a>b,c∈R,则a+c>b+c”是()
A.不是命题B.真命题
C.假命题D.不能判断真假答案 B
解析考查不等式的性质,不等式两边都加上同一个实数不等式仍然成立.4.下列命题:
①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.
其中假命题的个数是________.
答案 4
解析①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直.矩形的对角线不一定垂直.
1.由命题的定义知,要判断一个语句是否为命题要抓住两点:一是陈述句;二是能判断真假.
2.命题有真假之分,真命题是我们学过的公理、定理、公式、法则或可以经过推理证明正确的命题;假命题的判断只需要举一反例即可.。