三极管npn和pnp放大等状态判断条件说课材料

合集下载

三极管npn和pnp的知识

三极管npn和pnp的知识

三极管npn和pnp的知识三极管是一种重要的电子器件,常用于电子电路中的放大、开关等功能。

它分为npn型和pnp型两种基本类型。

我们来了解一下npn型三极管。

npn型三极管由两个n型材料夹持一个p型材料组成,其中n型材料称为发射极,另一个n型材料称为集电极,p型材料则称为基极。

npn型三极管的工作原理是:当发射极与基极之间施加正向电压时,使得基极处于正向偏置状态,此时发射极与基极之间的结电容会发生反向偏置,从而导致电流通过发射极流入基极。

当发射极与集电极之间施加正向电压时,形成一个电子注,电流从发射极注入到基极,再从基极注入到集电极,实现了电流的放大。

因此,npn型三极管可以用作放大器、开关等电路中的关键元件。

接下来,我们来了解一下pnp型三极管。

pnp型三极管由两个p 型材料夹持一个n型材料组成,其中p型材料称为发射极,另一个p型材料称为集电极,n型材料则称为基极。

pnp型三极管的工作原理与npn型三极管相反。

当发射极与基极之间施加负向电压时,使得基极处于负向偏置状态,此时发射极与基极之间的结电容会发生正向偏置,从而导致电流通过发射极流入基极。

当发射极与集电极之间施加负向电压时,形成一个电子注,电流从集电极注入到基极,再从基极注入到发射极,实现了电流的放大。

因此,pnp型三极管也可以用作放大器、开关等电路中的关键元件。

虽然npn型和pnp型三极管的工作原理相反,但它们的基本结构和特性相似。

三极管的放大功能主要依靠其特殊的结构和工作原理来实现。

在放大器电路中,三极管可以将输入信号的能量放大到输出端,实现信号的放大。

在开关电路中,三极管可以控制电流的开关状态,实现电路的开关功能。

除了放大和开关功能外,三极管还具有其他一些特点。

例如,三极管的输出电流与输入电流之间存在一定的比例关系,这个比例关系称为电流放大倍数。

电流放大倍数越大,三极管的放大效果越好。

此外,三极管还具有输入电阻和输出电阻的特性,输入电阻决定了输入信号对三极管的影响程度,输出电阻决定了三极管输出信号的稳定性。

3极管的三种工作状态

3极管的三种工作状态

3极管的三种工作状态引言三极管(transistor)是一种重要的电子元件,广泛应用于各种电子设备中。

它是一种半导体器件,由三个区域组成:发射区、基区和集电区。

三极管的工作状态可以分为三种:放大状态、截止状态和饱和状态。

本文将详细介绍三极管的三种工作状态及其特点。

1. 放大状态放大状态是三极管最常见的工作状态之一。

在放大状态下,三极管被用作信号放大器,将输入的弱信号放大到合适的幅度。

放大状态下的三极管可以分为NPN型和PNP型两种。

1.1 NPN型三极管的放大状态NPN型三极管中,发射区掺杂为N型半导体,基区掺杂为P型半导体,集电区掺杂为N型半导体。

在放大状态下,NPN型三极管的工作原理如下:1.电流流向:当输入信号施加到基极时,基极电流(IB)会引起发射极电流(IE)的变化,进而控制集电极电流(IC)的变化。

这种电流放大的作用使得输入信号能够被放大。

2.放大倍数:NPN型三极管的放大倍数由集电极电流和基极电流的比值(IC/IB)决定。

一般来说,NPN型三极管的放大倍数较高,可以达到几十到几百倍。

3.特点:放大状态下的NPN型三极管具有低输入阻抗、高输出阻抗、大电流放大倍数等特点。

1.2 PNP型三极管的放大状态PNP型三极管中,发射区掺杂为P型半导体,基区掺杂为N型半导体,集电区掺杂为P型半导体。

PNP型三极管的放大状态与NPN型三极管类似,但电流的流向相反。

1.电流流向:当输入信号施加到基极时,基极电流(IB)会引起发射极电流(IE)的变化,进而控制集电极电流(IC)的变化。

这种电流放大的作用使得输入信号能够被放大。

2.放大倍数:PNP型三极管的放大倍数由集电极电流和基极电流的比值(IC/IB)决定。

一般来说,PNP型三极管的放大倍数较高,可以达到几十到几百倍。

3.特点:放大状态下的PNP型三极管具有低输入阻抗、高输出阻抗、大电流放大倍数等特点。

2. 截止状态截止状态是三极管的一种工作状态,也称为关断状态。

3极管pnp和npn

3极管pnp和npn

3极管pnp和npn三极管是一种重要的电子元件,具有电流放大、开关等功能,同时还可以用于模拟信号的放大和数字信号的驱动。

其中,PNP型和NPN 型的三极管是较为常见的两种类型。

本文将围绕“三极管PNP和NPN”两个主题展开讲述,详细介绍它们的定义、工作原理以及应用等相关方面。

一、PNP型三极管PNP型三极管的工作原理:三极管由三个掺杂不同种类的半导体材料构成,从而形成了PNP和NPN两种型号。

PNP型三极管由两个N型半导体夹一个P型半导体而成,常用的符号为“↑P↓N↓N”。

PNP型三极管的基极区域和集电极区域都是N型半导体,这两个区域之间有一个P型半导体的发射区。

当基极极性为负,它的区域就会变窄,发射结逆偏导致少量的电子流会到达基区,从而发生电子注入,在中心区域可以形成N型掺杂杆,这里是PNP三极管的发射结。

此时的少量载流子从发射结流向集电极的区域,对应地就产生了比基极少很多,但比整个三极管大得多的电流流动。

这样,PNP型三极管就实现了从集电极到发射极传导的电流放大作用。

PNP型三极管的应用:PNP型三极管常用于直流放大器、稳压器、调节器、交替开关以及大功率开关等方面。

在放大器电路中,PNP型三极管可以用于共射级、共集级和共基级放大器中。

在开关电路中,PNP 型三极管可以用于其他器件的控制,例如,在交流电源中,PNP型三极管可以与NPN型三极管组成Darlington对来控制气动线路等。

二、NPN型三极管NPN型三极管的工作原理:NPN型三极管由两个P型半导体夹一个N型半导体而成,常用的符号为“↓N↑P↑P”。

NPN型三极管的基极区域和集电极区域都是P型半导体,这两个区域之间有一个N型半导体的发射区。

当基极极性向前偏压,它的区域就会加宽,发射结正向导通导致大量的电子流进入基极区,进而形成电子空穴注入,从而构成PNP三极管的发射结。

此时,由基极流进的少量电流,就能够在中心区域形成N型掺杂杆,这里是NPN三极管的发射结。

三极管状态判断

三极管状态判断

三极管状态判断NPN管:放大状态Vc>Vb>Ve,饱和状态Vb>ve,Vb>vc,截止状态Vc=+V,Vb=0PNP管:放大状态Ve>Vb>Vc,饱和状态Vb<ve,Vb<vc,截止状态Vc=-V(负电源供电)饱和状态时Vce为0.2V(npn和pnp管都是一样的)静态工作点可以测量出来发射结和集电结都是正向偏置时就已经饱和了.此时,Ube>Uce.当晶体管的Ube增大时,Ic不是明显的增大说明进入饱和状态,对于小功率管,可以认为当Uce=Ube,即Ucb=0时,处于临界饱三极管简介晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

发射极箭头向外。

发射极箭头指向也是PN结在正向电压下的导通方向。

硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。

三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。

目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。

三极管状态判断

三极管状态判断

三极管状态判断NPN管:放大状态Vc>Vb>Ve,饱和状态Vb>ve,Vb>vc,截止状态Vc=+V,Vb=0PNP管:放大状态Ve>Vb>Vc,饱和状态Vb<ve,Vb<vc,截止状态Vc=-V(负电源供电)饱和状态时Vce为0.2V(npn和pnp管都是一样的)静态工作点可以测量出来发射结和集电结都是正向偏置时就已经饱和了.此时,Ube>Uce.当晶体管的Ube增大时,Ic不是明显的增大说明进入饱和状态,对于小功率管,可以认为当Uce=Ube,即Ucb=0时,处于临界饱三极管简介晶体三极管的结构和类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,从三个区引出相应的电极,分别为基极b发射极e和集电极c。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。

基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。

发射极箭头向外。

发射极箭头指向也是PN结在正向电压下的导通方向。

硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。

三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为e b c。

目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。

NPN三极管及PNP三极管

NPN三极管及PNP三极管

半导体三极管又称“晶体三极管”或“晶体管”。

在半导体锗或硅的单晶上制备两个能相互影响的PN结,组成一个PNP(或NPN)结构。

中间的N区(或P区)叫基区,两边的区域叫发射区和集电区,这三部分各有一条电极引线,分别叫基极B、发射极E和集电极C,是能起放大、振荡或开关等作用的半导体电子器件。

NPN三极管及PNP三极管三极管的种类很多,并且不同型号各有不同的用途。

三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。

实际上箭头所指的方向是表示电流的方向。

双极面结型晶体管两个类型:NPN和PNPNPN类型包含两个n型区域和一个分隔它们的p型区域;PNP类型则包含两个p型区域和一个分隔它们的n型区域,图2和图3分别是它们的电路符号。

以下的说明将集中在NPN 三极管。

图2: NPN 三极管的电路符号图3: PNP 本极管的电路符号三极管工作于三种不同模式:截止模式、线性放大模式及饱和模式,见图4。

图4 三种工作模式截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,即为三极管的截止状态。

开关三极管处于截止状态的特征是发射结,集电结均处于反向偏置。

放大状态:当加在三极管发射结的电压大于PN结的导通电压,同时发射结正向偏置且集电结反向偏置,此时集电极电流会随着基极电流的增大而增大。

饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并且当基极的电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不再怎么变化,此时三极管失去电流放大作用,集电极和发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态,即为三极管的饱和导通状态。

开关三极管处于饱和导通状态的特征是发射结,集电结均处于正向偏置。

三极管的判别方法

三极管的判别方法一、引言三极管是电子工程中常用的一种器件,它具有放大、开关等多种功能。

在电路设计和维修中,正确判别三极管的类型和工作状态是非常重要的。

本文将介绍三极管的判别方法。

二、三极管类型三极管根据其结构和材料不同,可以分为NPN型和PNP型两种。

其中NPN型的正极接在负电源上,负极接在负载上;PNP型的正极接在正电源上,负极接在负载上。

三、三极管引脚标号对于普通的TO-92封装的三极管来说,它有3个引脚:发射极(E)、基极(B)和集电极(C)。

其中基极位于另外两个引脚之间。

四、测试工具准备判别三极管需要使用万用表或者二极管测试笔等测试工具。

如果使用万用表,则需要将其设置为二级直流电压测量模式。

五、判别方法1. 测量发射结与集电结之间的导通情况将万用表或者二极管测试笔设置为导通测试模式。

将黑色探针连接到集电结上,红色探针连接到发射结上。

如果万用表显示接近于0的电阻值,或者二极管测试笔亮起,则说明三极管是正常导通的。

2. 测量基极与发射结之间的导通情况将万用表或者二极管测试笔设置为导通测试模式。

将黑色探针连接到发射结上,红色探针连接到基极上。

如果万用表显示接近于0的电阻值,或者二极管测试笔亮起,则说明三极管是正常导通的。

3. 测量基极与集电结之间的导通情况将万用表或者二极管测试笔设置为导通测试模式。

将黑色探针连接到集电结上,红色探针连接到基极上。

如果万用表显示接近于0的电阻值,或者二极管测试笔不亮,则说明三极管是正常截止状态。

4. 判断三极管类型将万用表或者二极管测试笔设置为二级直流电压测量模式。

将黑色探针连接到三极管的负级(如NPN型的发射结),红色探针连接到正级(如NPN型的集电结)。

如果显示正向偏置电压,则说明是NPN型;如果显示反向偏置电压,则说明是PNP型。

六、注意事项1. 判别三极管时需要先确定三极管的引脚标号和类型,否则会导致误判。

2. 在测试三极管时,要注意保持测试笔与引脚的良好接触,并且避免短路或者反接。

npn与pnp作开关三极管

npn与pnp作开关三极管(原创版)目录1.NPN 与 PNP 型三极管的概述2.NPN 与 PNP 型三极管的结构和工作原理3.NPN 与 PNP 型三极管的开关特性4.NPN 与 PNP 型三极管的应用5.结论正文【1.NPN 与 PNP 型三极管的概述】三极管,又称双极型晶体管,是一种常用的半导体器件。

根据结构和材料不同,三极管可分为 NPN 型和 PNP 型两种。

它们都是由两个 n 型半导体(发射极和集电极)和一个 p 型半导体(基极)组成,具有放大和开关等功能。

NPN 型三极管的结构是“N-P-N”,PNP 型三极管的结构是“P-N-P”。

【2.NPN 与 PNP 型三极管的结构和工作原理】PN 型三极管中,发射极和集电极由 n 型半导体制成,基极由 p 型半导体制成。

当基极电流(IB)流过时,发射极的电子会进入基极,再从基极进入集电极,形成电流放大。

PNP 型三极管中,发射极和基极由 n 型半导体制成,集电极由 p 型半导体制成。

当基极电流(IB)流过时,发射极的电子空穴会进入基极,再从基极进入集电极,形成电流放大。

【3.NPN 与 PNP 型三极管的开关特性】PN 型三极管和 PNP 型三极管都具有开关特性,即可以控制电路的通断。

当基极电流为零时,三极管处于截止状态;当基极电流不为零时,三极管处于导通状态。

由于构造和材料不同,NPN 型三极管和 PNP 型三极管的开关速度和电流放大倍数有所不同。

【4.NPN 与 PNP 型三极管的应用】PN 型和 PNP 型三极管广泛应用于放大、开关、调制、稳压等电路。

例如,在放大电路中,三极管可以实现信号的电压放大和电流放大;在开关电路中,三极管可以实现高速开关和保护电路等功能。

根据具体应用场景和要求,可以选择合适的三极管类型。

【5.结论】PN 型和 PNP 型三极管是半导体器件中常见的两种类型,它们具有相似的结构和工作原理,但在应用和性能上存在一定差异。

三极管放大状态

对于NPN 型的三极管为使其工作在放在状态需满足一下两个条件:①on be U U >(on U 为0.7V )②bc U U >b c U U >时,集电结反向偏置,晶体管工作在放大状态对于三极管的电流而言有:bc e I I I +=共射型的放大倍数为:bc I I /≈β共基型的放大倍数为:ecI I ≈α三极管的b 集接高电平时导通以共发射基为例(信号从基集输入,从集电极输出,发射极接地),当b U 有微小变化时,b I 也随之有一小的变化,受b I 的控制(小电流控制大电流),c I 会有一个很大的变化,b I 越大,c I 也越大,反之b I 越小,c I 也越小,即b I 控制c I 的变化,但c I 的变化比b I 的变化大得多,这就是三极管的放大作用。

三极管要放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫建立偏置,否则会放大失真。

同样,三极管还可以当做开关管来使用。

三极管在电路中的工作状态以及工作条件:三极管有三种工作状态:截止状态、放大状态、饱和状态。

当三极管用于不同目的时,它的工作状态是不同的三极管的三种状态也叫三个工作区域即:截止区、放大区和饱和区:(1)、截止区:当三极管b极无电流时三极管工作在截止状态,c到e之间阻值无穷大,c 到e之间无电流通过。

NPN型三极管要截止的电压条件是发射结电压Ube小于0.7V即Ub-Ue<0.7VPNP型三极管要截止的电压条件是发射结电压Ueb小于0.7V即Ue-Ub<0.7V(2)、放大区:三极管的b极有电流,Ic和Ie都随Ib改变而变化,即c极电流Ic和e极电流Ie的大小受b极电流Ib控制。

Ib越大,Rce越小,Ice越大;反之Ib越小,Rce越大,Ice越小。

在基极加上一个小信号电流,引起集电极大的信号电流输出。

NPN三极管要满足放大的电压条件是发射极加正向电压,集电极加反向电压:Ube=0.7V即Ub-Ue=0.7VPNP三极管要满足放大的电压条件是发射极加正向电压,集电极加反向电压:Ueb=0.7V即Ue-Ub=0.7V(3)、饱和区:当三极管的集电结电流IC增大到一定程度时,再增大Ib,Ic也不会增大,超出了放大区,进入了饱和区。

三极管npn和pnp

三极管npn和pnp三极管(Transistor)是一种最基本的电子元件,它具有可以放大和开关电流的功能,广泛应用于电子电路中。

三极管可以分为NPN型和PNP型两种。

下面分别介绍NPN型和PNP型三极管的结构、工作原理以及应用。

一、NPN型三极管:NPN型三极管由两个N型半导体和一个P型半导体构成。

其中,N型半导体作为发射极(Emitter),由外界加上正电压。

P型半导体作为基极(Base),控制发射极和集电极(Collector)之间的电流。

另一个N型半导体则构成集电极。

具体来说,当基极与发射极之间的电压大于0.6V时,发射极和集电极之间就会形成一个导通路径,电流可以从发射极流向集电极。

NPN型三极管的工作原理是基于PN结的正向和反向偏置。

当发射极和集电极之间的电压大于0.6V时,PN结就会变为正向偏置,导致大量的电子从N型发射极注入到P型基极,形成发射极电流(Ie)。

同时,这些注入的电子会继续向集电极流动,形成集电极电流(Ic)。

在NPN型三极管中,Ic是由Ie 放大而来的,即放大系数β=Ic/Ie。

NPN型三极管具有放大作用,广泛应用于放大电路。

由于其有一个控制极(基极),可以通过控制电流的大小来控制输出电流,被称为"控制电流小,输出电流大"的电流放大器。

NPN 型三极管还常用于逻辑门电路、计时电路、振荡器电路等。

二、PNP型三极管:PNP型三极管由两个P型半导体和一个N型半导体构成。

其中,P型半导体作为发射极,由外界连结上负电源。

N型半导体作为基极,控制发射极和集电极之间的电流。

另一个P型半导体则构成集电极。

PNP型三极管的工作原理和NPN型三极管相似,区别在于PN结的正向和反向偏置。

当基极与发射极之间的电压小于-0.6V时,PN结就会变为正向偏置,使得发射极电流从发射极流入基极。

同时,由于P型基极中有空穴,这些空穴会向集电极流动,形成集电极电流(Ic)。

在PNP型三极管中,Ic是由发射极电流减少而来的,即放大系数β=Ic/Ie。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
精品文档
三极管和mos管管脚bec-gsd:
对应关系 b基极-g栅极;e发射极-d漏极;c集电极-s源极;
三极管或mos管相当于可控开关,b或g相当于控制端,输入是c或d,输
出是e或s;

型号一般偶数是NPN,奇数是PNP;
对于NPN,①截止区Ube<0且Ubc<0;②放大区Ube>0且Ubc<0;③饱
和区Ube>0且Ubc>0;
对于PNP ,①截止区Ube>0且Ubc>0;②放大区Ube<0且Ubc>0;③饱
和区Ube<0且Ubc<=0;

三极管9014是NPN,
精品文档

精品文档
9015是PNP.
对于PNP,也是带箭头的是E.

9015是一种常用的普通三极管。它是一种小电压,小电流,小信号的PNP型硅
三极管。
精品文档

精品文档

相关文档
最新文档