小学数学比和比例问题知识汇总及解析例题

合集下载

比和比例复习题答案

比和比例复习题答案

比和比例复习题答案1. 甲数和乙数的比是3:4,如果甲数增加6,要使比值不变,乙数应该增加多少?答:根据比的性质,甲数和乙数的比是3:4,即甲数是乙数的3/4。

如果甲数增加6,要使比值不变,乙数也应该按照相同的比例增加。

设乙数增加x,则有(3+6)/4 = 3/4,解得x=8。

所以乙数应该增加8。

2. 一个长方形的长和宽的比是5:3,如果长增加10,宽增加6,新的长宽比是多少?答:设原长方形的长为5x,宽为3x。

长增加10后,新的长为5x+10;宽增加6后,新的宽为3x+6。

新的长宽比为(5x+10)/(3x+6)。

由于题目中没有给出具体的数值,所以新的长宽比无法具体计算,但可以表示为(5x+10)/(3x+6)。

3. 某工厂男女工人的比例是7:5,如果男工人数增加14人,女工人数不变,新的男女工人比例是多少?答:设原工厂男工人数为7x,女工人数为5x。

男工人数增加14人后,新的男工人数为7x+14。

女工人数不变,仍为5x。

新的男女工人比例为(7x+14)/5x。

由于题目中没有给出具体的数值,所以新的男女工人比例无法具体计算,但可以表示为(7x+14)/5x。

4. 一个数的1/3与另一个数的1/4相等,这两个数的比是多少?答:设这两个数分别为a和b。

根据题意,有a/3 = b/4。

两边同时乘以12,得4a = 3b。

所以这两个数的比为a:b = 3:4。

5. 甲乙两车同时从A地出发前往B地,甲车速度是乙车速度的4/5。

如果甲车比乙车晚出发1小时,但两车同时到达B地,那么A、B两地的距离是多少?答:设乙车速度为v,甲车速度为4/5v。

设A、B两地的距离为d。

根据题意,甲车行驶时间为乙车行驶时间加1小时。

即d/(4/5v) = d/v + 1。

解得d=5v。

所以A、B两地的距离是5倍乙车的速度。

由于题目中没有给出具体的数值,所以A、B两地的具体距离无法计算,但可以表示为5v。

比的应用题典型题归类

比的应用题典型题归类

比的应用题典型题归类一、比的概念及基本性质比是数学中常用的一种比较两个数量大小关系的方法。

在解决实际问题时,经常会遇到涉及到比的应用题。

比的应用题主要包括比例、百分数、倍数等类型。

下面将对这些典型题目进行分类和归纳,以便更好地理解和掌握比的应用。

二、比例问题1. 比例问题一:已知一个长度为a的线段与一个长度为b的线段的比是m:n,求第一个线段的长度。

解析:根据比例关系可以得到 a/b = m/n,求解得到 a = mb/n。

2. 比例问题二:已知一个物体的重量与其体积的比是m:n,求该物体的质量。

解析:根据比例关系可以得到 m/n = p/V,其中p为物体的密度,V 为物体的体积,求解得到 m = p * V。

三、百分数问题1. 百分数问题一:某商品原价100元,现折扣20%,求折后价格。

解析:原价100元,折扣20%,即折扣为100 * 20% = 20元,所以折后价格为100 - 20 = 80元。

2. 百分数问题二:某数增加了p%,求增加前的数。

解析:设增加前的数为x,则增加了p%后的数为x + x * p% = x(1 + p/100),所以增加前的数为x = (增加后的数)/(1 + p/100)。

四、倍数问题1. 倍数问题一:某任务A需要3个小时完成,任务B比A多完成1/3的工作,求任务B完成所需的时间。

解析:设任务B完成所需的时间为x小时,则任务A完成的工作量为1,任务B完成的工作量为1 + 1/3。

根据工作量和时间的关系可得到:3/1 = x / (1 + 1/3),求解得到 x = 2小时。

2. 倍数问题二:某矿井A挖掘一定数量的煤需要9天,矿井B比A 快1/4,求矿井B挖掘同样数量的煤需要多少天。

解析:设矿井B挖掘同样数量的煤需要x天,则矿井A的挖掘速度为1,矿井B的挖掘速度为1 + 1/4。

根据速度和时间的关系可得到:9/1 = x / (1 + 1/4),求解得到 x = 6天。

小学六年级数学比和比例(难题)

小学六年级数学比和比例(难题)

比和比例(1)
2、某校合唱队与舞蹈队人数之比为3 :2,如果将合唱队的队员调10名到舞蹈队,
那么这时的人数比为7 :8,原合唱队有人
3、甲、乙、丙三人外出参观。

午餐时,甲带有4包点心,乙带有3包点心,丙带有
7元钱却没有买到食物,他们决定把甲、乙二人的点心平均分成三份食用,由丙把7元钱还给甲和乙,那么,甲应分得元
@
4、三个容积相同的瓶子装满酒精溶液,酒精与水的比分别是3 :2, 3 :1, 4 :1,
当把三瓶酒精溶液混合时,酒精与水的比是
5、有甲、乙、丙三个长方体,它们的长之比是2 :2 :3,宽之比是3 :5 :6,高之比是6 :2 :5,如果丙的体积是90立方厘米,那么甲、乙两个长方体的体积之和是
立方厘米。

比和比例(2)
3.4.
5.6.
比和比例(3)
比和比例(4)。

比和比例总结讲解+例题解析

比和比例总结讲解+例题解析

比和比例总结讲解+例题解析比和比例是数学中常见的概念,在实际生活中也有很多应用。

本文将对比和比例的概念进行总结讲解,并提供一些例题解析。

一、比的概念比是两个数或物品在数量、大小、质量等方面的关系,用冒号(:)表示。

如2:3表示第一个数是第二个数的2/3。

二、比例的概念比例是两个或多个比之间的关系,用等号(=)表示。

如2:3=4:6表示前者的比是后者的比的相等关系。

三、比例的性质1.比例的交换律:a:b=c:d等于c:d=a:b。

2.比例的比例律:a:b=c:d, b:e=f:g,则a:e=c:g。

3.比例的倍数律:a:b=c:d,则ka:kb=kc:kd。

4.比例的倒数律:a:b=c:d,则b:a=d:c。

四、比例的应用1.求未知量在已知两个量的比例和其中一个量的值的情况下,可以求出另一个量的值。

如已知2:3=4:x,可以用比例的性质,将比例转化为等式,解出未知数x=6。

2.比例的分配在已知两个量的比例和其中一个量的值的情况下,可以求出另一个量在这个比例下的值。

如已知2:3=4:x,已知x=6,则2:3=4:6,可以求出x在这个比例下的值为9。

五、例题解析例题1:已知a:b=3:4,b:c=5:6,求a:b:c的大小关系。

解:由已知可得a:b=3:4,b:c=5:6,则a:b:c=3:4:6,即a:b:c=1:4/3:2。

例题2:已知a:b=4:5,c:b=6:7,求a:c的大小关系。

解:将两个比例的两个已知量对应相乘,得到a:c=24:35,即a:c=4:5/7。

总结:比和比例是数学中的基础概念,掌握了比例的性质和应用方法,可以在实际生活中解决一些问题。

六年级比和比例应用题

六年级比和比例应用题

六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。

例如:公式,其中公式是前项,公式是后项,公式是比号。

- 比值是比的前项除以后项所得的商,如公式的比值为公式。

2. 比例的意义- 表示两个比相等的式子叫做比例。

例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。

- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。

如在公式中,公式。

二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。

- 然后计算每份的本数:公式(本)。

- 四年级分得的本数:公式(本)。

- 五年级分得的本数:公式(本)。

- 六年级分得的本数:公式(本)。

2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。

设甲、乙两地的实际距离是公式厘米。

- 可得公式,根据比例的基本性质公式厘米。

- 因为公式千米公式厘米,所以公式厘米公式千米。

3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。

设公式小时行驶公式千米。

- 速度公式路程公式时间,先求出速度为公式(千米/小时)。

- 可列出比例公式,根据比例的基本性质公式,解得公式千米。

- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。

如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。

- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。

- 边长为公式分米的方砖面积为公式平方分米。

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析

六年级数学比和比例试题答案及解析1.(东山县)用一根长64厘米的铁丝,围成一个长与宽比是5:3的长方形框架,这个长方形框架围成的面积是多少?【答案】240平方厘米【解析】分析:根据“长方形的周长=(长+宽)×2”可得:先用“64÷2”求出长方形一条长和宽的和,再用按比例分配知识,求出长方形的长和宽,进而根据“长方形的面积=长×宽”进行解答即可.解答:解:64÷2=32(厘米),5+3=8,(32×)×(32×),=20×12,=240(平方厘米);答:这个长方形框架围成的面积是240平方厘米.点评:解答此题的关键是:根据按比例分配知识求出长方形的长和宽,进而根据长方形的面积计算公式进行解答.2.把20克农药放入到580克水中,农药和药水的比是..(判断对错)【答案】√.【解析】要明确农药放入水中变成药水,要求农药和药水的比是多少,只要求出药水的重量,根据题意,即可得出结论.解答:解:20:(20+580),=20:600,=1:30;故答案为:√.点评:此题做题的关键是先求出药水的重量,然后根据要求进行比,最后化成最简整数比即可.3.建筑工人用水泥、沙子、石子配成一种混凝土,水泥、沙子、石子的质量比是2:3:5。

要配制3000千克这样的混凝土,需要水泥、沙子、石子各多少千克?【答案】需要水泥600千克,需要沙子900千克,需要石子1500千克【解析】水泥、沙子、石子质量的比是2:3:5,那么水泥占2份,沙子占3份,石子占5份。

配成的混凝土一共是2+3+5=10(份)需要水泥的千克数列式为:3000×2/10=600(千克)。

需要沙子的千克数列式为:3000×3/10=900(千克)。

需要石子的千克数列式为:3000×5/10=1500(千克)。

解:2+3+5=10(份)3000×2/10=600(千克)3000×3/10=900(千克)3000×5/10=1500(千克)。

用比例解决问题知识点总结

用比例解决问题知识点总结

用比例解决问题知识点总结一、知识点总结。

1. 比例的意义。

- 表示两个比相等的式子叫做比例。

例如:2:3 = 4:6,因为2×6 = 3×4 = 12。

2. 比例的基本性质。

- 在比例里,两个外项的积等于两个内项的积。

如果a:b = c:d,那么ad = bc。

例如在3:4 = 9:12中,3×12 = 4×9 = 36。

3. 解比例。

- 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

- 例如:解比例x:2 = 3:4,根据比例的基本性质4x = 2×3,4x = 6,解得x=(6)/(4)=(3)/(2)。

4. 正比例关系。

- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

- 例如:汽车行驶的速度一定,行驶的路程和时间成正比例关系。

因为(路程)/(时间)=速度(一定)。

5. 正比例关系的图像。

- 正比例关系的图像是一条经过原点的直线。

6. 反比例关系。

- 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

- 例如:长方形的面积一定,长和宽成反比例关系。

因为长×宽 = 面积(一定)。

二、20题带解析。

(一)比例的意义和基本性质相关题目。

1. 判断12:15和8:10是否能组成比例。

- 解析:根据比例的意义,判断两个比是否相等。

12:15=(12)/(15)=(4)/(5),8:10=(8)/(10)=(4)/(5),因为(12)/(15)=(8)/(10),所以12:15和8:10能组成比例。

2. 在比例3:5 = 6:x中,求x的值。

- 解析:根据比例的基本性质,两个外项的积等于两个内项的积。

数学比和比例的应用试题答案及解析

数学比和比例的应用试题答案及解析

数学比和比例的应用试题答案及解析1.有两堆煤,原来第一堆和第二堆的比是15:7,从第一堆运走后,这时第二堆还比第一堆少3.5吨,第一堆原有煤多少吨?【答案】10.5【解析】原来第一堆与第二堆存煤量的比是15:7,从第一堆运走后,则两堆煤的比变为15×(1﹣):7=12:7,此时第二堆比第一堆少3.5吨,则第一堆煤中12份中的其中一份重3.5÷(12﹣7)=0.7吨,所以第一堆煤原有0.7×15=10.5吨.解:15×(1﹣):7=12:7,3.5÷(12﹣7)=0.7吨,0.7×15=10.5吨.答:第一堆原有煤10.5吨.点评:根据从第一堆运走后,第一堆煤与第二堆煤的比求出第一堆煤12份中的一份的重量,是完成本题的关键.2.食堂有一堆煤,烧掉的和剩下的煤的质量比是3:5,已知烧掉270千克,还剩多少千克?(用比例解)【答案】450【解析】由题意可知:烧掉的和剩下的煤的质量比是一定的,则烧掉的和剩下的煤的质量成正比例,据此即可列比例求解.解:还剩x千克,270:x=3:5,3x=270×5,3x=1350,x=450;答:还剩450千克.点评:解答此题的关键是,弄清楚哪两种量成何比例,列比例解答即可.3.幼儿园买来260块糖,分给大、中、小三个班.大班和中班分得糖果的比是3:4,中班和小班分得的比是2:3,大、中、小三个班的各分得糖果多少块?【答案】大班分60块,中班分80块,小班分120块糖果.【解析】大班和中班分得糖果的比是3:4,中班和小班分得的比是2:3,可知大、中、小三个班分的糖数的比是3:4:6,然后根据比与分数的关系,分别求出三个班各占糖数的几分之几,再根据分数乘法的意义列式解答.解:因中班和小班分得的比是2:3=4:6,所以大、中、小三个班分的糖数的比是3:4:6,大班分的糖果是:260×=60(块),中班分的糖果是:260×=80(块),小班分的糖果是:260×=120(块).答:大班分60块,中班分80块,小班分120块糖果.点评:本题的关键是求出三个班分的糖果数的比,然后再根据比与分数的关系,求出各班分的占总数的几分之几,再根据分数乘法的意义列式解答.4.某校男生占全校学生总数的60%还少63人,男生比女生多26人,六年级中男生与女生人数的比是35:31,男生比女生多8人,其他年级中女生有多少人?【解析】设全校女生为x人,男生比女生多26人,则全校男生有x+26人,全校人数有x+x+26人,又男生占全校学生总数的60%还少63人,(x+x+26)×60%﹣63也是男生人数,由此可得等量关系式:(x+x+26)×60%﹣63=x+26.解此方程即能求出全校女生人数.六年级中男生与女生人数的比是35:31,即男生是女生的,则男生比女生多﹣1,所以六年级女生有8÷(﹣1)人.求出全校女生人数与六年级女生人数后,即能求得其他年级女生有多少人.解:设全校女生为x人,可得方程:(x+x+26)×60%﹣63=x+26(2x+26)×60%﹣63=x+26,1.2x+15.6﹣63=x+26,0.2x=73.4,x=367.8÷(﹣1)=8,=62(人).367﹣62=305(人).答:其他年级中女生有305人.点评:首先通过设未知数,根据条件列出等量关系式求出全校女生人数是完成本题的关健.5.三种动物赛跑.已知狐狸的速度是兔子的,兔子的速度是松鼠的2倍,狐狸、兔子、松鼠的速度比是.若已知狐狸每分钟比松鼠多跑14米,那兔子半分钟比狐狸多跑米.【答案】4:6:3、14.【解析】(1)由题意可知:狐狸的速度=兔子的速度×,兔子的速度=2×松鼠的速度,利用等量代换的方法,即可求出狐狸、兔子、松鼠的速度比.(2)由“狐狸每分钟比松鼠多跑14米”可知,狐狸与松鼠的速度相差14米,再据兔子与狐狸的速度比,即可求出兔子半分钟比狐狸多跑的路程.解:(1)由题意知:狐狸的速度=兔子的速度,兔子的速度=2×松鼠的速度,所以:狐狸的速度:兔子的速度=2:3=4:6,兔子的速度:松鼠=的速度=2:1=6:3因此狐狸的速度:兔子的速度:松鼠的速度=4:6:3;(2)因为14÷(4﹣3)=14÷1,=14(米/分),则 14×(6﹣4)÷2,=28÷2,="14" (米);答:狐狸、兔子、松鼠的速度比是4:6:3;兔子半分钟比狐狸多跑14米.点评:(1)依据已知比,利用利用等量代换的方法,即可求出狐狸、兔子、松鼠的速度比.(2)依据三者的速度比,先求出狐狸与松鼠的速度差,再由兔子与狐狸的速度比,即可求解.6.某养兔专业户养了白、黑和灰三种颜色的兔、白兔和只数占总支数的,黑兔与灰兔只数的比是3:5,已知黑兔比灰兔少64只.三种兔各养了多少只?【答案】白兔有144只,黑兔有96只,灰兔有160只.【解析】因为黑兔与灰兔只数的比是3:5,所以黑兔比灰兔少5﹣3=2份,是64只,用64除以2就可以求出每一份的只数,再分别乘黑兔和灰兔的份数就可以求出灰兔和黑兔的只数;又因为白兔的只数占总只数的,则灰兔和黑兔共占总数的(1﹣),用黑兔和灰兔的总只数除以所占的分率即可求出兔的总只数,再乘就是白兔的只数.解:64÷(5﹣3),=64÷2,所以黑兔有:32×3=96(只);灰兔有:32×5=160(只);白兔有:(160+96)÷(1﹣)×,=256÷×,=144(只).答:白兔有144只,黑兔有96只,灰兔有160只.点评:解决本题的关键是根据黑兔和灰兔的数量差求出每一份的只数;再根据所占的总只数的分率求出总数.7.两个相同的瓶子里装满一种药水,一个瓶中药与水的体积之比是3:1,另一个瓶中药与水的体积之比是4:1,.如果把这两瓶药水混合,混合药水中药与水的体积之比是多少?【答案】31:9.【解析】根据题意,把两瓶溶液混合后,中药与水的体积之和没变,把两个瓶子的容积分别看作一个单位,求出中药和水各占瓶子容积的几分之几,然后再求混合溶液中中药和水的体积之比是多少即可.解:将一个瓶子容积看成一个单位,则在一个瓶中,中药占:,水占1﹣;另一瓶子中药占:,水占:1﹣=;于是在混合溶液中,中药和水的体积之比是:():(),=,=31:9;答:混合药水中药与水的体积之比是31:9.点评:解答此题关键是理解两瓶药水溶液混合后中药和水的体积没变.8.配制一种盐水,盐和水的质量比是1:25.(1)25克盐需要加水多少克?(2)1000克水需要加盐多少克?【答案】625,40.【解析】盐和水的质量比是1:25,就是1份质量的盐需要25份质量的水.(1)25克盐需要就需要25个25份质量的盐;(2)1000克水里面有多少个25克,就需要多少克盐.解:(1)25×25=625(克)答:25克盐需要加水625克.(2)1000÷25=40(克)答:1000克水需要加盐40克.点评:本题是考查比的应用,此种解答方法是比较简单的一种方法,也可根据盐、水在分别占这种盐水的几分之几,及给出的盐、水的质量,用分数除法解答9.五(1)班男、女生人数比是12:11,又转来4名女生后,全班共有50人.求现在男、女生的人数比.一杯盐水200克,其中盐与水的比是1:24,如果放入4克盐,这时盐与水的比是多少?【答案】男、女生的人数比是12:13.盐与水的比是1:16.【解析】(1)因为五(1)班男、女生人数比是12:11,所以男生占原来全班人,50﹣4=46人的,用乘法即可求出男生人数,用50减去男生人数就是女生人数,进而用除法即可求出男、女生人数之比;(2)因为原来盐与水的比是1:24,所以盐是200克盐水的,用乘法即可求出原来盐的质量,进而加4就是现在水的重量;用原来盐水的重量减去原来盐的质量就是水的重量,用除法即可求比.解:(1)男生有:(50﹣4)×,=46×,=24(人);女生有:50﹣24=26(人);男生、女生的比为:24:26=12:13.答:现在男、女生的人数比是12:13.(2)原来盐的重量:200×=8(克);水的重量:200﹣8=192(克);现在盐与水的比是:(8+4):192=12:192=1:16.答:这时盐与水的比是1:16.点评:此题主要考查比的灵活运用,将比转换成分数,再用按比例分配的方法解答.10.甲乙两车间要加工一批面粉,实际完成计划的130%甲乙两车间完成任务的比为8:5,乙车间比甲车间少加工面粉13.5吨.原计划加工的面粉是多少吨?【答案】45【解析】因为甲乙两车间完成任务的比为8:5,那么乙车间就比甲车间多完成8﹣5=3份,又因为乙车间比甲车间少加工面粉13.5吨,所以用13.5吨除以3就可以求出一份是多少,再乘总共完成的份数8+5=13份就是实际完成的总数,又因为实际完成的总数=原计划×130%,求原计划加工数量用除法解答即可.解:13.5÷(8﹣5)×(8+5),=13.5÷3×13,=4.5×13,=58.5(吨);原计划:58.5÷130%=45(吨).答:原计划加工的面粉是45吨.点评:解决本题的关键是通过比得出每一份是多少,进而求出实际总数量是多少.11.盐与水的质量比是2:13,其中盐有6克,一共配制多少克盐水?【答案】45【解析】因为盐与水的质量比是2:13,所以配制成的盐水一共是2+13=15份,用盐的质量除以2就是每一份的质量,再乘15就是盐水的质量.解:6÷2×(2+13),=3×15,=45(克).答:一共配制45克盐水.点评:解决本题的关键是用盐的质量除以盐的份数求出每一份的质量.12.鸡有210只,鸡的只数和鸭的只数比是2:5.鸭有多少只?【答案】525【解析】已知“鸡的只数和鸭的只数比是2:5,鸡的只数是鸭的只数,用除法解答即可.解:210÷,=210×,=525(只);答:鸭有525只.点评:关键是把比转化为分数,再根据基本的数量关系解决即可.13.小明读一本故事书,已读页数和未读页数的比是3:5,他已经读完21页,还有多少页没有读?【答案】35【解析】”已读页数和未读页数的比是3:5“,未读的页数就是已读页数的,已读的页数是21,没读的页数就是21页的.据此解答.解:21×=35(页);答:还有35页没有读.点评:本题的关键是根据比与分数的关系求出未读的页数就是已读页数的几分之几,再根据分数乘法的意义列式解答.14.三个同学跑步,甲、乙、丙的速度比是4:3:2.甲跑了600米,乙比丙多跑多少米?【答案】150【解析】用甲跑的米数除以甲的份数求得一份的米数,再求出乙比丙多跑的份数,继而求出乙比丙多跑的米数.解:600÷4×(3﹣2),=150×1,=150(米);答:乙比丙多跑150米.点评:此题解答关键是把比转化为份数,先求一份的数,再求几份的数.15. 19世纪初的法国数学家拉普拉斯经过研究发现,在不同的地区男婴和女婴的出生人数比大致是相同的.下表是去年我国A、B、C三座城市的男女婴出生人数比.哪个城市男女婴出生人数的差异最大?哪个城市男女婴出生人数的差异最小?【答案】A城市男女婴出生人数的差异最大,C城市男女婴出生人数的差异最小.【解析】要求男女婴出生人数的差异大小,用比的前项除以后项,看比值的大小即可.解:A城市:113÷100=1.13,B城市:27÷25=1.08,C城市:43÷40=1.075,1.13>1.08>1.075;答:A城市男女婴出生人数的差异最大,C城市男女婴出生人数的差异最小.点评:此题采用了求比值的方法,通过比较比值的大小,解决问题.16.有两根绳子,较长的一根为10米.两根绳子都剪掉同样的长度后,剩下部分的长度比为2:1,两根绳子再次剪掉与上次剪掉的同样长度,剩下部分的长度比为3:1.问:较短的那根绳子原来长多少米?【答案】6【解析】两根绳子都剪掉同样的长度,并且两次剪的长度也相同,我们可以把每次剪掉的部分看作已知的,用数a来表示,根据题中告诉我们的第一次剪完后剩下的长度比是2:1可以算a的值,将a的值代入第二次剪后剩下的长度比是3:1即可求短的那根绳子原来长多少米.解:设较短的那根绳子原来长x米,由题意得:(10﹣a ):(x﹣a )=2:1,10﹣a=2x﹣2a,a=2x﹣10,将a=2x﹣10代入(10﹣2a ):(x﹣2a)=3:1,可得:[10﹣2(2x﹣10)]:[x﹣2(2x﹣10)]=3:1,[10﹣4x+20]:[x﹣4x+20]=3:1,(30﹣4x):(20﹣3x)=3:1,30﹣4x=60﹣9x,5x=30,x=6;答:较短的那根绳子原来长6米.点评:解答这类题目,关键是把中间量看作已知数参与计算,根据题中的数量关系列出比例进行解答即可.17.一辆汽车从甲城开往乙城,3小时行驶105km.用同样的速度又行驶了1.2小时到达乙城,甲城到乙城有多少千米?(用比例解)【答案】147【解析】根据速度一定,路程与时间成正比例,由此列出比例解决问题.解:设甲、乙两地相距x千米,105:3=x:(3+1.2),3x=105×(3+1.2),3x=441,x=147;答:甲城到乙城有147千米.点评:解答此题的关键是,根据题意及路程、速度与时间的关系,判断路程与时间成正比例,注意1.2小时是在前面3小时行驶后又行驶的时间,不是总路程对应的时间.18.一辆快车和一辆慢车从甲地到乙地所用的时间比是3:5,现在快车和慢车分别同时从两地相向而行,经过2时相遇.已知慢车每小时行60千米,甲乙两地相距多少千米?【答案】320【解析】快车和慢车从甲地到乙地所用的时间比是3:5,依据路程一定,时间和速度成反比,可得快车和慢车的速度比是5:3,先求出快车的速度,再根据路程=速度×时间即可解答.解:(60÷3×5+60)×2,=(100+60)×2,=160×2,=320(千米),答:甲乙两地相距320千米.点评:等量关系式:路程=速度×时间,是解答本题的依据,关键是求出快车的速度.19.甲乙两队共210人,如果从乙队调出的人去甲队,那么现在甲乙两队人数比是4:3,甲队原有多少人?【答案】110【解析】设乙队原有x人,甲队就有210﹣x人,从乙队调出的人去甲队后,乙队就有x﹣x 人,甲队就有210﹣x+x人,此时甲乙两队人数比是4:3,也就是说乙队人数是甲队人数的,据此可列方程:(x﹣x)=(210﹣x+x)×,依据等式的性质,求出乙队原来人数,最后用总人数减乙队原有人数即可解答.解:设乙队原有x人,x﹣x=(210﹣x+x)×,x=﹣x,x+x=﹣x x,x=,x=100,210﹣100=110(人),答:甲队原有110人.点评:解答本题用方程比较简便,只要设其中一个量是x,再用x表示出另一个量,依据数量间的等量关系列方程即可解答.20.她俩各剪了多少朵?【答案】王芬剪了15朵花,张洁剪了24朵花.【解析】先求出王芬和张洁剪花的数量各占总数量的几分之几,再用乘法解答.解:39×=15(朵),39×=24(朵);答:王芬剪了15朵花,张洁剪了24朵花.点评:本题关键是先通过它们的比求出各占总数的几分之几.21.甲、乙两车从相距560千米的两地同时出发,相向而行,已知甲、乙两车的速度比是4:3,4小时后两车相遇.甲车每小时行多少千米?【答案】80【解析】根据题意,两车的速度和为每小时560÷4=140千米,然后根据甲、乙两车的速度比,解决问题.解:560÷4×,=140×,=80(千米/小时);答:甲车每小时行80千米.点评:先求出速度和,再据速度比,运用按比例分配的方法解决问题.22.三个中队的少先队员拾废钢铁,第一中队拾的占总数的25%,第二中队拾的与第三中队拾的千克数的比是7:8,第一中队比第三中队少拾45千克,第三中队拾了多少千克?【答案】120【解析】根据题意,把总数看作单位“1”,第二中队与第三中队拾的千克数占总数的1﹣25%=75%=,由“第二中队拾的与第三中队拾的千克数的比是7:8”,则第三中队拾总数的×=.由此可知第一中队比第三中队少拾总数的﹣25%,即﹣=,正好少拾45千克,因此总数为45÷=300千克,则第三中队拾了300×千克,解决问题.解:第三中队拾总数的(1﹣25%)×,=×,=;三个中队共拾废钢铁:45÷(﹣25%),=45÷(﹣),=45÷,=45×,=300(千克);第三中队拾了:300×=120(千克);答:第三中队拾了120千克.点评:此题关系较复杂,解答此题,首先找清单位“1”,进一步理清解答思路,列式的顺序,从而较好的解答问题.23.小玲参加数学竞赛,全卷总题数是36题,小玲做对题数与做错题的比是7:2.小玲做错了多少题?【答案】8【解析】把全部的题目看成单位“1”,那么做错的题目就是全部题目的,它的数量用乘法求解.解:36×=8(题);答:小玲做错了8题.点评:解答此题关键找出单位“1”,分析出数量关系,再根据已知选择合适的解法解决问题.24.六一班男生人数与女生人数比是4:5,已知女生比男生多3人,男女生各多少人?【答案】男生12人,女生15人.【解析】男女生人数的比是4:5,全班总人数看作单位“1”,把全班总人数平均分成4+5=9(份),男生占4份,即男生占总人数的,女生人数占5份,即女生占总人数的,又知女生比男生多3人,由此可求出3人占全班总人数的(﹣),根据已知一个数的几分之几是多少,求这个数,用除法计算,求出全班总人数,进而求出男女生各多少人.解:4+5=9(份)3÷(﹣)=3÷=3×9=27(人),27×=12(人),27﹣12=15(人),答:男生12人,女生15人.点评:此题解答关键是把全班人数看作单位“1”,把比转化为份数,求出女生占全班人数的几分之几,用除法列式解答求出全班总人数.25.甲、乙两个仓库货物的重量比是7:5,如果甲仓给乙仓26吨,那么甲、乙两个仓库货物的重量比是3:4.甲仓原来有多少吨货物?【答案】98【解析】根据题意得出:原来甲占两仓总数的:7÷(7+5)=,现在甲占总数的:3÷(3+4)=,甲减少的26吨占总数的(),用除法即可求出原来两个仓库货物的总重量,进而用总重量×即可求出甲仓原有的货物重量.解:原来甲占总数的:7÷(7+5)=,现在甲占总数的:3÷(3+4)=,原来甲仓有:26÷()×,=26÷×,=98(吨).答:甲仓原来有98吨货物.点评:解答此题的关键是,根据甲、乙两个仓库存粮总吨数不变,将单位“1”统一,再找出对应量,列式解决问题.26.甲乙两地距离是120千米,甲乙两地之间有一个加油站,加油站距甲乙两地的距离比是1﹕5,乙地和加油站之间的距离是多少千米?【答案】100【解析】根据题意,把甲乙两地的距离平均分成5+1=6份,那么甲地到加油站的距离占了1份,乙地到加油站的距离占了5份,可用120除以6计算出每份的距离,然后再乘5即可得到乙地和加油站的距离.解:5+1=6,120÷6×5=20×5,=100(千米),答:乙地和加油站之间的距离是100千米.点评:本题的关键是根据按比例分配的知识,求出甲乙两地共平均可以分的份数,计算出每份的距离,然后再乘5即可解答.27.一对互相咬合的齿轮,主动轮有80个齿,每分钟转60圈,要使从动轮每分钟转200圈,从动轮应有多少个齿?(用比例解)【答案】24【解析】由于两齿轮啮合时它们必须在相同时间内转过相等的齿数,设从动齿轮有X个齿,则有:80×60=X×200,就可解答此题.解:设从动轮应有X个齿.X×200=80×60200X=4800,X=24.答:从动轮应有24个齿.点评:此题应先判断齿轮的齿数与每分钟转的圈数是成什么比例的量,列比例解答.28.甲、乙两城相距486千米,一列客车和一列货车同时由两地相对开出,4.5小时相遇.已知客车的速度和货车速度的比是2:1.客车和货车的速度各是多少千米?【答案】36【解析】“客车的速度和货车速度的比是2:1”,客车速度就占了两车速度和的,货车速度占了两车速度和的,两车的速度和可根据速度=路程÷时间求出.据此解答.解:客车的速度486÷4.5×,=108×,=72(千米/小时),货车的速度486÷4.5×,=108×,=36(千米/小时),答:客车的速度是72千米/小时,货车的速度是36千米/小时.点评:本题的重点是求出两车的速度和,再根据按比例分配的知识进行解答.29.请按3:1的比画出A放大后的图形,再按1:2画出B缩小后的图形.【答案】(1)按3:1的比将A放大后的图形:(2)按1:2将B缩小后的图形:(阴影部分)【解析】(1)将图A的底和高同时扩大3倍,即能得到3:1的比画出A放大后的图形;(2)图B的底和高同时缩小2倍,即能得到按1:2画出B缩小后的图形.由此作图即可.点评:完成本题要进行实际测量.30.一块长方形的土地,长与宽的比是7:3,宽比长少24米,这块土地的面积是多少平方米?【答案】756平方米.【解析】“长和宽的比是7:3”,每份的长为24÷(7﹣3)=6(米);则长为6×7=42(米),宽为6×3=18(米).面积为:42×18=756(平方米).解:24÷(7﹣3)=6(米);6×7=42(米),6×3=18(米).42×18=756(平方米).答:这块土地的面积是756平方米.点评:此题考查了学生按比例分配的知识,以及长方形的面积等方面的知识.31.老师用一根长72厘米的铁丝围了一个三角形,这个三角形三条边长度的比是5:4:3,这个三角形三条边各是多少厘米?【答案】各是30厘米,24厘米,18厘米.【解析】本题要先根据边长的比求出各边占三角形周长的几分之几,然后再求出各边的长度.解:72×=72×=30(厘米),72×=72×=24(厘米),72×=72×=18(厘米),答:这个三角形三条边各是30厘米,24厘米,18厘米.点评:本题的关健是根据三条边的比求出它们各占周长的分率.32.水果店运来苹果和梨,苹果和梨的比是7:2,苹果比梨多35千克,运来苹果和梨各多少千克?【答案】苹果49千克,梨14千克.【解析】分别把苹果和梨的重量看作7份和2份,则苹果比梨多7﹣2=5份,又因苹果比梨多35千克,所以可以求出1份是多少,进而就可以求出苹果和梨的重量.解:35÷(7﹣2)=7(千克);7×7=49(千克),2×7=14(千克);答:运来苹果49千克,梨14千克.点评:解答此题的关键是利用份数解答,求出苹果比梨多的份数,即可求出1份的量,从而问题得解.33.一种喷洒果树的药水,农药和水的质量比是2:75.现有300克农药,能配这种药水多少千克?【答案】11.55【解析】首先求得农药和水的总份数,再求得农药占药水总数的几分之几,最后求得药水多少千克,列式解答即可.解:2+75=77(份),300÷=11550(克),11550克=11.55千克;答:能配这种药水11.55千克.点评:此题主要考查按比例分配应用题的特点:已知两个数的比,和其中一个数,求这两个数的和,用按比例分配解答.34.小雅读一本名著,第一天读了一部分后,已读的页数与未读页数的比是5:7,第二天又读了92页,这时已读的页数是未读页数的4倍.第一天读了多少页?【答案】192【解析】把这本书看作单位“1”,由“已看页数与未看页数的比为5:7”可知,第一天看了全部的再由“第二天又看了92页,这时已看的页数是未看页数的4倍”得到,第二天看了全部的,92页对应得分率就是(﹣),用对应量,92除以对应分率,就是这本书的总页数,进而求出第一天读的页数.解:92÷(﹣)×,=92÷×,=192(页);答:第一天读了192页.点评:解决此题的关键是把比转化为分数,统一单位“1”,求出92页的对应分率,用对应量除以对应分率就是这本书的总页数.35.装一批电杆,每天装12根,30天装完,如果每天装15根,只要多少天装完?【答案】24【解析】根据题意可知,这批电杆的总根数一定,也就是每天装的根数与所用时间的积一定,因此每天装的根数和所用天数成反比例.由此解答即可.解:设只要x天装完,15x=12×30,15x=360,x=24;答:只要24天装完.点评:此题属于比例应用题,解答关键是判断题中的两种相关联的量成什么比例,如果两种相关联的量对应的积一定,那么这两种相关联的量就成反比例;如果两种相关联的量对应的比值一定,那么这两种相关联的列就成正比例;由此解答.36.列式计算.(1)一堆重200吨的煤分两天运完,第一天运了这堆煤的45%,第二天还应运多少吨?(2)教室长8米,宽6米,高4米.要粉刷教室的屋顶和四壁(除去门窗和黑板面积25.4平方米),粉刷的面积是多少?(3)一堆货物80吨,3天运走这堆货物的75%,照这样计算,运走这堆货物共需要多少天?(4)一个正方体的玻璃容器,往里面倒入5升的水,水面高8厘米,再把一块石头放入水中,这时量的容器内的水深15厘米.求石头的体积.【答案】(1)200×(1﹣45%);(2)8×6+8×4×2+6×4×2﹣25.4;(3)1÷(75%÷3);(4)5升=5000立方厘米,5000÷8×(15﹣8).【解析】(1)把煤的总重量看成单位“1”,第二天运的重量是总重量的(1﹣45%),由此用乘法求出第二天运的吨数;(2)把这个教室看成长方体,要粉刷的是面积是这个长方体5个面的面积,缺少下底面,求出这5个面的面积和,然后减去门窗和黑板的面积即可;(3)把这堆货物看成单位“1”,3天运走了75%,先求出每天运这堆货物的百分之几;然后用总量1除以每天运走的百分数就是需要的天数;(4)放入石头后,上升部分的水的体积就是石块的体积;先根据原来的体积求出正方体的底面积,然后再求出上升的水面的高度,进而求出这部分的体积.解:(1)200×(1﹣45%);(2)8×6+8×4×2+6×4×2﹣25.4;(3)1÷(75%÷3);(4)5升=5000立方厘米,5000÷8×(15﹣8).点评:这类型的题目要分清楚数量之间的关系,先求什么再求什么,找清列式的顺序,列出算式求解.37.甲、乙两人原来的钱数的比是3:4,后来甲给乙50元,这时甲的钱数是乙的.甲、乙原来各有多少元钱?【答案】甲原来有225元,乙原来有300元【解析】甲乙原先的钱数比是3:4,现在甲的钱数是乙的;甲原先的钱数占甲乙两人总钱数的,甲现在的钱数占甲乙两人总钱数的;那么50元占甲乙两人总钱数的﹣=,前后甲乙两人总钱数不变,为50÷=525(元).那么,甲原有钱数为525×=225(元),乙的钱数就好求了.解:甲乙总钱数:50÷(﹣),=50÷,=525(元);甲原有钱数:525×,=525×,=225(元);乙原有钱数:525﹣225=300(元).答:甲原来有225元,乙原来有300元.点评:此题解答的关键在于先求出甲、乙两人的总钱数,然后用按比例分配的方法,解决问题.38.一台磨粉机6小时磨面粉750千克.照这样计算,磨3000干克面粉,需要多少小时?【答案】磨3000干克面粉,需要24小时【解析】根据工作总量÷工作时间=工作效率,可算出这台磨粉机的工作效率,再由工作总量÷工作效率=工作时间,直接列式解决问题.解:750÷6=125(千克),3000÷125=24(小时),答:磨3000干克面粉,需要24小时.点评:此题考查了工作效率、工作时间、工作总量之间的数量关系.39.学校把植树任务按3:5分配给四、五两个年级.五年级栽了108棵,超过了原分配任务的,四年级原来要植树多少棵?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学知识总结之比和比例应用题【求比的问题】例1 两个同样容器中各装满盐水。

第一个容器中盐与水的比是2∶3,第二个容器中盐与水的比是3∶4,把这两个容器中的盐水混合起来,则混合溶液中盐与水的比是____。

(无锡市小学数学竞赛试题)则混合溶液中,盐与水的比是:某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降(1994年全国小学数学奥林匹克决赛试题)即:【比例问题】例1 甲、乙两包糖的重量比是4∶1,如果从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是____克。

(1989年全国小学数学奥林匹克初赛试题)例2 甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。

第二次将乙容器中的一部分混合液倒入甲容器。

这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是____升。

(1991年全国小学数学奥林匹克决赛试题)讲析:因为现在乙容器中纯酒精含量为25%,所以,乙容器中酒精与水的比为25%∶(1-25%)=1∶3第一次从甲容器中倒5升纯酒精到乙容器,才使得乙容器中纯酒精与水的比恰好是5∶15=1∶3又甲容器中纯酒精含量为62.5%,则甲容器中酒精与水的比为62.5%∶(1-62.5%)=5∶3第二次倒后,要使甲容器中纯酒精与水的比为5∶3,不妨把从甲容器中倒入乙容器的混合液中纯酒精作1份,水作3份。

那么甲容器中剩下的纯酒精便是11-5=6(升)6升算作4份,这样可恰好配成5∶3。

而第二次从乙容器倒入甲容器的混合液共为1+3=4(份),所以也应是6升。

一.比的意义和性质(1)比的意义两个数相除又叫做两个数的比。

“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2 比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3 正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示y/x=k(一定)(2)成反比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)二正反比例问题【含义】两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例应用题是正比例意义和解比例等知识的综合运用。

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

反比例应用题是反比例的意义和解比例等知识的综合运用。

【数量关系】判断正比例或反比例关系是解这类应用题的关键。

许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

【解题思路和方法】解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?关键:做题效率一定,做题数量与做题时间成正比例关系例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?三按比例分配问题【含义】所谓按比例分配,就是把一个数按照一定的比分成若干份。

这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

【数量关系】从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。

总份数=比的前后项之和【解题思路和方法】先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

例1 学校把植树560棵的任务按人数分配给五年级三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?例2 用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。

三条边的长各是多少厘米?例3 从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

例4 某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?四列方程例1 甲乙两班共90人,甲班比乙班人数的2倍少30人,求两班各有多少人?例2 仓库里有化肥940袋,两辆汽车4次可以运完,已知甲汽车每次运125袋,乙汽车每次运多少袋?智趣题学校买了4张办公桌和1把椅子,共用去510元,后又买来6张办公桌和1把椅子共用去750元。

求每张办公桌和每把椅子各多少元?作业1.一台拖拉机第一天上午3小时平均每小时耕地7.8公亩,下午4小时平均每小时耕地8.1公亩,第二天用了5小时耕地38.4公亩,正好完成任务。

这台拖拉机平均每天耕地多少公亩?2.王、张两人各带同样多的钱去商店买花布,同种的花布小王买了9米,小张买了6米。

王向张借了12元,两人的钱刚好用完。

这种花布每米多少元?比的应用练习题1、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是 3 :1,另一个瓶中酒精与水的体积比是 4 :1。

如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是()。

2、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为()。

3、甲、乙、丙三个数的平均数是60。

甲、乙、丙三个数的比是 3 :2 :1。

甲、乙、丙三个数各是多少?4、一个直角三角形的两个锐角度数的比是 2 :1,这两个锐角分别是多少度?5、大、小两瓶油共重 2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。

求大、小瓶里各装油多少千克?6、甲、乙、丙三位同学共有图书108本,乙比甲多18本,乙与丙的图书数之比是 5 :4,求甲、乙、丙三人各有图书多少本?7、一个直角三角形的三条边总和是60厘米,已知三条边的比是 3 :4 :5.这个直角三角形的面积是多少平方厘米?8、一个直角三角形的周长为36厘米,三条边的长度比是 3 :4 :5,这个三角形的面积是多少平方厘米?9、一瓶盐水,盐和水的重量比是 1 :24,如果再放入75克水,这时盐与水的重量比是 1 :27,原来瓶内盐水重多少千克?10、盒子里有三种颜色的球,黄球个数与红球个数的比是 2 :3,红球个数与白球个数的比是4 :5。

已知三种颜色的球共175个,红球有多少个?11、王老师用100元去买了20支圆珠笔和10支钢笔,每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1。

问买圆珠笔和钢笔各花了多少元?12、甲、乙两包糖果的重量的比是 4 :1,如果从甲包取出10克放入乙包后,甲、乙两包糖果重量的比变为7 :5。

那么两包糖果重量的总和是多少?13、某小学男、女生人数之比是16 :13,后来有几位女生转学到这所学校,男、女生人数之比变成为 6 :5,这时全体学生共有880人,问转学来的女生有多少人?14、小明读一本书,已读的和末读的页数比是 1 :5。

如果再读30页,则已读的和末读的页数之比为3 :5。

这本书共有多少页?15、运输队要运一批货物,已经运走的和剩下的比是 1 :4。

如果再运走4吨,那么运走的和剩下的比为 3 :7。

这批货物共多少吨?16、甲、乙、丙三人的彩球数的比例为9:4:2,甲给了丙30个彩球,乙也给了丙一些彩球,比例变为2 :1 :1。

乙给了丙多少个彩球?溶液问题一碗糖水中有多少糖,这就要用百分比浓度来衡量.放多少水和放多少糖能配成某一浓度的糖水,这就是配比问题.在考虑浓度和配比时,百分数的计算扮演了重要的角色,并产生形形色色的计算问题,这是小学数学应用题中的一个重要内容.从一些基本问题开始讨论.例15 基本问题一(1)浓度为10%,重量为80克的糖水中,加入多少克水就能得到浓度为8%的糖水?(2)浓度为20%的糖水40克,要把它变成浓度为40%的糖水,需加多少克糖?解:(1)浓度10%,含糖 80×10%= 8(克),有水80-8=72(克).如果要变成浓度为8%,含糖8克,糖和水的总重量是8÷8%=100(克),其中有水100-8=92(克).还要加入水 92- 72= 20(克).(2)浓度为20%,含糖40×20%=8(克),有水40- 8= 32(克).如果要变成浓度为40%,32克水中,要加糖x克,就有x∶32=40%∶(1-40%),例16 基本问题二20%的食盐水与5%的食盐水混合,要配成15%的食盐水900克.问:20%与5%食盐水各需要多少克?解: 20%比15%多(20%-15%), 5%比15%少(15%-5%),多的含盐量(20%-15%)×20%所需数量要恰好能弥补少的含盐量(15%-5%)×5%所需数量.也就是画出示意图:相差的百分数之比与所需数量之比恰好是反比例关系.答:需要浓度 20%的 600克,浓度 5%的 300克.这一例题的方法极为重要,在解许多配比问题时都要用到.现在用这一方法来解几个配比的问题.例17 某人到商品买红、蓝两种笔,红笔定价5元,蓝笔定价9元.由于买的数量较多,商店就给打折扣.红笔按定价 85%出售,蓝笔按定价 80%出售.结果他付的钱就少了18%.已知他买了蓝笔 30支,问红笔买了几支?解:相当于把两种折扣的百分数配比,成为1-18%=82%.(85%-82%)∶(82%-80%)=3∶2.按照基本问题二,他买红、蓝两种笔的钱数之比是2∶3.设买红笔是x支,可列出比例式5x∶9×30=2∶3答:红笔买了 36支.配比问题不光是溶液的浓度才有的,有百分数和比,都可能存在配比.要提请注意,例17中是钱数配比,而不是两种笔的支数配比,千万不要搞错.例18 甲种酒精纯酒精含量为72%,乙种酒精纯酒精含量为58%,混合后纯酒精含量为 62%.如果每种酒精取的数量比原来都多取15升,混合后纯酒精含量为63.25%.问第一次混合时,甲、乙两种酒精各取多少升?解:利用例16的方法,原来混合时甲、乙数量之比是后一次混合,甲、乙数量之比是这与上一讲例 14是同一问题.都加15,比例变了,但两数之差却没有变.5与2相差3,5与3相差2.前者3份与后者2份是相等的.把2∶5中前、后两项都乘2,3∶5中前、后两项都乘3,就把比的份额统一了,即现在两个比的前项之差与后项之差都是 5.15是5份,每份是 3.原来这答:第一次混合时,取甲酒精12升,乙酒精30升.例19 甲容器中有8%的食盐水300克,乙容器中有12.5%的食盐水 120克.往甲、乙两个容器分别倒入等量的水,使两个容器的食盐水浓度一样.问倒入多少克水?解:要使两个容器中食盐水浓度一样,两容器中食盐水重量之比,要与所含的食盐重量之比一样.甲中含盐量:乙中含盐量= 300×8%∶120×12.5%= 8∶5.现在要使(300克+倒入水)∶(120克+倒入水)=8∶5.把“300克+ 倒入水”算作8份,“120克+ 倒入水”算作5份,每份是(300-120)÷(8-5)= 60(克).倒入水量是 60×8-300= 180(克).答:每一容器中倒入 180克水.例20 甲容器有浓度为2%的盐水 180克,乙容器中有浓度为 9%的盐水若干克,从乙取出 240克盐水倒入甲.再往乙倒入水,使两个容器中有一样多同样浓度的盐水.问:(1)现在甲容器中食盐水浓度是多少?(2)再往乙容器倒入水多少克?解:(1)现在甲容器中盐水含盐量是180×2%+ 240×9%= 25.2(克).浓度是25.2÷(180 + 240)× 100%= 6%.(2)“两个容器中有一样多同样浓度的盐水”,也就是两个容器中含盐量一样多.在乙中也含有25.2克盐.因为后来倒入的是水,所以盐只在原有的盐水中.在倒出盐水 240克后,乙的浓度仍是 9%,要含有25.2克盐,乙容器还剩下盐水25.2÷9%=280(克),还要倒入水420-280=140(克).答:(1)甲容器中盐水浓度是6%;(2)乙容器再要倒入140克水.例21 甲、乙两种含金样品熔成合金.如甲的重量是乙的一半,得到含乙两种含金样品中含金的百分数.解:因为甲重量增加,合金中含金百分数下降,所以甲比乙含金少.用例17方法,画出如下示意图.学习必备欢迎下载因为甲与乙的数量之比是1∶2,所以(68%-甲百分数)∶(乙百分数-68%)=2∶1= 6∶3.注意:6+3=2+7=9.那么每段是因此乙的含金百分数是甲的含金百分数是答:甲含金 60%,乙含金 72%.用这种方法解题,一定要先弄清楚,甲和乙分别在示意图线段上哪一端,也就是甲和乙哪个含金百分数大.。

相关文档
最新文档